RU2235587C2 - Гранулированный катализатор гидрирования никель/переходный оксид алюминия (варианты), предшественник катализатора, концентрат и способ получения катализатора - Google Patents

Гранулированный катализатор гидрирования никель/переходный оксид алюминия (варианты), предшественник катализатора, концентрат и способ получения катализатора Download PDF

Info

Publication number
RU2235587C2
RU2235587C2 RU2001124915/04A RU2001124915A RU2235587C2 RU 2235587 C2 RU2235587 C2 RU 2235587C2 RU 2001124915/04 A RU2001124915/04 A RU 2001124915/04A RU 2001124915 A RU2001124915 A RU 2001124915A RU 2235587 C2 RU2235587 C2 RU 2235587C2
Authority
RU
Russia
Prior art keywords
nickel
catalyst
total
surface area
alumina
Prior art date
Application number
RU2001124915/04A
Other languages
English (en)
Other versions
RU2001124915A (ru
Inventor
Корнелис Мартинус ЛОК (GB)
Корнелис Мартинус Лок
Original Assignee
Джонсон Мэтью Плс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9903083.5A external-priority patent/GB9903083D0/en
Priority claimed from GBGB9917545.7A external-priority patent/GB9917545D0/en
Application filed by Джонсон Мэтью Плс filed Critical Джонсон Мэтью Плс
Publication of RU2001124915A publication Critical patent/RU2001124915A/ru
Application granted granted Critical
Publication of RU2235587C2 publication Critical patent/RU2235587C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Использование: нефтехимия. Гранулированный катализатор гидрирования жиров или масел, содержащий от 5 до 75 мас.% никеля получают суспендированием порошка переходного оксида алюминия, имеющего средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 мкм до 20 мкм, в водном растворе аммиакатного комплекса никеля с последующим нагреванием для осаждения нерастворимого соединения никеля и затем восстановлением последнего. Катализаторы, содержащие до 55 мас.% никеля, имеют площадь поверхности никеля более 130 м2/г никеля. Катализаторы, имеющие большее содержание никеля, полученные при использовании оксида алюминия, имеющего средний диаметр пор более 12 мкм, могут иметь меньшую площадь поверхности никеля. Технический результат – повышение активности и селективности катализатора. 4 н. и 11 з.п. ф-лы, 8 табл.

Description

Настоящее изобретение относится к катализаторам и, в частности, к катализаторам, пригодным для использования в гидрировании, в особенности гидрировании масел и жиров.
Масла и жиры часто частично или полностью гидрируют в периодическом суспензионном процессе посредством суспендирования порошкообразного никелевого катализатора в масле или жире и подачи туда водорода при нагревании смеси обычно до температуры в диапазоне от 80 до 250°С, возможно под давлением, например, при абсолютном давлении вплоть до 30 бар (3 МПа). Для частичного гидрирования давление обычно составляет ниже 10 бар (1 МПа) абс., например от 2 до 4 бар (от 0,2 до 0,4 МПа) абс. Для гидрирования масла или жира катализатор должен иметь высокую активность, так чтобы заданная степень гидрирования могла быть достигнута в короткий промежуток времени и/или чтобы могло использоваться небольшое количество никеля. В случае частичного гидрирования катализатор также должен обладать хорошей селективностью, так чтобы минимизировать избыточное гидрирование масел и жиров. Кроме того, желательно, чтобы остаточный катализатор было легко отфильтровать от прогидрированного масла или жира и чтобы катализатор обладал хорошими свойствами с точки зрения повторного использования.
Часто используемые для этого способа катализаторы представляют собой никель на подложке, например на окиси алюминия, и характеризуются, помимо прочего, высокой площадью поверхности никеля на грамм никеля. Типичные катализаторы, имеющие высокое содержание никеля, описаны в ЕР 0168091, где катализатор готовят осаждением никелевого соединения и затем добавляют растворимое соединение алюминия к взвеси осажденного никелевого соединения, в то время как осадок созревает, т.е. стареет. После восстановления полученного предшественника катализатора восстановленный катализатор обычно имеет площадь поверхности никеля порядка от 90 до 150 м2 на 1 г всего никеля. Катализаторы имеют атомное отношение никель/алюминий в диапазоне от 2 до 10. Восстановленные катализаторы имеют атомное отношение никель/алюминий более 2, где, по крайней мере, 70 мас.% от всего никеля восстанавливается до атомарного никеля, и имеют общее содержание никеля более чем примерно 66 мас.% .
В US-A-4191664 и US-A-4064152 описывают термически стабильные катализаторы типа никель/оксид алюминия, полученные осаждением гидроксида никеля на порошкообразный носитель гидратированный оксид алюминия.
Катализаторы гидрирования типа никель/оксид алюминия, имеющие общее содержание никеля от 5 до 40 мас. %, а также имеющие большую площадь поверхности никеля, получаемые различными способами, описаны в US 4490480. В способе по последней ссылке, никель-аммиакатный комплекс, в частности аммиакат карбоната никеля, нагревают в присутствии переходной формы оксида алюминия. Это приводит к осаждению никелевого соединения, такого как гидроксид никеля или основной карбонат никеля, образующего при этом весьма однородную смесь с оксидом алюминия.
В этом последнем способе порошок оксида алюминия может быть суспендирован в растворе комплекса никеля, или формованные частицы, такие как сферы или цилиндрические экструдаты, обычно имеющие минимальный размер свыше примерно 1,5 мм, формованные из оксида алюминия, пропитываются раствором комплекса никеля. Хотя описаны катализаторы, имеющие площадь поверхности никеля более 130 м2 на 1 г общего никеля, и даже в некоторых случаях более 200 м2 на 1 г общего никеля, все такие продукты с сильно развитой поверхностью изготовляются описанным выше способом пропитывания при использовании формованных частиц оксида алюминия; катализаторы, полученные суспендированием порошка оксида алюминия с никелевым комплексом, имеют площадь поверхности никеля значительно меньше 130 м2 на 1 г общего никеля. Хотя катализаторы, полученные при использовании предварительно сформованных частиц оксида алюминия определенной формы, пригодны в способах гидрирования с неподвижным слоем, они не пригодны для упомянутого выше периодического суспензионного процесса гидрирования, поскольку из-за размера они имеют тенденцию выпадать из суспензии, а также, при частичном гидрировании, они имеют тенденцию приводить к избыточному гидрированию жиров и масел. В указанном выше патенте US 4490480 отмечается, что катализаторы, пригодные для периодического суспензионного гидрирования, могут быть получены размалыванием катализаторов с большой поверхностью никеля, полученных описанным выше способом пропитывания при использовании формованных частиц оксида алюминия. Однако получение таких катализаторов по такой методике включает дополнительные технологические операции формования оксида алюминия в формованные частицы и последующую стадию размельчения.
Катализаторы, полученные непосредственно из порошка оксида алюминия размером 60-70 мкм, содержащего 18-28 мас.% никеля и имеющие площадь поверхности никеля вплоть до 123 м2 на 1 г никеля, также описаны в вышеупомянутом патенте US 4490480. Однако заявители обнаружили, что такие материалы имеют сравнительно низкую активность при гидрировании масел.
В настоящее время заявители обнаружили, что катализаторы типа никель/оксид алюминия, имеющие высокую активность и/или хорошую селективность, могут быть изготовлены описанным выше способом, в котором используется суспензия порошка оксида алюминия, если использовать порошок оксида алюминия, имеющий частицы небольшого размера. Несмотря на использование частиц оксида алюминия небольшого размера, катализаторы неожиданно легко отфильтровываются от прогидрированного жира или масла.
В GB 926235 было предложено получать катализаторы гидрирования этим способом при использовании кизельгура в качестве носителя. Однако заявители обнаружили, что катализаторы, изготовленные при использовании частиц кизельгура небольшого размера, в противоположность переходным формам оксида алюминия, не характеризуются большими площадями поверхности никеля.
Таким образом, заявители предлагают способ получения катализатора гидрирования никель/оксид алюминия, содержащего от 5 до 75 мас.% общего никеля, включающий суспендирование порошка переходных полиморфных форм оксида алюминия, далее в настоящем описании именуемых как “переходный оксид алюминия”, имеющих средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 мкм до 20 мкм, с водным раствором аммиакатного комплекса никеля, нагревание суспензии, чтобы вызвать разложение аммиакатного комплекса никеля с осаждением нерастворимого никелевого соединения, отфильтровывание твердого осадка от водной среды, высушивание и, при желании после прокаливания твердого остатка, восстановление твердого остатка.
Под термином “общий никель” заявители подразумевают количество никеля, находящегося в элементной или комбинированной форме. Обычно, однако, по крайней мере 70 мас.% общего никеля в восстановленном катализаторе находится в элементном состоянии.
Термин “средневзвешенный по поверхности диаметр D[3,2]”, иначе называемый средним диаметром Саутера (Sauter), определен М. Alderliesten в статье “A Nomenclature for Mean Particle Diameters”; Anal. Proc., vol. 21, May 1984, pages 167-172, и рассчитывается на основе анализа размера частиц, который удобно проводить лазерной дифракцией, например, при использовании прибора Malvern Mastersizer.
Переходный оксид алюминия может быть из группы γ-окскдов алюминия, например,
Figure 00000001
-оксид алюминия или χ-оксид алюминия. Эти материалы могут быть получены обжигом гидроксидов алюминия при 400-750°С и в общем случае имеют площадь поверхности по БЭТ в диапазоне 150-400 м2/г. В качестве альтернативы, переходный оксид алюминия может быть из группы δ-оксидов алюминия, которая включает высокотемпературные формы, такие как δ- и θ-оксиды алюминия, которые могут быть получены нагреванием оксидов алюминия γ-группы до температуры выше примерно 800°С. δ-оксиды алюминия обычно имеют площадь поверхности по БЭТ в диапазоне от 50 до 150 м2/г. Переходные оксиды алюминия содержат менее чем 0,5 моль воды на моль Аl2O3, причем фактическое содержание воды зависит от температуры, до которой их нагревали. Оксид алюминия должен быть пористым, предпочтительно имея объем пор, по крайней мере, 0,2 мл/г, в особенности в диапазоне от 0,3 до 1 мл/г.
Предпочтительно, чтобы небольшие частицы оксида алюминия имели относительно большой средний диаметр пор, поскольку, как оказывается, использование таких оксидов алюминия дает катализаторы с особенно хорошей селективностью. Предпочтительные алюминиевые оксиды имеют средний диаметр пор, по крайней мере, 12 нм, в особенности в диапазоне от 15 до 30 нм. (Под термином “средний диаметр пор” заявители понимают учетверенный объем пор, измеренный по десорбционной ветви изотермы физисорбции азота при относительном давлении 0,98, деленный на площадь поверхности по БЭТ). В ходе получения катализатора никелевые соединения осаждаются в порах оксида алюминия, и, таким образом, средний диаметр пор катализатора будет меньше, чем применяемого оксида алюминия, и уменьшается пропорционально увеличению никеля. Предпочтительно, чтобы восстановленные катализаторы имели средний диаметр пор, по крайней мере, 10 нм, предпочтительно более 15 нм и в особенности в диапазоне от 15 до 25 нм.
С другой стороны, независимо от содержания никеля в катализаторе, размер частиц катализатора в значительной степени тот же, что и размер частиц переходного оксида алюминия, и таким образом катализаторы обычно имеют средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 до 20 мкм и предпочтительно менее чем 10 мкм, в особенности менее чем 8 мкм.
Катализаторы по изобретению содержат от 5 до 75 мас.% общего никеля, предпочтительно ниже 70 мас.% общего никеля. Катализаторы, содержащие вплоть до примерно 55%, предпочтительно от 5 до 45 мас.% общего никеля, обычно имеют площадь поверхности никеля более 130, предпочтительно более 150, более предпочтительно более 180 и в особенности более 200 м2 на 1 г общего никеля.
Таким образом, в настоящем изобретении также предлагается порошкообразный катализатор гидрирования типа никель/переходный оксид алюминия, содержащий от 5 до 55 мас.% общего никеля, имеющий площадь поверхности никеля, по крайней мере, 130 м2 на грамм общего никеля и средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 мкм до 20 мкм.
Площадь поверхности никеля может определяться, как описано в “Physical and Chemical Aspects of Adsorbents and Catalysts”, edited by B.G.Linsen, Academic Press, 1970 London and New York, стр. 494 и 495, и является площадью поверхности восстановленного, т.е. элементного никеля в катализаторе.
Заявители обнаружили, что в общем случае площадь поверхности никеля катализаторов, полученных в способе по изобретению, имеет тенденцию уменьшаться с увеличением содержания никеля. Однако заявители также обнаружили, что катализаторы, изготовленные при использовании оксидов алюминия с крупными порами и содержащие относительно большие количества никеля, являются неожиданно активными и селективными, даже если они и не имеют столь большую площадь поверхности никеля. Таким образом, пригодные катализаторы, содержащие, по крайней мере, 20 мас.% общего никеля, имеющие средний диаметр пор более 10 нм и площадь поверхности никеля более 110 м2/г общего никеля, могут быть изготовлены при использовании оксидов алюминия с крупными порами.
Соответственно, в настоящем изобретении также предлагается зернистый или гранулированный (т.е. находящийся в форме макрочастиц - зерен или гранул) катализатор гидрирования типа никель/переходный оксид алюминия, содержащий от 20 до 75 мас.% общего никеля, имеющий площадь поверхности никеля, по крайней мере, 110 м2 на грамм общего никеля, средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 мкм до 20 мкм и средний диаметр пор, по меньшей мере, 10 нм, предпочтительно более 12 нм и в особенности в диапазоне от 15 до 25 нм.
Катализаторы, содержащие, по меньшей мере, 20 мас.% общего никеля, имеющие площадь поверхности никеля до 80 м2/г общего никеля, проявляют хорошую активность и селективность при условии, что средний диаметр пор превышает 15 нм.
Соответственно, в настоящем изобретении также предлагается гранулированный катализатор гидрирования никель/переходный оксид алюминия, содержащий от 20 до 75 мас.% общего никеля, имеющий площадь поверхности никеля, по крайней мере, 80 м2 на грамм общего никеля, средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 мкм до 20 мкм, и средний диаметр пор, по меньшей мере, 15 нм.
Катализаторы могут быть получены суспендированием порошка переходного оксида алюминия в подходящем количестве водного раствора аммиакатного комплекса никеля, например продукта растворения основного карбоната никеля в растворе карбоната аммония в водном гидроксиде аммония, с получением продукта с желаемым содержанием никеля. Раствор аммиакатного комплекса никеля предпочтительно имеет рН в диапазоне от 9 до 10,5. Затем суспензию нагревают, например, до температуры в диапазоне от 60 до 100°С, чтобы вызвать разложение аммиакатного комплекса никеля с выделением аммиака и диоксида углерода и осаждение нерастворимого соединения никеля, например основного карбоната никеля на поверхности и в порах переходного оксида алюминия. Затем оксид алюминия, несущий осажденное соединение никеля, отфильтровывают от водной среды и сушат. Он может быть прокален на воздухе, например, при температуре в диапазоне от 250 до 450°С для разложения осажденного никелевого соединения до оксида никеля. При восстановлении оксида никеля генерируется большая площадь поверхности никеля. В качестве альтернативы осажденное никелевое соединение может быть непосредственно восстановлено, т.е. без необходимости стадии прокаливания. Это восстановление с применением или без применения предшествующей стадии прокаливания может осуществляться нагревом до температуры в диапазоне от 250 до 450°С в присутствии водорода.
Как отмечалось выше, эти катализаторы в особенности полезны для гидрирования жиров и масел, таких как рыбий жир, соевое масло, рапсовое масло и подсолнечное масло. В качестве альтернативы катализаторы могут использоваться в других реакциях гидрирования, таких как гидрирование олефиновых соединений, например восков, нитро- или нитрильных соединений, например, при конверсии нитробензола в анилин или конверсии нитрилов в амины. Они также могут использоваться для гидрирования парафиновых восков для удаления в них следов ненасыщенности.
Как отмечалось выше, в таком способе гидрирования необходимое количество катализатора суспендируют в загрузке масла или жира и смесь нагревают, возможно, под давлением, при введении водорода, например, барботированием через смесь. Удобно загружать катализатор в сосуд для гидрирования в виде концентрата частиц катализатора, диспергированных в подходящей среде носителя, например, в отвержденном соевом масле. Предпочтительное количество катализатора в указанном концентрате таково, что концентрат имеет общее содержание никеля от 5 до 30%, предпочтительно от 10 до 25 мас.%.
В качестве альтернативы в некоторых случаях восстановление может проводиться in situ. Так, предшественник, включающий переходный оксид алюминия и невосстановленное соединение никеля, например оксид, возможно в виде концентрата, т.е. диспергированный в носителе, как описано выше, могут загружаться в реактор гидрирования вместе с гидрируемыми материалами, и смесь нагревают при барботировании водорода через смесь.
Соответственно, заявители также предлагают предшественник катализатора гидрирования, содержащий переходный оксид алюминия и восстановимое соединение никеля, который при восстановлении водородом при температуре в диапазоне от 250 до 450°С дает гранулированный катализатор гидрирования, содержащий от 5 до 55 мас.% общего никеля, имеющий площадь поверхности никеля, по меньшей мере, 130 м2 на грамм общего никеля и средневзвешенный по поверхности диаметр D[3,2] от 1 мкм до 20 мкм, предпочтительно менее чем 10 мкм.
Заявители также предлагают предшественник катализатора гидрирования, содержащий переходный оксид алюминия и восстановимое соединение никеля, который при восстановлении водородом при температуре в диапазоне от 250 до 450°С дает гранулированный катализатор гидрирования, содержащий от 20 до 75 мас.% общего никеля, имеющий площадь поверхности никеля, по крайней мере, 80 м2 на грамм общего никеля и средневзвешенный по поверхности диаметр D[3,2] от 1 мкм до 20 мкм, предпочтительно менее чем 10 мкм и средний диаметр пор более 10 нм.
Изобретение иллюстрируется следующими примерами, в которых, если не оговорено специально, все проценты и части на миллион (млн-1) приведены по массе. Площади поверхности никеля определяются, как описано в “Physical and Chemical Aspects of Adsorbents and Catalysts”, edited by B.G.Linsen, Academic Press, 1970 London and New York, стр. 494 и 495, при использовании времени восстановления 1 час.
Пример 1
Использованный оксид алюминия представляет собой переходный оксид алюминия типа θ, имеющий площадь поверхности примерно 108 м2/г и объем пор примерно 0,42 мл/г и имеющий средневзвешенный по поверхности диаметр D[3,2] 3,87 мкм. Средний диаметр пор, таким образом, составляет примерно 16 нм.
Исходный раствор, содержащий аммиакатный никелевый комплекс, получали растворением на литр исходного раствора 52,1 г основного карбоната никеля (48% Ni, 20% СО3), 37,4 г карбоната аммония (32,5% NH3, 55% СО3) и 133 г 30% NН3 в воде.
Частицы оксида алюминия и достаточное для получения примерно 33 г никеля на 100 г оксида алюминия количество исходного раствора загружали в перемешиваемый сосуд, оснащенный холодильником. рН водного раствора составлял 10,2. Смесь нагревали до кипения и поддерживали при перемешивании и осторожном кипячении при примерно 96°С до тех пор, пока раствор не становился прозрачным примерно через 90 мин. Затем твердый осадок отфильтровывали, промывали и затем сушили в течение ночи на воздухе при 120°С. Полученный предшественник катализатора, который имел содержание никеля 19,6 %, затем восстанавливали пропусканием водорода через слой катализатора при нагревании до 430°С.
Восстановленный катализатор (обозначаемый как катализатор А) имел общее содержание никеля 24,7% и площадь поверхности никеля примерно 187 м2 на 1 г общего никеля (примерно 46 м2 на 1 г катализатора). Средний диаметр пор катализатора составлял примерно 9,5 нм, а площадь поверхности БЭТ равнялась 135 м2/г.
Средневзвешенный по поверхности диаметр частиц восстановленного катализатора был аналогичен таковому применяемого переходного оксида алюминия.
Пример 2 (сравнительный)
Катализатор, обозначаемый как катализатор В, получали в соответствии с методикой из ЕР 0168091, используя в качестве щелочного осадителя раствор, содержащий 66,6 г карбоната натрия и 25,4 г гидроксида натрия на литр, и раствор, содержащий 35 г никеля на литр. Эти два раствора непрерывно подавали в сосуд для осаждения. Для этого осаждения использовали комнатную температуру (22°С), среднюю продолжительность обработки (время задержки) 30 с и энергию перемешивания 25 кВт/м3. Раствор, выходящий из этого сосуда для осаждения, непрерывно подавали в стабилизационный реактор, в котором поддерживали температуру 70°С. Раствор алюмината натрия, содержащий 10 г Аl на литр, также непрерывно подавали в стабилизационный реактор при умеренном перемешивании при потребляемой энергии 2 кВт/м3. Суспензию, выходящую из второго реактора, собирали в третий сосуд и поддерживали при 60°С в течение пяти часов. Суспензию затем фильтровали и промывали водой при 70°С. Промытый осадок ресуспендировали в воде при 70°С и затем подвергали распылительной сушке. Элементный анализ высушенного распылительной сушкой продукта дал следующий состав: 45,6% никеля, 4,0% алюминия, 0,02% натрия. Высушенный распылительной сушкой продукт восстанавливали при 430°С в токе водорода в течение 30 минут и затем использовали как катализатор В. Площадь поверхности никеля составляла 115 м2 на 1 г общего никеля.
Описанное выше получение повторяли с получением аналогичного катализатора, обозначенного как катализатор С. Гидрирующие характеристики катализаторов определяли при использовании двух различных масел следующим образом.
В первом опыте использовали соевое масло с IV 133,5 и содержащее 1,8 млн-1 Р, 1600 млн-1 свободных жирных кислот, 100 млн-1 воды, и 0 млн-1 мыла и S.
200 г масла и требуемое количество восстановленного катализатора загружали в закрытый перемешиваемый реактор гидрирования. Смесь нагревали до 160°С и водород барботировали через суспензию при давлении 2 бар (0,2 МПа) абс. Гидрирование проводили изотермически. Количество абсорбированного маслом водорода контролировали, и опыт прекращали, как только использовали количество водорода, требующееся для понижения IV до 70. Время реакции до достижения IV 70 использовали в качестве меры активности катализатора.
Во втором опыте использовали подсолнечное масло с IV 132 и содержащее 0,4 млн-1 Р, 800 млн-1 свободных жирных кислот, 600 млн-1 воды, 4 млн-1 мыла и 0,5 млн-1 S. Гидрирование проводили, как описано выше, но при 120°С и при давлении 4 бар (0,4 МПа) абс. и определяли время до достижения IV 80.
Результаты показаны в табл. 1.
Figure 00000002
Видно, что катализатор А в соответствии с изобретением был значительно более активным, чем катализаторы сравнения В и С, поскольку время гидрирования уменьшилось и/или могло использоваться меньшее количество никеля.
Селективность катализаторов оценивали на основе определения смещения температуры плавления, содержания твердых жиров при 10°С, 20°С, 30°С и 35°С и содержания транс-изомера гидрогенизированных масел.
Фильтруемость измеряли при использовании стандартного фильтрационного теста. В этом тесте 170 мл гидрогенизированного масла, к которому добавляли 0,045 г ускорителя фильтрации (Harborlite 700), нагревали при 110°С и поддерживали при давлении 3 бар (0,3 МПа) абс. в сосуде, имеющем в его дне выходное отверстие площадью 0,5 см2. Это отверстие содержит основу из стальной проволоки, на которой была закреплена предварительно покрытая 0,02 г ускорителя фильтрации фильтровальная ткань таким образом, чтобы все масло просачивалось через фильтровальную ткань. Время, затраченное для фильтрации 120 г масла, использовали в качестве меры фильтруемости. Селективность и фильтруемость представлены в табл. 2.
Figure 00000003
Figure 00000004
Пример 3
Способ примера 1 повторяли, но при использовании такого количества раствора аммиакатного комплекса никеля, чтобы получалось приблизительно 50 г никеля на 100 г оксида алюминия. Восстановленный катализатор имел общее содержание никеля 33,7% и площадь поверхности никеля 161 м2 на 1 г общего никеля.
Пример 4
Способ примера 1 повторяли, но при использовании различных количеств раствора аммиаката карбоната никеля по отношению к количеству оксида алюминия для получения ряда предшественников катализаторов и, следовательно, восстановленных катализаторов (катализаторы D, Е и F) с различным содержанием никеля.
Пример 5
Способ примера 4 повторяли при использовании оксида алюминия с большим диаметром пор. Используемый оксид алюминия представлял собой переходный оксид алюминия типа γ - Аl2O3, имеющий площадь поверхности примерно 145 м2/г и объем пор примерно 0,85 мл/г и имеющий средневзвешенный по поверхности диаметр D[3,2] 2,08 мкм. Средний диаметр пор составлял примерно 23 нм. Как и в примере 4, был получен ряд катализаторов (катализаторы G, H, I, J и К) с различным содержанием никеля.
Физические свойства катализаторов из примеров 4 и 5 представлены в табл. 3.
Figure 00000005
Сравнение катализаторов F и К показывает, что тогда как при меньшем размере пор подложки из оксида алюминия введение большого количества никеля приводит к малой площади поверхности никеля, использование оксида алюминия с большим размером пор позволяет получить катализаторы, имеющие сравнительно большую площадь поверхности никеля. Катализаторы (за исключением катализаторов F и К) тестировали, как и в примерах 1-2, и результаты приведены в табл. 4-5.
Figure 00000006
Figure 00000007
Пример 6
Образцы предшественников, используемых для получения катализаторов J и К, восстанавливали при 360°С вместо 430°С, как в предыдущих примерах, с получением катализаторов L и М соответственно, и затем тестировали, как описано выше. Площадь поверхности никеля была определена для катализатора L, и она составляла 114 м2/г общего никеля, т.е. близка к площади (115 м2/г общего никеля) соответствующего катализатора - катализатора J, восстановленного при 430°С. Результаты показаны в табл. 6, 7.
Figure 00000008
Figure 00000009
Это показывает, что с этими катализаторами, имеющими относительно высокое содержание никеля, могут быть получены удовлетворительные катализаторы при использовании пониженной температуры восстановления. В особенности отмечается, что тогда как катализатор К с высоким содержанием никеля (67,3% ) при восстановлении при 430°С имел относительно низкую площадь поверхности никеля (88 м2/г общего никеля), характеристики соответствующего катализатора, т.е. катализатора M, восстановленного при более низкой температуре 360°С, были сходны или лучше, чем катализатора Н, который имел значительно меньшее содержание никеля (35,5% ), но значительно большую площадь поверхности никеля (117 м2/г общего никеля).
Пример 7
Катализаторы N и О получали, следуя способу, описанному в примере 1, при использовании другой подложки из оксида алюминия: ALCOA HiQ7412F, марки Q1037 и Q1058 соответственно. Марка Q1037 имела средневзвешенный по поверхности диаметр D[3,2] 4,4 мкм, объем пор 0,44 мл/г и площадь поверхности БЭТ 137 м2/г, что давало средний диаметр пор примерно 13 нм. Марка Q1058 имела размер частиц (d 3,2) 1,5 мкм, объем пор 0,34 мл/г и площадь поверхности БЭТ 117 м2/г, что давало средний диаметр пор примерно 12 нм. Катализаторы получали при использовании отношения оксид алюминия:никель 2,25 по массе.
Характеристики гидрирования катализаторов тестировали при использовании соевого масла, как описано в примере 2, и результаты приведены в табл. 8.

Claims (17)

1. Гранулированный катализатор гидрирования никель/переходный оксид алюминия, содержащий от 5 до 75 мас.% общего никеля, имеющий площадь поверхности никеля, по меньшей мере, 80 м2 на грамм общего никеля и средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 до 20 мкм.
2. Гранулированный катализатор по п.1, имеющий площадь поверхности никеля, по меньшей мере, 110 м2 на грамм общего никеля.
3. Гранулированный катализатор по п.1 или 2, содержащий от 5 до 55 мас.% общего никеля, имеющий площадь поверхности никеля, по меньшей мере, 130 м2 на грамм общего никеля и средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 до 20 мкм.
4. Гранулированный катализатор по п.3, имеющий общее содержание никеля в диапазоне от 20 до 35 мас.%.
5. Гранулированный катализатор по п.3 или 4, имеющий средний диаметр пор более 10 нм.
6. Гранулированный катализатор по п.1, содержащий от 20 до 75 мас.% общего никеля, имеющий площадь поверхности никеля, по меньшей мере, 80 м2 на грамм общего никеля, средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 до 20 мкм и средний диаметр пор более 15 нм.
7. Гранулированный катализатор по п.6, имеющий площадь поверхности никеля более 110 м2 на грамм общего никеля.
8. Гранулированный катализатор по п.1, содержащий от 20 до 75 мас.% общего никеля, имеющий площадь поверхности никеля, по меньшей мере, 110 м2 на грамм общего никеля, и частицы, имеющие средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 до 20 мкм и средний диаметр пор более 10 нм.
9. Гранулированный катализатор по любому из пп.1-8, имеющий общее содержание никеля ниже 70 мас.%.
10. Гранулированный катализатор по любому из пп.1-9, имеющий средневзвешенный по поверхности диаметр D[3,2] менее 10 мкм.
11. Предшественник катализатора, включающий переходный оксид алюминия и восстановимое соединение никеля, который при восстановлении водородом при температуре в диапазоне от 250 до 450°С дает гранулированный катализатор по любому из пп.1-10.
12. Способ получения катализатора гидрирования никель/оксид алюминия, содержащего от 5 до 75 мас.% общего никеля, включающий суспендирование порошка переходного оксида алюминия, имеющего средневзвешенный по поверхности диаметр D[3,2] в диапазоне от 1 до 20 мкм, в водном растворе аммиакатного комплекса никеля, нагревание суспензии для разложения аммиакатного комплекса никеля с осаждением нерастворимого никелевого соединения, отфильтровывание твердого осадка от водной среды, высушивание и, необязательно, после прокаливания твердого остатка, восстановление твердого остатка.
13. Способ по п.12, в котором порошок оксида алюминия имеет средний диаметр пор, по крайней мере, 12 нм.
14. Способ по п.12 или 13, в котором переходный оксид алюминия представляет собой δ-оксид алюминия.
15. Концентрат, содержащий от 10 до 25 мас.% никеля, включающий гранулированный катализатор по любому из пп.1-10, или предшественник катализатора по п.11, или гранулированный катализатор, полученный способом по любому из пп.12-14, диспергированный в носителе.
Приоритет по пунктам:
27.07.1999 по пп.1-3, 5-9, 11-13;
02.02.1999 по пп.4, 10, 14-15.
RU2001124915/04A 1999-02-12 2000-02-11 Гранулированный катализатор гидрирования никель/переходный оксид алюминия (варианты), предшественник катализатора, концентрат и способ получения катализатора RU2235587C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9903083.5 1999-02-12
GBGB9903083.5A GB9903083D0 (en) 1999-02-12 1999-02-12 Catalysts
GB9917545.7 1999-07-27
GBGB9917545.7A GB9917545D0 (en) 1999-07-27 1999-07-27 Cstalysts

Publications (2)

Publication Number Publication Date
RU2001124915A RU2001124915A (ru) 2003-07-20
RU2235587C2 true RU2235587C2 (ru) 2004-09-10

Family

ID=26315117

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001124915/04A RU2235587C2 (ru) 1999-02-12 2000-02-11 Гранулированный катализатор гидрирования никель/переходный оксид алюминия (варианты), предшественник катализатора, концентрат и способ получения катализатора

Country Status (12)

Country Link
US (1) US6673743B2 (ru)
EP (1) EP1154854B1 (ru)
JP (1) JP2002536165A (ru)
CN (1) CN1151877C (ru)
AT (1) ATE309039T1 (ru)
AU (1) AU2451700A (ru)
DE (1) DE60023847T2 (ru)
DK (1) DK1154854T3 (ru)
ES (1) ES2248044T3 (ru)
PL (1) PL199651B1 (ru)
RU (1) RU2235587C2 (ru)
WO (1) WO2000047320A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2531624C1 (ru) * 2013-07-25 2014-10-27 Открытое акционерное общество "Синтез-Каучук" Никелевый катализатор гидрирования ненасыщенных углеводородов и сероочистки, способ его получения и применения
RU2585766C2 (ru) * 2010-01-04 2016-06-10 Джонсон Мэтти Плс Катализатор и способ приготовления катализатора

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2486354C (en) 2002-06-12 2013-03-12 Sulzer Metco (Canada) Inc. Hydrometallurgical process for production of supported catalysts
US6958309B2 (en) * 2002-08-01 2005-10-25 Conocophillips Company Hydrothermal pretreatment for increasing average pore size in a catalyst support
US7351328B2 (en) 2003-07-23 2008-04-01 China Petroleum & Chemical Corporation Desulfurization and novel process for same
US7585990B2 (en) * 2003-07-31 2009-09-08 Cargill, Incorporated Low trans-fatty acid fat compositions; low-temperature hydrogenation, e.g., of edible oils
EP1656439A4 (en) 2003-07-31 2010-11-10 Cargill Inc FAT COMPOSITIONS WITH LOW TRANS-FATTY ACID CONTENT; TIEFTEMPERATURHYDRIERUNG, eg OF EDGE OILS
US7408089B2 (en) * 2004-03-19 2008-08-05 Catalytic Distillation Technologies Ni catalyst, process for making catalysts and selective hydrogenation process
GB0501783D0 (en) * 2005-01-28 2005-03-09 Johnson Matthey Plc Catalysts and preparation method
EP1897613A1 (en) 2005-05-23 2008-03-12 Repsol Ypf Nickel catalyst, method of obtaining same and use thereof
DE102005035816A1 (de) * 2005-07-30 2007-02-01 Oxeno Olefinchemie Gmbh Verfahren zur Hydrierung von Oxo-Aldehyden mit hohen Estergehalten
US8067332B2 (en) * 2006-05-03 2011-11-29 Samsung Sdi Co., Ltd. Methanation catalyst, and carbon monoxide removing system, fuel processor, and fuel cell including the same
DE102007009556A1 (de) * 2007-02-27 2008-10-23 Mtu Cfc Solutions Gmbh Reformierungskatalysator für Schmelzcarbonatbrennstoffzellen
WO2008153887A1 (en) * 2007-06-05 2008-12-18 Recycling Coordinators, Inc. Catalyst slurry recycle
CN101347734B (zh) * 2007-07-18 2011-07-20 中国石油化工股份有限公司 大孔镍基催化剂
CN101348406B (zh) * 2007-07-18 2011-08-17 中国石油化工股份有限公司 用于裂解碳九及其以上烃加氢的方法
US9090465B2 (en) * 2008-09-24 2015-07-28 Nippon Steel & Sumitomo Metal Corporation Method for producing catalyst reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
EP2199269A1 (en) * 2008-12-22 2010-06-23 Total Petrochemicals Research Feluy Method to purify olefin-containing hydrocarbon feedstocks
WO2010128137A2 (en) * 2009-05-07 2010-11-11 Shell Internationale Research Maatschappij B.V. Improvements relating to hydrogenation of aromatics and other unsaturated organic compounds
US8308848B1 (en) 2009-11-27 2012-11-13 Tda Research, Inc. High temperature gas desulfurization sorbents
CN102311804B (zh) * 2010-07-07 2014-05-21 中国石油化工股份有限公司 一种石蜡加氢精制的方法
CN103998124B (zh) * 2011-10-12 2017-04-26 巴斯夫公司 镍氢化催化剂
EP2826556A1 (en) * 2013-07-18 2015-01-21 VITO NV (Vlaamse Instelling voor Technologisch Onderzoek NV) Supported metal-based oxygen carrier and use in a chemical-looping process cycle
FR3025728B1 (fr) 2014-09-11 2018-04-20 IFP Energies Nouvelles Catalyseur mesoporeux a base de nickel et son utilisation en hydrogenation.
FR3068984B1 (fr) 2017-07-13 2020-01-17 IFP Energies Nouvelles Procede d'hydrogenation des aromatiques mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique.
FR3068983B1 (fr) 2017-07-13 2019-07-12 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique
CN114985722B (zh) * 2022-07-01 2023-04-07 浙江新和成股份有限公司 一种介孔镍粉及其制备方法和镍-磷催化剂体系以及己二腈的制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064152A (en) * 1975-06-16 1977-12-20 Union Oil Company Of California Thermally stable nickel-alumina catalysts useful for methanation
US4191664A (en) * 1975-06-16 1980-03-04 Union Oil Company Of California Thermally stable nickel-alumina catalysts useful for methanation and other reactions
US4229234A (en) * 1978-12-29 1980-10-21 Exxon Research & Engineering Co. Passivated, particulate high Curie temperature magnetic alloys
US4273724A (en) * 1979-07-09 1981-06-16 Exxon Research & Engineering Co. Hydrocarbon synthesis from CO and H2 using titanium promoted bulk nickel catalysts
JPS56108532A (en) * 1980-02-04 1981-08-28 Hitachi Ltd Iodine adsorbing material and preparation thereof
NL8201696A (nl) * 1982-04-23 1983-11-16 Unilever Nv Werkwijze ter bereiding van methaneringskatalysatoren.
JPH0811184B2 (ja) * 1987-02-06 1996-02-07 日本石油株式会社 重質油の水素化処理触媒
GB8714661D0 (en) * 1987-06-23 1987-07-29 British Petroleum Co Plc Catalysts
US4834865A (en) * 1988-02-26 1989-05-30 Amoco Corporation Hydrocracking process using disparate catalyst particle sizes
NL9001536A (nl) * 1990-07-05 1992-02-03 Meern Bv Engelhard De Zwavel-gepromoteerde nikkelkatalysator en bereiding daarvan.
US5320998A (en) * 1991-09-05 1994-06-14 Nippon Shokubai Co., Ltd. Catalyst for purifying exhaust gases of diesel engine
US5192734A (en) * 1991-10-25 1993-03-09 W. R. Grace & Co.- Conn. Hydroprocessing catalyst composition
IT1254908B (it) * 1992-04-23 1995-10-11 Mini Ricerca Scient Tecnolog Procedimento per la preparazione di un catalizzatore metallico supportato e catalizzatore ottenuto mediante tale procedimento.
US5389595A (en) * 1993-09-30 1995-02-14 Union Oil Company Of California Hydroprocessing catalyst, its use, and method of preparation
DE4345265A1 (de) * 1993-10-16 1995-09-21 Degussa Katalysatorvorstufe für einen aktivierten Metall-Festbettkatalysator nach Raney
US5403806A (en) * 1993-10-22 1995-04-04 Union Oil Company Of California Phosphorous-containing hydroprocessing catalyst and method of preparation
US5902561A (en) * 1995-09-29 1999-05-11 D.D.I. Limited Low temperature inert gas purifier
US5705723A (en) * 1995-10-24 1998-01-06 Phillips Petroleum Company Hydrogenation catalyst composition and a hydrogenation process
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
GB9619724D0 (en) * 1996-09-20 1996-11-06 Ici Plc Catalyst
CN1054393C (zh) * 1997-07-22 2000-07-12 中国石油化工总公司 一种渣油加氢脱金属催化剂
US6383974B1 (en) * 1997-08-26 2002-05-07 Japan Energy Corporation Hydrorefining catalyst and method for manufacturing hydrorefining catalyst
FR2767721B1 (fr) * 1997-08-29 1999-10-22 Inst Francais Du Petrole Nouveaux catalyseurs utilisables dans les reactions de transformation de composes organiques
US6165932A (en) * 1999-01-11 2000-12-26 Ford Global Technologies, Inc. Transition metal oxides useful in fabrication of NOx absorbent formulations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585766C2 (ru) * 2010-01-04 2016-06-10 Джонсон Мэтти Плс Катализатор и способ приготовления катализатора
US9387462B2 (en) 2010-01-04 2016-07-12 Johnson Matthey Plc Catalyst and method of catalyst manufacture
RU2531624C1 (ru) * 2013-07-25 2014-10-27 Открытое акционерное общество "Синтез-Каучук" Никелевый катализатор гидрирования ненасыщенных углеводородов и сероочистки, способ его получения и применения

Also Published As

Publication number Publication date
CN1339984A (zh) 2002-03-13
JP2002536165A (ja) 2002-10-29
DK1154854T3 (da) 2006-02-13
ATE309039T1 (de) 2005-11-15
AU2451700A (en) 2000-08-29
PL199651B1 (pl) 2008-10-31
WO2000047320A1 (en) 2000-08-17
DE60023847T2 (de) 2006-08-03
DE60023847D1 (de) 2005-12-15
EP1154854B1 (en) 2005-11-09
CN1151877C (zh) 2004-06-02
US20020016519A1 (en) 2002-02-07
EP1154854A1 (en) 2001-11-21
ES2248044T3 (es) 2006-03-16
PL350140A1 (en) 2002-11-04
US6673743B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
RU2235587C2 (ru) Гранулированный катализатор гидрирования никель/переходный оксид алюминия (варианты), предшественник катализатора, концентрат и способ получения катализатора
EP0092878B1 (en) Nickel upon transition alumina catalysts
EP0736326B1 (en) Fischer-Tropsch catalysts containing iron and cobalt
CA1236448A (en) Nickel/alumina catalyst, its preparation and use
US7368625B2 (en) Catalysts with high cobalt surface area
US10005069B2 (en) Core-shell particles with catalytic activity
AU779102B2 (en) Method for the production of cobalt catalysts supported on silicon dioxide and their use
AU2001248633A1 (en) Catalysts with high cobalt surface area
EP0398668B1 (en) Nickel/silica catalyst and the preparation and use thereof
US20050170956A1 (en) Fischer-tropsch catalyst
US4318829A (en) Non-ferrous group VIII aluminum coprecipitated hydrogenation catalysts
EP0029675B1 (en) Non-ferrous group viii aluminium coprecipitated hydrogenation catalysts, process for preparing these catalysts and their use in hydrogenation processes
JPS6365952A (ja) 水素化触媒の製造方法
CA1196906A (en) Process for hydrogenating organic compounds by use of group viii aluminium-silicate catalysts
MXPA01007729A (en) Nickel catalysts on transition alumina
EP0354612A1 (en) Process for the preparation of nickel/alumina catalysts
AU2005204343B2 (en) Methods of making catalysts with high cobalt surface area

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170212