RU2234162C2 - Способ изготовления автомасштабируемого биполярного транзистора - Google Patents

Способ изготовления автомасштабируемого биполярного транзистора Download PDF

Info

Publication number
RU2234162C2
RU2234162C2 RU2002129129/28A RU2002129129A RU2234162C2 RU 2234162 C2 RU2234162 C2 RU 2234162C2 RU 2002129129/28 A RU2002129129/28 A RU 2002129129/28A RU 2002129129 A RU2002129129 A RU 2002129129A RU 2234162 C2 RU2234162 C2 RU 2234162C2
Authority
RU
Russia
Prior art keywords
layer
silicon
polycrystalline silicon
etching
dielectric
Prior art date
Application number
RU2002129129/28A
Other languages
English (en)
Other versions
RU2002129129A (ru
Inventor
А.Н. Долгов (RU)
А.Н. Долгов
Д.Г. Кравченко (RU)
Д.Г. Кравченко
М.И. Клычников (RU)
М.И. Клычников
М.И. Лукасевич (RU)
М.И. Лукасевич
Н.М. Манжа (RU)
Н.М. Манжа
В.Ф. Морозов (RU)
В.Ф. Морозов
А.Н. Еременко (RU)
А.Н. Еременко
Original Assignee
Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон" filed Critical Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон"
Priority to RU2002129129/28A priority Critical patent/RU2234162C2/ru
Publication of RU2002129129A publication Critical patent/RU2002129129A/ru
Application granted granted Critical
Publication of RU2234162C2 publication Critical patent/RU2234162C2/ru

Links

Images

Landscapes

  • Bipolar Transistors (AREA)

Abstract

Использование: в микроэлектронике, в технологии изготовления интегральных схем высокой степени интеграции на биполярных транзисторах. Сущность изобретения: способ изготовления биполярного транзистора включает нанесение на подложку кремния первого слоя диэлектрика, формирование в нем травлением методом РИТ окон под базу, осаждение первого слоя поликристаллического кремния, легирование поликристаллического кремния примесью первого типа проводимости, осаждение второго слоя диэлектрика с толщиной не менее двух погрешностей совмещения на литографии. Формирование маски фоторезиста производят таким образом, что границы эмиттерных окон в фоторезисте проходят над вертикальными участками второго слоя диэлектрика, образованными на ступенях окна под базу, и располагаются не ближе одной погрешности совмещения на литографии от каждой боковой стенки вертикальных участков диэлектрика. Также способ включает вытравливание методом РИТ в окнах фоторезиста второго слоя диэлектрика на горизонтальных участках до первого слоя поликристаллического кремния, вытравливание первого слоя поликристаллического кремния до кремния, легирование кремния примесью первого типа проводимости, формирование пристеночного диэлектрика, изолирующего торцы первого слоя поликристаллического кремния в окнах под эмиттерные области, осаждение второго слоя поликристаллического кремния, легирование его примесью второго типа проводимости, формирование пассивных и активных базовых областей и эмиттерных областей, создание контактов к ним и металлизации. До осаждения первого слоя поликристаллического кремния на поверхности кремния окислением формируют тонкий слой окисла кремния. Травление первого слоя поликристаллического кремния производят методом плазмохимического травления до первого тонкого слоя окисла кремния, а травление первого тонкого слоя окисла кремния производят жидкостным травлением до кремния, а также частично под первым слоем поликристаллического кремния. Для формирования же пристеночного диэлектрика, изолирующего торцы первого слоя поликристаллического кремния, вначале осаждают третий слой поликристаллического кремния, окисляют его до кремния, а затем удаляют окисел, полученный прокислением третьего слоя поликристаллического кремния, плазмохимическим травлением только на дне окон. Техническим результатом изобретения является масштабирование размеров эмиттера и базы биполярного транзистора, что обеспечивает повышение качества и процента выхода годных. 5 з.п. ф-лы, 12 ил.

Description

Областью применения изобретения является микроэлектроника, а именно технология изготовления интегральных схем (ИС) высокой степени интеграции на биполярных транзисторах с использованием методов самосовмещенной технологии (ССТ).
Метод самосовмещенной технологии (Gigabit Logic Bipolar Technology advanced super self-aligned Process Technology) [1] позволяет существенно уменьшить расстояния между электродами к базе и эмиттеру и в целом размер транзистора. Вместе с тем размер эмиттера в этом методе определяется минимальным размером на литографии, незначительно уменьшаясь на толщину пристеночного диэлектрика на стенках окна, не позволяя получать субмикронные размеры эмиттера, меньшие чем размер на литографии.
Наиболее близким техническим решением к предлагаемому изобретению является способ изготовления транзистора [2], включающий формирование в кремниевой подложке первого типа проводимости скрытых слоев второго типа проводимости, осаждение эпитаксиального слоя второго типа проводимости формирование областей изоляции и глубокого коллектора, нанесение на подложку кремния первого слоя диэлектрика, формирование в нем реактивно ионным травлением (РИТ) окон под базу, осаждение первого слоя поликристаллического кремния, легирование поликристаллического кремния примесью первого типа проводимости, осаждение второго слоя диэлектрика с толщиной не менее двух погрешностей совмещения на литографии, формирование маски фоторезиста таким образом, что границы эмиттерных окон в фоторезисте проходят над вертикальными участками второго слоя диэлектрика, образованными на ступенях окна под базу, и располагаются не ближе одной погрешности совмещения на литографии от каждой боковой стенки вертикальных участков диэлектрика, вытравливание путем метода РИТ в окнах фоторезиста второго слоя диэлектрика на горизонтальных участках до первого слоя поликристаллического кремния, вытравливание первого слоя поликристаллического кремния до кремния, легирование кремния примесью первого типа проводимости, формирование пристеночного диэлектрика, изолирующего торцы первого слоя поликристаллического кремния в окнах под эмиттерные области, осаждение второго слоя поликристаллического кремния, легирование его примесью второго типа проводимости, формирование пассивных и активных базовых областей и эмиттерных областей, создание контактов к ним и металлизации.
На фиг.1.1-1.5 представлены основные этапы изготовления биполярного транзистора по способу в соответствии с прототипом [2].
На фиг.1.1 представлен разрез структуры после создания в подложке 1 скрытого слоя 2, осаждения эпитаксиального слоя 3, имплантации глубокого коллектора 4, формирования изоляции 5, осаждения первого диэлектрика 6, вскрытия окна под базу транзистора 7.
На фиг.1.2 представлен разрез структуры после осаждения первого слоя поликристаллического кремния 8, второго слоя диэлектрика 9 и формирования окна эмиттера в фоторезисте 10 на вертикальных ступенях диэлектрика.
На фиг.1.3 представлен разрез структуры со ступенчатой формой травления методом РИТ окна во втором диэлектрике (на фиг. сохранена первоначальная форма ступеней диэлектрика и пунктиром после травления): большой размер окна в диэлектрике переносится при травлении через маску 11 (в верхней части окна) и масштабированный уменьшенный размер окна реального эмиттера 12 в диэлектрике и в поликристаллическом кремнии получается при травлении через щель между вертикальными стенками диэлектрика (в нижней части окна).
На фиг.1.4 представлен разрез структуры после имплантации бора (формируется область активной базы транзистора 14) и создания на стенках окна пристеночного диэлектрика 13, получаемого в результате осаждения слоя диэлектрика на всей поверхности структуры с последующим травлением методом РИТ его с горизонтальных участков (операции травления и формирования пристеночного диэлектрика в окне под контакт к коллектору, выполняемые идентично, на фиг.1.3 и 1.4 не показаны).
На фиг.1.5 представлен разрез структуры после осаждения второго слоя поликристаллического кремния, имплантации его примесью в местах расположения эмиттера и контакта к коллектору 15, формирования пассивных областей базы 16, эмиттера 17, формирования контактов к ним 18 металлизации 19.
Способ изготовления биполярного транзистора обеспечивает существенное увеличение интеграции ИС путем масштабирования размеров базы и эмиттера.
Однако содержит и ряд недостатков.
В способе [2] травление поликристаллического кремния, в месте формирования окна под эмиттер, до кремния производится плазмохимическим травлением, не обладающим селективностью к кремнию. Для надежного удаления поликристаллического кремния приходится затравливать кремний, что делает неопределенным расположение границы травления (а значит и расположение мелкозалегающих переходов транзистора), а также вносит нарушения в структурное совершенство поверхности кремния, что приводит в целом к снижению качества и процента выхода годных транзисторов.
Задачей настоящего изобретения является достижение технического результата, повышающего качество и процент выхода годных ИС, изготовленных на биполярных транзисторах, за счет исключения процесса плазмохимического травления монокристаллического кремния в окне эмиттера биполярного транзистора.
Для достижения названного технического результата в способе изготовления биполярного транзистора, включающем формирование в кремниевой подложке первого типа проводимости скрытых слоев второго типа проводимости, осаждение эпитаксиального слоя второго типа проводимости, формирование областей изоляции и глубокого коллектора, нанесение на подложку кремния первого слоя диэлектрика, формирование в нем травлением методом РИТ окон под базу, осаждение первого слоя поликристаллического кремния, легирование поликристаллического кремния примесью первого типа проводимости, осаждение второго слоя диэлектрика с толщиной не менее двух погрешностей совмещения на литографии, формирование маски фоторезиста таким образом, что границы эмиттерных окон в фоторезисте проходят над вертикальными участками второго слоя диэлектрика, образованными на ступенях окна под базу, и располагаются не ближе одной погрешности совмещения на литографии от каждой боковой стенки вертикальных участков диэлектрика, вытравливание методом РИТ в окнах фоторезиста второго слоя диэлектрика на горизонтальных участках до первого слоя поликристаллического кремния, вытравливание первого слоя поликристаллического кремния до кремния, легирование кремния примесью первого типа проводимости, формирование пристеночного диэлектрика, изолирующего торцы первого слоя поликристаллического кремния в окнах под эмиттерные области, осаждение второго слоя поликристаллического кремния, легирование его примесью второго типа проводимости, формирование пассивных и активных базовых областей и эмиттерных областей, создание контактов к ним и металлизации, до осаждения первого слоя поликристаллического кремния на поверхности кремния окислением формируют тонкий слой окисла кремния, травление первого слоя поликристаллического кремния производят методом плазмохимического травления до первого тонкого слоя окисла кремния, а травление первого тонкого слоя окисла кремния производят жидкостным травлением до кремния, а также частично под первым слоем поликристаллического кремния, для формирования же пристеночного диэлектрика, изолирующего торцы первого слоя поликристаллического кремния, вначале осаждают третий слой поликристаллического кремния, окисляют его до кремния, а затем удаляют окисел, полученный прокислением третьего слоя поликристаллического кремния, плазмохимическим травлением только на дне окон. Таким образом, отличительными признаками предлагаемого изобретения является то, что до осаждения первого слоя поликристаллического кремния на поверхности кремния окислением формируют тонкий слой окисла кремния, травление первого слоя поликристаллического кремния производят методом плазмохимического травления до первого тонкого слоя окисла кремния, а травление первого тонкого слоя окисла кремния производят жидкостным травлением до кремния, а также частично под первым слоем поликристаллического кремния, для формирования же пристеночного диэлектрика, изолирующего торцы первого слоя поликристаллического кремния, вначале осаждают третий слой поликристалличского кремния, окисляют его до кремния, а затем удаляют окисел, полученный прокислением третьего слоя поликристаллического кремния, плазмохимическим травлением только на дне окон.
Изобретение поясняется чертежами.
На фиг.2.1.-2.7 представлены основные этапы изготовления биполярного транзистора по предлагаемому способу.
На фиг.2.1 представлен разрез структуры после создания в подложке 1 скрытого слоя 2, осаждения эпитаксиального слоя 3, имплантации глубокого коллектора 4, формирования боковой диэлектрической изоляции 5, осаждения первого слоя диэлектрика 6, вскрытия окна методом РИТ под базу транзистора 7 и формирование тонкого окисла термическим окислением 21.
На фиг.2.2 представлен разрез структуры после осаждения первого слоя поликристаллического кремния 8, второго слоя диэлектрика 9 и формирования окна эмиттера в маске фоторезиста 10, границы которой располагаются на вертикальных ступенях диэлектрика.
На фиг.2.3 и 2.4 представлен разрез структуры после травления методом РИТ второго слоя диэлектрика в окне эмиттера. Большой размер окна в диэлектрике в верхней части структуры задается травлением через маску 11, не достигая поликристаллического кремния. А масштабированный уменьшенный размер окна реального эмиттера в диэлектрике и в поликристаллическом кремнии 12 задается травлением через щель, создаваемую “сближенными” вертикальными стенками диэлектрика.
На фиг.2.5 представлен разрез структуры после жидкостного химического травления тонкого окисла кремния до кремния с подтравом окисла под вторым слоем поликристаллического кремния 23 и имплантации кремния примесью базы для формирования области активной базы транзистора 14 (операции травления в окна под контакт к коллектору не выделены).
На фиг.2.6 представлен разрез структуры после формирования на стенках пристеночного диэлектрика 13, получаемого в результате осаждения третьего слоя поликристаллического кремния на всей поверхности структуры с последующим его прокислением и удалением методом РИТ полученного окисла кремния с горизонтальных участков 24.
На фиг.2.7 представлен разрез структуры после осаждения второго слоя поликристаллического кремния, имплантации его примесью эмиттера в местах формирования эмиттера и контакта коллектора 15, формирования пассивных областей базы 16, эмиттера 17, формирования контактов к ним 18 и металлизации 19.
Автомасштабирование размера эмиттера и базы достигается за счет того, что ширина эмиттера определяется величиной зазора между двумя вертикальными стенками второго слоя диэлектрика. При уменьшении размера окна под базу зазор между вертикальными стенками второго диэлектрика (ширина эффективного эмиттера) будет уменьшаться до сколь угодно малых значений, меньших минимального размера на литографии.
Изготовление биполярного транзистора по предлагаемому способу приводит к тому, что устраняются оба недостатка, свойственных прототипу:
а) плазмохимическим травлением в окне эмиттера удаляется поликристаллический кремний с высокой селективностью до тонкого слоя окисла кремния, защищающего от воздействий поверхность монокристаллического кремния,
б) селективным жидкостным химическим травлением к монокристаллическому кремнию удаляется тонкий слой окисла кремния с поверхности кремния,
в) при жидкостном травлении тонкого слоя окисла кремния с поверхности кремния одновременно производится травление окисла кремния под слоем поликристаллического кремния, с образованием зазоров между слоем поликристаллического кремния и подложкой кремния,
г) нанесение третьего слоя поликристаллического кремния позволяет заполнить зазоры поликристаллическим кремнием, обеспечивая контакт второго слоя поликристаллического кремния с подложкой кремния,
д) термическим окислением третьего слоя формируется пристеночный окисел на торцах второго слоя поликристаллического кремния.
Такая совокупность отличительных признаков позволяет решить поставленную задачу: масштабировать размеры эмиттера и базы биполярного транзистора, обеспечивая при этом качество и высокий процент выхода годных ИС.
Толщина тонкого окисла кремния между поликристаллическим и монокристаллическим кремнием выбирается как обеспечивающая защиту от воздействий при удалении методом РИТ слоя поликристаллического кремния. Учитывая, что селективность процесса (отношение скоростей травления) отличаются в 20-30 раз, а толщина слоя поликристаллического кремния составляет 2000-3000
Figure 00000001
, то из этих соображений толщина тонкого окисла может выбираться выше 100
Figure 00000002
.
Вторым критерием при выборе толщины слоя тонкого окисла является необходимость травления тонкого окисла под вторым слоем поликристаллического кремния для последующего заполнения зазора третьим слоем поликристаллического кремния и обеспечения контакта второго слоя поликристаллического кремния, являющегося базовым электродом транзистора, с кремнием. Максимальный контакт достигается, когда зазор подтравливается под всем участком слоя поликристаллического кремния, равным толщинам второго слоя поликристаллического кремния и второго диэлектрика. Учитывая, что толщина второго слоя диэлектрика выбирается равной двум погрешностям на литографии, что равно 3000-5000
Figure 00000003
, то общая толщина слоев, а значит и величина подтрава составляет не менее 5000
Figure 00000004
. Травление такой величины в зазоре требует значительного времени травления. Увеличивая толщину тонкого окисла (сечение зазора), мы можем уменьшать время травления.
При заполнении зазора поликристаллическим кремнием, учитывая осаждение на стенках зазора, минимальная толщина слоя поликристаллического кремния должна быть не менее половины зазора. Это минимальная толщина слоя.
Одновременно толщину третьего слоя поликристаллического кремния определяют с учетом необходимой толщины пристеночного диэлектрика, изолирующего базовый и эмиттерный электроды, обычно составляющую 1000-1500
Figure 00000005
. Из этих условий и выбирается толщина третьего слоя поликристаллического кремния. Т.е., слой поликристаллического кремния должен быть более 50% толщины тонкого диэлектрика и выбирается исходя из требуемой толщины пристеночного диэлектрика.
Проведенные патентные исследования показали, что совокупность признаков предлагаемого изобретения является новой, что доказывает новизну заявляемого способа. Кроме того, патентные исследования показали, что в литературе отсутствуют данные, показывающие влияние отличительных признаков заявляемого изобретения на достижение технического результата, что подтверждает изобретательский уровень предлагаемого способа.
Пример:
В подложке кремния р-типа проводимости КДБ 10 (100) формируют п+скрытый слой диффузией из Sb2О3 с сопротивлением 40 Ом/см2 и глубиной 2,5 мкм. Методом хлоридной эпитаксии наращивают слой кремния п-типа (0,7 Ом·см, толщиной 1,75 мкм). Эпитаксиальный слой маскируют двухслойным покрытием из окисла кремния, получаемого термическим окислением, и нитрида кремния, получаемого пиролитическим осаждением, толщиной 600 и 1500
Figure 00000006
соответственно. Методом литографии и ПХТ травления вскрывают окна в маскирующем диэлектрике и травят канавки в кремнии на глубину до 1 мкм. Методом ИЛ формируют на дне канавок антиканальные области р-типа проводимости с концентрацией 5·10 (в 17 степени) атомов в см3. Далее формируют термическим окислением канавок окисную изоляцию типа “Изопланар” и удаляют покрытие из нитрида и окисла кремния с поверхности. Методом ИЛ формируют области глубокого коллектора. Осаждают на поверхности первый слой диэлектрика в установке “Изотрон” толщиной 0,4 мкм, через маску фоторезиста вытравливают в диэлектрике методом РИТ окна под базу и коллектор, окислением формируют на поверхности кремния тонкий окисел кремния толщиной 500
Figure 00000007
, осаждают первый слой поликристаллического кремния 0,25 мкм, методом ИЛ легируют слой поликристаллического кремния бором с дозой 500 мккул/см2 при энергии 40 кэВ, окисляют слой поликристаллического кремния с образованием окисла кремния толщиной 500
Figure 00000008
и осаждают слои нитрида кремния 0,18 мкм и окисла кремния 0,3 мкм. Общая толщина второго диэлектрика составляет около 0,5 мкм, что более чем в два раза превышает погрешность при литографии. Размер окна под базу выбирают равным 2,0 мкм, так что после осаждения слоя поликристаллического кремния и диэлектриков размер между вертикальными стенками составил бы 0,5 мкм. Далее методом литографии формируют маску фоторезиста для травления окна под эмиттер размером 1,0 мкм, при этом границы окна в фоторезисте проходят над вертикальными участками диэлектрика (в нашем случае посредине). При травлении между вертикальными стенками вытравливают методом РИТ диэлектрик до поликристаллического кремния (при этом в остальной части окна маски фоторезиста диэлектрик не вытравливается - он значительно толще), что и обеспечивает формирование окна эффективного эмиттера малых размеров. Затем в узких окнах между вертикальными стенками диэлектрика вытравливают методом ПХТ слой поликристаллического кремния до тонкого окисла кремния. В растворе фтористоводородной кислоты удаляют тонкий окисел кремния и одновременно подтравливают окисел под слоем поликристаллического кремния на величину 0,5 мкм. Легируют кремний бором с дозой 3 мккул/см2 с энергией 40 кэВ. Осаждают слой поликристаллического кремния толщиной 300
Figure 00000009
, окисляют его до полного прокисления и затем удаляют плазмохимическим травлением на дне окон до кремния. Осаждают второй слой поликристаллического кремния толщиной 0,3 мкм и через маску фоторезиста легируют его мышьяком с дозой 1500 мккул/см2 с энергией 70 кэВ, термическим отжигом в азоте при температуре 950°С в течение 30 мин формируют пассивные и активные базовые области и эмиттерные области диффузией примесей из поликристаллического кремния, методами литографии и плазмохимического травления создают контакты к ним в диэлектрике и формируют металлизацию осаждением пленки алюминия с примесью кремния толщиной 0,6 мкм с последующей литографией и плазмохимическим травлением алюминия.
Пример, приведенный выше, является частным случаем, в котором используется предлагаемый способ. Предлагаемый способ может использоваться для изготовления альтернативного типа транзистора PNP, не выходя за пределы патентных притязаний.
Литература
1. Electronics Letters, 14 the April, 1983, v. 19, N 8.
2. Патент RU N 2110868 C1 6, H 01 L 21/331.

Claims (6)

1. Способ изготовления автомасштабируемого биполярного транзистора, включающий формирование в кремниевой подложке первого типа проводимости скрытых слоев второго типа проводимости, осаждение эпитаксиального слоя второго типа проводимости, формирование областей изоляции и глубокого коллектора, нанесение на подложку кремния первого слоя диэлектрика, формирование в нем методом РИТ окон под базу, осаждение первого слоя поликристаллического кремния, легирование поликристаллического кремния примесью первого типа проводимости, осаждение второго слоя диэлектрика с толщиной не менее двух погрешностей совмещения на литографии, формирование маски фоторезиста таким образом, что границы эмиттерных окон в фоторезисте проходят над вертикальными участками второго слоя диэлектрика, образованными на ступенях окна под базу, и располагаются не ближе одной погрешности совмещения на литографии от каждой боковой стенки вертикальных участков диэлектрика, вытравливание методом РИТ в окнах фоторезиста второго слоя диэлектрика на горизонтальных участках до первого слоя поликристаллического кремния, вытравливание первого слоя поликристаллического кремния, легирование кремния примесью первого типа проводимости, формирование пристеночного диэлектрика, изолирующего торцы первого слоя поликристаллического кремния в окнах под эмиттерные области, осаждение второго слоя поликристаллического кремния, легирование его примесью второго типа проводимости, формирование пассивных и активных базовых областей и эмиттерных областей, создание контактов к ним и металлизации, отличающийся тем, что до осаждения первого слоя поликристаллического кремния на поверхности кремния окислением формируют тонкий слой окисла кремния, травление первого слоя поликристаллического кремния производят методом плазмохимического травления до первого тонкого слоя окисла кремния, а травление тонкого слоя окисла кремния производят жидкостным травлением до кремния, а также частично под первым слоем поликристаллического кремния, для формирования же пристеночного диэлектрика, изолирующего торцы первого слоя поликристаллического кремния, вначале осаждают третий слой поликристаллического кремния, окисляют его до кремния, а затем удаляют окисел, полученный прокислением третьего слоя поликристаллического кремния, плазмохимическим травлением только на дне окон.
2. Способ по п.1, в котором толщина тонкого окисла выбрана равной 100-1000
Figure 00000010
.
3. Способ по п.1, в котором толщина третьего слоя поликристаллического кремния должна быть не менее половины толщины первого тонкого слоя окисла кремния.
4. Способ по п.1, в котором толщина слоя второго диэлектрика выбрана равной 0,5 мкм.
5. Способ по п.1, в котором в качестве второго диэлектрика формируется комбинированный диэлектрик, включающий слои окисла кремния, полученного прокислением первого слоя поликристаллического кремния, осаждаемые слои нитрида кремния и окисла кремния.
6. Способ по п.1, в котором удаление тонкого окисла кремния в жидкостном травителе до кремния и одновременно вытравливание его частично под первым слоем поликристаллического кремния проводят на величину до 10000
Figure 00000011
.
RU2002129129/28A 2002-10-31 2002-10-31 Способ изготовления автомасштабируемого биполярного транзистора RU2234162C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002129129/28A RU2234162C2 (ru) 2002-10-31 2002-10-31 Способ изготовления автомасштабируемого биполярного транзистора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002129129/28A RU2234162C2 (ru) 2002-10-31 2002-10-31 Способ изготовления автомасштабируемого биполярного транзистора

Publications (2)

Publication Number Publication Date
RU2002129129A RU2002129129A (ru) 2004-04-27
RU2234162C2 true RU2234162C2 (ru) 2004-08-10

Family

ID=33413142

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002129129/28A RU2234162C2 (ru) 2002-10-31 2002-10-31 Способ изготовления автомасштабируемого биполярного транзистора

Country Status (1)

Country Link
RU (1) RU2234162C2 (ru)

Similar Documents

Publication Publication Date Title
US5304510A (en) Method of manufacturing a multilayered metallization structure in which the conductive layer and insulating layer are selectively deposited
JP2670563B2 (ja) 半導体装置の製造方法
EP0132009B1 (en) Method of manufacturing a semiconductor device and semiconductor device manufactured by means of the method
JPS6250969B2 (ru)
EP0083816B1 (en) Semiconductor device having an interconnection pattern
JPH0680724B2 (ja) 絶縁分離のcmos fet集積装置の製造方法
US4168999A (en) Method for forming oxide isolated integrated injection logic semiconductor structures having minimal encroachment utilizing special masking techniques
JP2701902B2 (ja) 多孔性歪み層を有する半導体構造とsoi半導体構造の製造方法
JPH038343A (ja) バイポーラトランジスタとその製造方法
RU2234162C2 (ru) Способ изготовления автомасштабируемого биполярного транзистора
EP0104079B1 (en) Integrated circuit contact structure
JPS62229880A (ja) 半導体装置及びその製造方法
RU2244985C1 (ru) Способ изготовления комплементарных вертикальных биполярных транзисторов в составе интегральных схем
RU2279733C2 (ru) Структура биполярного транзистора с эмиттером субмикронных размеров и способ ее изготовления
JP3173048B2 (ja) 半導体装置
RU2110868C1 (ru) Способ изготовления биполярного транзистора
RU2234165C1 (ru) Способ изготовления автомасштабируемой бикмоп структуры
JPH07273183A (ja) 半導体装置とその製造方法
JPH04113655A (ja) 半導体装置およびその製造方法
JP2633411B2 (ja) 半導体装置の製造方法
JPH0778833A (ja) バイポーラトランジスタとその製造方法
JPS5968950A (ja) 半導体装置の製造方法
JPH0669044B2 (ja) 半導体装置の製造方法
KR19980057102A (ko) 반도체 장치의 전하저장 전극 형성방법
JPH0240921A (ja) バイポーラトランジスタの製造方法

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20130801