RU2229933C1 - Способ получения шарикового катализатора крекинга нефтяного сырья - Google Patents

Способ получения шарикового катализатора крекинга нефтяного сырья Download PDF

Info

Publication number
RU2229933C1
RU2229933C1 RU2003106560/04A RU2003106560A RU2229933C1 RU 2229933 C1 RU2229933 C1 RU 2229933C1 RU 2003106560/04 A RU2003106560/04 A RU 2003106560/04A RU 2003106560 A RU2003106560 A RU 2003106560A RU 2229933 C1 RU2229933 C1 RU 2229933C1
Authority
RU
Russia
Prior art keywords
catalyst
steam
solution
granules
activation
Prior art date
Application number
RU2003106560/04A
Other languages
English (en)
Other versions
RU2003106560A (ru
Inventor
В.К. Смирнов (RU)
В.К. Смирнов
О.В. Барсуков (RU)
О.В. Барсуков
К.Н. Ирисова (RU)
К.Н. Ирисова
Х.Х. Рахимов (RU)
Х.Х. Рахимов
нчиков И.И. Лукь (RU)
И.И. Лукьянчиков
В.А. Патрикеев (RU)
В.А. Патрикеев
М.Л. Павлов (RU)
М.Л. Павлов
Original Assignee
ООО "Компания Катахим"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО "Компания Катахим" filed Critical ООО "Компания Катахим"
Priority to RU2003106560/04A priority Critical patent/RU2229933C1/ru
Application granted granted Critical
Publication of RU2229933C1 publication Critical patent/RU2229933C1/ru
Publication of RU2003106560A publication Critical patent/RU2003106560A/ru

Links

Images

Abstract

Способ получения шарикового катализатора крекинга нефтяного сырья, включающий смешение водных растворов сульфата алюминия, силиката натрия и суспензии цеолита NaY с модулем 4,5-9,5 в смесителе с образованием алюмосиликатного цеолитсодержащего гидрозоля, который далее коагулирует в гидрогель шариковой формы в слое минерального масла; синерезис в растворе сульфата натрия; активацию раствором нитрата или сульфата аммония, активацию раствором нитратов редкоземельных элементов; промывку, сушку и прокаливание в токе паровоздушной смеси. При этом катализатор формуют в минеральное масло с плотностью 900-910 кг/м3 и вязкостью 25-50 мм2/с при 50°С со сдвигом в большую сторону максимума распределения гранул катализатора по размерам, после промывки перед сушкой предварительно пропаривают острым паром, а прокалку ведут в течение 68-75 ч в паровоздушной смеси с содержанием водяного пара 18-30% объемных. Получают катализатор высокой каталитической активности, пониженной усадкой, малым растрескиванием и улучшенными экономическими показателями производства. 1 з.п. ф-лы, 3 табл., 2 ил.

Description

Изобретение относится к нефтепереработке, в частности к способам получения шариковых цеолитсодержащих катализаторов (ЦСК) крекинга нефтяного сырья.
Известен состав катализатора (пат. США №3312615, кл. 208-120, 1967), содержащий кристаллический алюмосиликат (цеолит Y), силикатную матрицу и инертные наполнители, в котором цеолит в натриевой и редкоземельной катионных формах в количестве от 1 до 7 мас.% вводят в аморфную алюмосиликатную матрицу в процессе формования шариков в масляной колонне. Полученные гидрогелевые шарики подвергают активации смесью растворов сульфата аммония и хлоридов редкоземельных элементов, отмывают от солей, сушат в паровом сушильном аппарате при температуре 120-150°С в течение 3 часов, после чего обрабатывают 100%-ным водяным паром при температуре 649°С в течение 30 ч под давлением 1,2 ати. Недостатками известного способа при использовании цеолита в натриевой катионной форме являются невысокая насыпная плотность и прочность катализатора.
Известен способ получения ЦСК (а.с. СССР №389829, МКИ В 01 J 29/08, 1973) для превращения углеводородов путем введения 15 мас.% цеолита NaY в 85% алюмокремнезоля в процессе формовки в колонне с минеральным маслом. Состав алюмокремнезоля 93% SiOc и 7% Аl2О3. Скоагулированный цеолитсодержащий гидрогель после выдерживания в растворе сульфата натрия (синерезиса) обрабатывают раствором основной соли сульфата алюминия с концентрацией 0,7 N по Аl2О3 и отношением ОН/Аl=0,7. Далее гидрогель промывают паровым конденсатом, после чего проводят активацию раствором смеси нитратов редкоземельных элементов концентрацией 1,0-1,2 г/л в пересчете на оксиды РЗЭ. После этого шарики промывают паровым конденсатом при температуре 50-52°С, сушат при температуре 140-170°С и прокаливают при температуре 750°С в течение 12 часов в токе паровоздушной смеси. Содержание водяного пара в смеси 40-45% объемных. К недостаткам известного способа относятся недостаточная прочность катализатора и значительные потери в процессе производства.
Наиболее близок по технической сущности и достигаемому эффекту к предлагаемому техническому решению способ получения платиносодержащего цеолитсодержащего алюмосиликатного катализатора (пат. РФ №2167908, МКИ С 10 G 11/05, В 01 J 29/12, 2001 г.), состоящего из 5-20 мас.% цеолита NaY с модулем (мольным отношением оксид кремния/ оксид алюминия), равным 4,5-9,5 и 80-95% алюмосиликатной основы. Катализатор по этому способу готовят смешением водных растворов сульфата алюминия, подкисленного серной кислотой (содержание оксида алюминия 15-25 кг/м3; содержание серной кислоты 50-80 кг/м3), силиката натрия (жидкого стекла) концентрации по NaOH 1,4-1,8 кг-экв/м3 и водной суспензии цеолита NaY, содержащей 30-110 кг/м3 цеолита, с образованием гидрозоля, который далее коагулирует при 5-20°С и рН 7,5-8,5 в гидрогель шариковой формы в слое минерального масла. Далее гидрогель обрабатывают водным раствором нитрата или сульфата аммония концентрации 5-20 кг/м3 при 35-60°С в течение 12-36 ч и водным раствором смеси нитратов редкоземельных элементов концентрации 1-5 кг/м3 (в расчете на оксиды РЗЭ) в течение 24-36 ч или их смесью, промывают конденсатной водой, содержащей катионы железа 0,01-0,5 кг/м3, магния 0,001-0,5 кг/м3 (в расчете на оксиды металлов) при 35-60°С в течение 8-24 ч, сушат при 110-190°С и прокаливают при 650-750°С в течение 12-24 ч в токе паровоздушной смеси с содержанием водяного пара 40% объемных. Для снижения выделения оксида углерода (11) с газами окислительной регенерации в катализатор вводят платину путем добавления платинохлористоводородной кислоты, Н2РtСl6, в раствор сульфата алюминия в количестве 0,0002-0,04 кг/м3 (в расчете на платину) или в количестве 0,0006-0,085 кг/м3 (в расчете на платину) - в водную суспензию цеолита. Недостатками известного способа являются низкий насыпной вес, низкая прочность и значительные потери в виде нецелевой фракции мелких шариков. Эта фракция быстро выносится из реактора крекинга и безвозвратно теряется. Это приводит к значительному расходу катализатора на догрузку (1,9-2,5 кг/тонну перерабатываемого сырья и более). Кроме того, наблюдается значительное растрескивание гранул товарного катализатора в процессе эксплуатации (более 75% от общего износа шариков).
Задачей предлагаемого технического решения является улучшение механических свойств катализатора: повышение насыпного веса, оптимизация фракционного состава и, как следствие, сокращение уноса катализатора при эксплуатации, снижение растрескивания (брака по сушке) в процессе производства, усадки и растрескивания в процессе эксплуатации, а также повышение активности и селективности катализатора.
Поставленная задача решается тем, что в способе получения шарикового катализатора крекинга нефтяного сырья, включающем смешение водных растворов сульфата алюминия, силиката натрия и суспензии цеолита NaY с модулем 4,5-9,5, с образованием алюмосиликатного цеолитсодержащего гидрозоля, который далее коагулирует в гидрогель шариковой формы в слое минерального масла, синерезис в растворе сульфата натрия, активацию водным раствором нитрата или сульфата аммония, активацию водным раствором нитратов редкоземельных элементов или их смесью; промывку, сушку и прокаливание в токе паровоздушной смеси, катализатор формуют со сдвигом максимума распределения гранул в сторону больших размеров путем увеличения расхода смеси на формовочную колонну, заполненную минеральным маслом с плотностью 900-910 кг/м3 и вязкостью 25-50 мм2/с при 50°С; после отмывки от солей гранулы предварительно пропаривают острым паром с температурой 120-220°С в течение 0,5-1,0 ч, а прокаливание ведут в течение 68-75 ч в токе паровоздушной смеси с содержанием пара 18-30% объемных.
Полученный шариковый катализатор содержит 7-10 мас.% цеолита и имеет состав, мас.%:
Оксид алюминия 8-10
Оксиды редкоземельных элементов 0,5-3,0
Оксид железа 0,01-0,4
Оксид натрия 0,01-0,5
Оксид кремния Остальное
Больший размер сформованных гидрогелевых гранул по сравнению с образцом сравнения при прочих равных условиях приводит к значительному росту брака при сушке. В соответствии с данным изобретением для сокращения брака при сушке мокрые шарики катализатора после активации и промывки паровым конденсатом выкладывают на ленту сушильного аппарата и сразу же обрабатывают острым паром. Острым паром повышают температуру в зоне пропаривания на 10-15°С по сравнению с работой аппарата без введения пропаривания. Катализатор прокаливают в прокалочном аппарате в токе паровоздушной смеси с содержанием водяного пара 18-30% объемных при температуре 650-750°С в течение 68-75 часов.
Предлагаемое техническое решение иллюстрируется примерами, составляющими сущность заявляемого способа производства шарикового катализатора крекинга, но не исчерпывается ими.
Пример 1. Получение катализатора по заявляемому способу в условиях промышленного производства.
1.1 Приготовление водной суспензии цеолита NaY. Водную суспензию цеолита NaY с модулем 4,5-9,5 получают путем разбавления суспензии концентрации 180-250 г/л. Для улучшения дисперсности цеолита суспензию обрабатывают на диспергирующем аппарате до получения содержания частиц менее 8 мкм - не менее 95 мас.%; менее 4 мкм - не менее 85 мас.%. Содержание твердых в рабочей суспензии цеолита 30-150 кг/м3.
1.2 Приготовление рабочих растворов.
а) Раствор силиката натрия (жидкого стекла). Готовят силикат натрия концентрации по NaOH 1,6-1,8 кг-экв/м3 и силикатным модулем, равным 2,85-3,10, путем растворения силикат-глыбы в технической воде под давлением с последующим фильтрованием и разбавлением водой.
б) Раствор сернокислого алюминия. Раствор готовят путем растворения гидроксида алюминия в серной кислоте. Концентрация рабочего раствора по оксиду алюминия 15-25 кг/м3, содержание свободной серной кислоты 50-80 кг/м3.
в) Раствор смеси нитратов редкоземельных элементов готовят с концентацией 0,2-3,0 кг/м3 по оксидам РЗЭ.
г) Раствор сульфата аммония готовят концентрацией 5-20 кг/м3 путем растворения твердой соли в воде с последующей фильтрацией.
1.3. Формование катализатора.
Раствор силиката натрия (жидкого стекла) (первый поток), водную суспензию цеолита (ВСЦ) (второй поток) и подкисленный раствор сульфата алюминия (третий поток) раздельно охлаждают в теплообменниках до температуры 5-15°С и смешивают в трехпоточном смесителе в объемном соотношении 1,0:0,1:0,9. Содержание цеолита в готовом катализаторе 7-10 мас.%. После смесителя золь подают на формование в масляную колонну.
Условия формования:
Масло формовочное турбинное:
Плотность масла 0,900-0,910 кг/м3
Вязкость кинематическая при 50°С, мм2/с 25-50
Температура масла при формовке,°С 20-22
Температура раствора силиката натрия,°С 4-6
Температура кислого раствора сульфата алюминия,°С 6-8
Температура ВСЦ,°С 4-6
Температура золя после смешения 5-15
рН смеси до гелеобразования 7,5-8,5
Температура формовочного масла,°С 20-22
Контроль размеров гидрогелевых шариков в процессе формовки: при рассеве шариков на сите с диаметром отверстий 12 мм остается не более 15-18%, а на сите с диаметром отверстий 6 мм остается не более 3-5%. Частицы неправильной (дискообразной или чечевицеобразной) формы отсутствуют.
1.4. Термохимическая активация.
Сформованные гранулы транспортируют в емкость для проведения термохимической активации (далее именуемую - чан) потоком транспортной воды, содержащей сульфат натрия концентрации 30-50 кг/м3, и выдерживают там в течение 6-24 часов. Далее чан подключают на первую активацию раствором сульфата аммония последним в цепочку из 5 чанов так, что вход последующего чана соединен с выходом предыдущего. На вход первого чана подают раствор сульфата аммония концентрации 5-20 кг/м3, удельным расходом 1,1-1,3 м33 мокрых шариков в час при температуре 35-60°С. По окончании первой активации (20 ч) переключают чан на вторую активацию.
Вторую активацию проводят раствором смеси нитратов РЗЭ концентрации 1-5 кг/м3 в течение 8-16 часов в цепочке из 3 чанов.
Расход раствора 1,1-1,3 м33 в час. Содержание оксида церия в использованном растворе не более 2,5 мас.% на сумму оксидов РЗЭ; содержание нитрата аммония - не более 20 мас.%. После второй активации подключают чан на отмывку от солей.
Промывку проводят в цепочке из 3 чанов в течение 8-24 часов паровым конденсатом. Расход промывной воды 1,1-1,3 м33 в час при температуре 35-60°С.
В конце промывки добавляют в промывную воду раствор платинохлористоводородной кислоты из расчета 2-5 ррm металлической платины на сухой катализатор в два приема.
1.5. Пропаривание мокрых гранул.
Отмытые гранулы катализатора подают на ленту промышленного девятизонного сушильного аппарата и пропаривают в первой зоне острым паром с температурой 120-220°С в течение 0,3 ч. Пар подают сверху вниз на слой мокрых шариков через распределительную гребенку, расположенную на расстоянии 0,5 м от поверхности слоя шариков и создающую равномерный обдув слоя. Схема гребенки приведена на фиг. 1. Расход пара через гребенку устанавливают по равновесной температуре в зоне пропаривания на 10-15°С выше той, которая наблюдалась в этой зоне без введения пропаривания, но не допуская “раздувания” слоя мокрых шариков избыточным потоком пара.
1.5. Сушка и прокаливание катализатора.
Катализатор сушат в течение 3-5 ч при постепенном подъеме температуры по зонам сушильного аппарата от 82-85 до 160-190°С и жестко нормированном влагосодержании теплоносителя в каждой из зон. Остаточное содержание влаги в сухих гранулах катализатора 9,2-9,6 мас.%, считая по ППП при 800°С.
Катализатор прокаливают при температуре 680-720°С в паровоздушной смеси с содержанием водяного пара 18% объемных в течение 68-75 ч.
Пример 2. Катализатор получают аналогично примеру 1. После отмывки гранулы пропаривают острым паром в течение 0,8 ч. Остаточное содержание влаги в катализаторе после сушки 10,3 мас.%. Катализатор прокаливают 68-75 ч в токе паровоздушной смеси с содержанием водяного пара 18% объемных.
Пример 3. Катализатор получают аналогично примеру 1. После отмывки гранулы пропаривают 0,5 ч. Остаточное содержание влаги в катализаторе после сушки 9,0 мас.%. Катализатор прокаливают 68-75 ч в токе паровоздушной смеси с содержанием пара 30% объемных.
Пример 4. Катализатор получают аналогично примеру 1. После отмывки гранулы пропаривают в течение 0,8 ч. Остаточное содержание влаги в катализаторе после сушки 10,2 мас.%. Катализатор прокаливают 68-75 ч в токе паровоздушной смеси с содержанием водяного пара 30% объемных.
Пример 5 (прототип). Гранулы формуют в колонне, заполненной турбинным маслом с плотностью 891 кг/м3, вязкостью при 50°С 22 мм2/с. Распределение мокрых шариков при формовке: на сите с диаметром отверстий 10 мм задерживается не более 15% массы шариков; на сите с диаметром отверствий 5 мм - не более 3%. Вторую активацию проводят раствором смеси нитратов РЗЭ и нитрата аммония концентрацией по оксидам РЗЭ 1,1-2,5 кг/м3 с содержанием оксида церия 55-60% к сумме оксидов РЗЭ и отмывают шарики паровым конденсатом при температуре 35-60°С. После отмывки конденсатом гранулы не пропаривают. Катализатор сушат при температуре 72-170°С до влагосодержания по ППП при 800°С 6,5-7,5 мас.% и прокаливают при температуре 680-720°С в течение 12 ч в токе паровоздушной смеси с содержанием водяного пара 40% объемных.
Пример 6. Формовка и распределение мокрых шариков по размерам аналогичны примеру 1. После отмывки гранулы не пропаривают. Остаточное содержание влаги в катализаторе после сушки 8,0 мас.%. Катализатор прокаливают 12 ч в токе паровоздушной смеси с содержанием пара 40% объемных.
Пример 7. Гранулы формуют в колонне, заполненной турбинным маслом плотностью 891 кг/м3, вязкостью при 50°С 22 мм2/с. Распределение мокрых шариков по размерам: сито с диаметром 10 мм - не более 25%; сито с диаметром 5 мм - не более 3% (фракционный состав увеличен за счет вовлечения более крупных частиц без смещения максимума распределения). В массе сформованных крупных гранул наблюдается много частиц неправильной (чечевицеобразной) формы. После отмывки от солей шарики не пропаривают. Остаточное содержание влаги в катализаторе после сушки 7,2-8,0 мас.%. Катализатор прокаливают 12 ч в токе паровоздушной смеси с содержанием водяного пара 40% объемных.
Пример 8. Шариковые катализаторы, полученные по примерам 1-7, испытывают согласно ОСТ 38.01176-79. Перед лабораторными испытаниями на каталитическую активность и селективность катализаторы обрабатывают 100%-ным водяным паром при 750°С в течение 6 ч. Каталитическую активность определяют при температуре 460°С и объемной скорости подачи сырья 1,5 час-1. В качестве сырья используют стандартное сырье: керосиногазойлевую фракцию краснодарских нефтей (плотность при 20°С 862 кг/м3; температура начала кипения - 203°С; 10% - 238°С; 50% - 275°С; 90% - 323°С; 96% - 336°С).
Катализаторы, полученные по примерам 1, 5, используют в процессе крекинга вакуумного газойля пермских нефтей (плотность 889 кг/м3; температура начала кипения 254°С; температура конца кипения 447°С; содержание серы 1,31 мас.%). Процесс проводят на лабораторной установке с неподвижным слоем катализатора при температуре 460°С и объемной скорости подачи сырья 1,5 ч-1.
Определяют усадку катализатора после термопаровой (750°С; 6 ч; 100%-ный пар) стабилизации по изменению объема катализатора до и после обработки, % объемн. Определяют величину брака при сушке, мас.%, путем отбора и взвешивания крошки, образовавшейся в процессе сушки.
Определяют сохранность гранул прокаленного катализатора к растрескиванию в процессе эксплуатации методом кипячения в воде, %, как долю целых гранул, сохранившихся после кипячения в воде в течение 10 мин. Данная величина соответствует производственным данным сохранности гранул к растрескиванию в услових каталитического крекинга тяжелого вакуумного газойля на промышленной установке типа 43-102 (100% сохранности катализатора при эксплуатации соответствуют не менее 60% сохранности по модельному методу. Потери на истирание при эксплуатации катализатора составляют не более 25% от суммарных потерь).
Результаты испытаний полученных катализаторов приведены на фиг.2 и в таблицах 1-3.
Figure 00000002
Figure 00000003
Figure 00000004
Из таблицы 1 и фиг. 2 видно, что максимум распределения частиц катализатора по заявляемому способу в отличие от прототипа не сдвигается в сторону мелких фракций.
Из примеров 1-7 и таблиц 1-3 видно, что формование гранул в колонне с минеральным маслом плотностью 900-910 кг/м3 и вязкостью при 50°С 25-50 мм2/с такого размера, что при рассеве гидрогелевых гранул на сите с диаметром отверстий 12 мм остается не более 15%, а на сите с диаметром отверстий 6 мм не более 3% всех частиц, максимум распределения частиц по размерам смещен на 10-20% в большую сторону по сравнению с прототипом; активация раствором сульфата аммония; активация раствором смеси нитратов РЗЭ, промывка, пропаривание отмытых гранул проходящим потоком острого пара, сушка и прокаливание катализатора в течение 68-75 ч - в паровоздушной смеси с содержанием водяного пара 18-30% объемных - позволяет получить шариковый катализатор крекинга нефтяного сырья, который отличается пониженными усадкой и растрескиванием в процессе эксплуатации, высокой активностью и селективностью, а также улучшенной экономичностью производства за счет снижения количества образующихся отходов.
Из примеров 1, 4 и 7 видно, что смещение максимума распределения по размерам при формовке гидрогелевых гранул вместо простого увеличения доли крупных гранул в смеси позволяет существенно повысить выход качественного катализатора.
Из примеров 1-7 видно, что пропаривание мокрых шариков в первой зоне сушильного аппарата острым паром с температурой 170-220°С в течение 0,5-1,0 ч и прокаливание катализатора при температуре 680-720°С в паровоздушной смеси с содержанием водяного пара 18-30% объемных в течение 68-75 ч позволяет улучшить фракционный состав и сохранность катализатора к растрескиванию.

Claims (2)

1. Способ получения шарикового катализатора крекинга нефтяного сырья, включающий смешение водных растворов сульфата алюминия, силиката натрия и суспензии цеолита NaY с модулем 4,5-9,5 в смесителе с образованием алюмосиликатного цеолитсодержащего гидрозоля, который далее коагулирует в гидрогель шариковой формы в слое минерального масла, синерезис в растворе сульфата натрия, активацию раствором нитрата или сульфата аммония, активацию раствором нитратов редкоземельных элементов, промывку, сушку и прокаливание в токе паровоздушной смеси, отличающийся тем, что катализатор формуют в минеральное масло с плотностью 900-910 кг/м3 и вязкостью 25-50 мм2/с при 50°С со сдвигом в большую сторону максимума распределения гранул катализатора по размерам, после промывки перед сушкой предварительно пропаривают острым паром, а прокалку ведут в течение 68-75 ч в паровоздушной смеси с содержанием водяного пара 18-30 об.%.
2. Способ по п.1, отличающийся тем, что перед сушкой проводится предварительное пропаривание равномерным потоком острого пара, проходящего через слой мокрых гранул, предпочтительно для повышения температуры слоя катализатора на 10-15°С, в течение 0,5-1,0 ч.
RU2003106560/04A 2003-03-12 2003-03-12 Способ получения шарикового катализатора крекинга нефтяного сырья RU2229933C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003106560/04A RU2229933C1 (ru) 2003-03-12 2003-03-12 Способ получения шарикового катализатора крекинга нефтяного сырья

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003106560/04A RU2229933C1 (ru) 2003-03-12 2003-03-12 Способ получения шарикового катализатора крекинга нефтяного сырья

Publications (2)

Publication Number Publication Date
RU2229933C1 true RU2229933C1 (ru) 2004-06-10
RU2003106560A RU2003106560A (ru) 2004-10-10

Family

ID=32846846

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003106560/04A RU2229933C1 (ru) 2003-03-12 2003-03-12 Способ получения шарикового катализатора крекинга нефтяного сырья

Country Status (1)

Country Link
RU (1) RU2229933C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447938C2 (ru) * 2006-12-07 2012-04-20 В.Р.Грейс Энд Ко.-Конн. Композиции катализатора каталитического крекинга, обеспечивающие повышенное превращение нефтяных остатков
RU2617477C2 (ru) * 2012-06-27 2017-04-25 Чайна Петролеум Энд Кемикал Корпорейшн Содержащий редкоземельные элементы y цеолит и способ его изготовления
RU2681534C1 (ru) * 2018-10-25 2019-03-07 Общество с ограниченной ответственностью НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "АРЕАЛ" Способ получения катализатора процесса деструкции нефтепродуктов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937404A1 (en) 2014-04-23 2015-10-28 Popova, Natalia Liquid-phase catalytic cracking of heavy petroleum materials to produce petroleum products for use as motor fuel components and chemical raw materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447938C2 (ru) * 2006-12-07 2012-04-20 В.Р.Грейс Энд Ко.-Конн. Композиции катализатора каталитического крекинга, обеспечивающие повышенное превращение нефтяных остатков
RU2617477C2 (ru) * 2012-06-27 2017-04-25 Чайна Петролеум Энд Кемикал Корпорейшн Содержащий редкоземельные элементы y цеолит и способ его изготовления
US10130944B2 (en) 2012-06-27 2018-11-20 China Petroleum & Chemical Corporation Rare earth-containing Y zeolite and a preparation process thereof
RU2681534C1 (ru) * 2018-10-25 2019-03-07 Общество с ограниченной ответственностью НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "АРЕАЛ" Способ получения катализатора процесса деструкции нефтепродуктов

Similar Documents

Publication Publication Date Title
JP7476437B2 (ja) オリゴマー化触媒およびその製造方法
US3140249A (en) Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite
RU2189859C2 (ru) Каталитическая композиция и способ алкилирования и/или переалкилирования ароматических соединений
JP3805409B2 (ja) 芳香族化合物のアルキル化またはアルキル交換方法及びそれに用いる触媒組成物
US3366578A (en) Zeolite and method for making the improved zeolite
CN106140289B (zh) 一种含改性β沸石的裂化催化剂
US3386802A (en) Method for preparing spherically-shaped crystalline zeolite particles
US3413238A (en) Hydrocarbon conversion catalyst
Moscou et al. Structure and catalytic properties of thermally and hydrothermally treated zeolites: Acid strength distribution of REX and REY
US4125591A (en) Process for producing rare earth exchanged crystalline aluminosilicate
RU2229933C1 (ru) Способ получения шарикового катализатора крекинга нефтяного сырья
JP4131342B2 (ja) 場合によっては脱アルミニウムされたゼオライトim−5を含む触媒による炭化水素仕込原料のクラッキング方法
US3359068A (en) Preparation of crystalline zeolite particles
CN101391780A (zh) 一种用海泡石合成Mg-NaY沸石的方法
Rhodes et al. Catalytic studies with dealuminated Y zeolite. Part 1.—Catalyst characterisation and the disproportionation of ethylbenzene
CN102059137A (zh) 用于甲醇制丙烯的zsm-5沸石催化剂及其制备方法与再生方法
CN112808299B (zh) 一种固体酸烷基化催化剂及其制备方法
CN110498725A (zh) 一种固体酸催化的烷基化方法
CN103657701B (zh) 一种催化裂化催化剂及其制备方法
RU2287370C1 (ru) Способ получения шарикового катализатора крекинга
KR20060015526A (ko) 제올라이트 처리방법
RU2289477C1 (ru) Способ получения катализатора алкилирования
JP6307074B2 (ja) マグネシウム安定化超低ソーダ分解触媒
RU2285562C1 (ru) Способ получения шарикового катализатора крекинга
JPS59132941A (ja) パラ選択性アルキレ−シヨン触媒及び方法

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 16-2004

MM4A The patent is invalid due to non-payment of fees

Effective date: 20120313