RU2229012C2 - Способ бурения скважин и одновременного направления бурового долота активно контролируемым вращательным направляемым скважинным буровым устройством и вращательное направляемое скважинное буровое устройство - Google Patents

Способ бурения скважин и одновременного направления бурового долота активно контролируемым вращательным направляемым скважинным буровым устройством и вращательное направляемое скважинное буровое устройство Download PDF

Info

Publication number
RU2229012C2
RU2229012C2 RU99126648/03A RU99126648A RU2229012C2 RU 2229012 C2 RU2229012 C2 RU 2229012C2 RU 99126648/03 A RU99126648/03 A RU 99126648/03A RU 99126648 A RU99126648 A RU 99126648A RU 2229012 C2 RU2229012 C2 RU 2229012C2
Authority
RU
Russia
Prior art keywords
tool
adapter sleeve
sliding
hydraulic
mandrel
Prior art date
Application number
RU99126648/03A
Other languages
English (en)
Other versions
RU99126648A (ru
Inventor
Алан П. ДОРЕЛЬ (US)
Алан П. ДОРЕЛЬ
Original Assignee
Шлюмбергер Холдингз Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Холдингз Лимитед filed Critical Шлюмбергер Холдингз Лимитед
Publication of RU99126648A publication Critical patent/RU99126648A/ru
Application granted granted Critical
Publication of RU2229012C2 publication Critical patent/RU2229012C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1014Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/067Deflecting the direction of boreholes with means for locking sections of a pipe or of a guide for a shaft in angular relation, e.g. adjustable bent sub

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)

Abstract

Изобретение относится к области бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин. Вращают внутри ствола пробуриваемой скважины приводной компонент внутри скользящей переходной муфты бурового инструмента, находящийся во вращательном отношении с отклоняющей оправкой, расположенной с возможностью поворота внутри скользящей переходной муфты инструмента и несущей буровое долото. Генерируют управляющие сигналы направления, в соответствии с которыми гидравлически позиционируют отклоняющую оправку относительно ее шарнирной опоры во время приводного вращения отклоняющей оправки с помощью вращательного приводного компонента для поддержания оси отклоняющей оправки в существенной степени геостационарно и под предварительно определенными углами наклона и азимута. Скользящую переходную муфту инструмента перемещают со скольжением в соприкосновении со стенками ствола скважины во время бурения, предотвращая ее вращение. Изобретение направлено на повышение точности и надежности проводки скважины. 2 с. и 22 з.п. ф-лы, 5 ил.

Description

Настоящее изобретение относится в общем к способам бурения скважин и к устройствам для их осуществления, особенно скважин для добычи нефтепродуктов, и, более конкретно, к активно управляемому вращательному направляемому устройству для бурения скважин, которое можно присоединить непосредственно к вращаемой бурильной колонне или можно встроить во вращаемую бурильную колонну в сборе с забойным турбинным двигателем и/или с толкателем, и/или с гибким переходником, чтобы обеспечить возможность бурения отклоненных участков скважин и ответвлений скважин. Изобретение также относится к способам и устройствам, позволяющим точно контролировать направление бурения скважины. Это изобретение также относится к активно управляемому вращательному направляемому буровому устройству, содержащему гидравлически приводимый в действие механизм позиционирования вала долота для выполнения автоматического геостационарного позиционирования оси отклоняющей оправки и бурового долота во время вращения отклоняющей оправки и бурового долота роторной бурильной колонной, забойным турбинным двигателем или этими двумя устройствами вместе. Это изобретение также относится к продолговатым эластичным лопастям, предназначенным для препятствования вращению, направленным радиально от скользящей переходной муфты инструмента для удержания от вращения бурового инструмента относительно стенок ствола скважины.
Нефтяная или газовая скважина часто имеет подземный участок, который бурят направленно, т.е. наклонно под углом к вертикальному направлению и под наклоном, имеющим конкретный компасный курс, или азимут. Хотя скважины, содержащие отклоненные участки, могут быть пробурены в любом желаемом направлении, например ствол скважины может быть пробурен в “горизонтальном” направлении, или могут быть созданы наклонные ответвленные скважины от основной скважины, например значительное количество наклонных скважин, пробуренных в условиях моря. В таком случае ряд наклонных скважин бурят с одной морской производственной платформы таким образом, что нижние части стволов скважин распределены по большой площади продуктивного пласта, над центром которого обычно расположена платформа, и устья всех скважин находятся в структуре платформы.
В условиях, когда бурят скважину со сложной траекторией, возможности, обеспечиваемые вращательным направляемым буровым устройством, выполненным в соответствии с изобретением, заключающиеся в том, чтобы направлять буровое долото в то время, как буровое долото вращают с помощью переходной муфты инструмента, позволяют бурильщикам четко направлять буровую скважину, которую бурят из одного продуктивного пласта, находящегося под землей, в другой. Вращательный направляемый буровой инструмент, выполненный в соответствии с настоящим изобретением, позволяет направлять скважину как по наклону, так и по азимуту так, что две или более зоны, представляющие интерес и находящиеся под землей, могут быть контролируемо пересечены прокладываемой скважиной.
Типичная процедура бурения направленной скважины заключается в том, чтобы удалить бурильную колонну и буровое долото, с помощью которых была пробурена начальная вертикальная часть скважины с использованием обычного вращательного бурильного оборудования, и ввести в действие забойный, турбинный двигатель, имеющий изогнутый корпус на нижнем конце бурильной колонны, с помощью которого приводят долото под действием циркулирующего бурового раствора. Изогнутый корпус образует угол искривления так, что ось, расположенная ниже точки перегиба, которая соответствует оси вращения долота, составляет угол, при котором передняя поверхность инструмента отклоняется относительно эталона, если смотреть сверху.
Угол передней поверхности инструмента или просто “лицо” инструмента образует азимутное, или компасное, направление, в котором бурят наклонную часть скважины, когда работает забойный турбинный двигатель. После того как создана “лицевая” поверхность инструмента при медленном вращении бурильной колонны и после обследования выходных параметров различных устройств для определения ориентации, опускают забойный турбинный двигатель и буровое долото при невращающейся бурильной колонне, чтобы сохранять выбранное направление “лицевой” поверхности инструмента, и насосы для подачи бурового раствора приводят в действие для создания потока жидкости в бурильной колонне и забойном турбинном двигателе, таким образом сообщая вращательное движение выходному валу забойного турбинного двигателя и буровому долоту, которое прикреплено к нему. Наличие угла искривления понуждает долото бурить по кривой до тех пор, пока не будет достигнут желаемый наклон скважины. Для того чтобы пробурить участок скважины вдоль желаемого угла наклона и азимута, буровую колонну затем вращают так, что ее вращение накладывается на вращение выходного вала гидравлического забойного двигателя, что понуждает криволинейную часть просто идти вдоль оси скважины так, что буровое долото движется прямо вперед под тем углом наклона и по тому азимуту, которые были приняты. Если требуется, то то же самое буровое оборудование для направленного бурения может быть использовано до тех пор, пока не будет достигнута максимальная глубина скважины, чтобы повернуть скважину и направить по горизонтали, а затем пробурить ее в горизонтальном направлении в/или через продуктивную зону. Системы исследования при бурении обычно размещают в бурильной колонне над забойным турбинным двигателем для осуществления мониторинга процесса бурения скважины для того, чтобы можно было вводить корректирующие меры, если наблюдаются отклонения в различных параметрах скважины от заложенных в проекте.
Могут возникнуть различные проблемы, когда участки скважины бурят с использованием невращаемой бурильной колонны и с помощью забойного турбинного двигателя, приводимого в действие потоком бурового раствора. Реактивный крутящий момент, создаваемый при действии забойного турбинного двигателя, может вызвать существенное изменение направления “лица” инструмента так, что скважина может быть не заглублена по требуемому азимуту. Если направление не скорректировать, то скважина может пройти в точку, которая расположена слишком близко к другой скважине, скважина может “потерять” желаемую “подземную цель” или скважина может просто оказаться большей длины из-за “отклонения”. Эти нежелательные факторы могут привести к чрезмерному повышению стоимости бурения скважины и к снижению эффективности добычи ископаемого из подземного пласта, представляющего интерес. Кроме того, невращаемая бурильная колонна может создавать повышенное сопротивление трения, в результате чего меньший контроль за действием силы “веса на долото” может быть осуществлен, и скорость проходки бурового долота может снизиться, что может привести к существенному увеличению стоимости бурения. Конечно, невращаемая бурильная колонна скорее всего будет “затянута” в скважине, чем сможет вращаться там, где бурильная колонна проходит через проницаемую зону, что может вызвать значительное наращивание корки на стенках ствола буровой скважины.
Патентом, относящимся к существу настоящего изобретения, является патент США № 5113953, опубл. в 1992 г. В этом патенте описано устройство для направленного бурения и способ, при котором буровое долото присоединено к нижнему концу бурильной колонны посредством универсального шарнира.
Однако вал долота вращают с возможностью поворота в управляемой переходной муфте бурового инструмента при скорости, которая равна и противоположно направлена относительно скорости вращения бурильной колонны. Кроме того, угол расположения вала долота или удлинителя относительно оси вращения секции обсадной колонны является фиксируемым.
Другие патенты, относящиеся к настоящему изобретению: английские патенты GB № 2177738 В, GB № 2172324 В и GB № 2172325 В, опубл. в 1988 г. Эти патенты раскрывают буровые устройства, характеризующиеся использованием специальных элементов для изменения направления пробуриваемой скважины. В частности, в патенте № 2177738, названном “Управление направлением бурения при бурении стволов скважин”, описан буровой инструмент с управляющим стабилизатором, содержащим четыре исполнительных механизма. Однако исполнительные механизмы выполнены в форме гибких шлангов или труб, которые выборочно накачивают для приложения бокового усилия на переходную муфту бура с целью отклонения воротника бура, и таким образом изменяют направление ствола пробуриваемой скважины. Патент № 2172324 представляет интерес в отношении настоящего изобретения в том, что в нем представлен управляемый буровой инструмент, снабженный стабилизаторами с управляющим модулем, расположенным между ними, для выполнения управляемого отклонения бурильной штанги, для изменения направления пробуриваемой скважины. Патент № 2172325 представляет интерес в отношении настоящего изобретения в том, что в нем описан управляемый буровой инструмент, снабженный корпусом стабилизаторов, который содержит датчик и его удерживают в существенной степени в стационарном состоянии во время бурения с помощью устройства для предотвращения вращения. Движение бурильной штанги относительно узла, контактирующего со стенками, осуществляют путем приложения различного давления контролируемым образом к каждому из четырех исполнительных механизмов. Управление буровым долотом выполняют с помощью датчиков, чувствительных к отклонению направления бурильной штанги. В этом патенте указано, что гидравлические поршни могут быть использованы для создания отклоняющей силы, но конкретной конструкции не описано.
В патенте США № 5265682, опубл. в 1993 г., описано устройство для поддержания комплекта инструментов для бурения нисходящей скважины в стабилизированном от вращения положении с помощью крыльчатки. Стабилизированный от вращения инструментарий используют для модулирования давления жидкости, действующей на группу радиальных поршней, которые последовательно приводят в действие для подачи долота в требуемом направлении. Однако система управляемого бурового долота, описанная в этом патенте, использует поршни, которые реагируют на стенки ствола скважины, чтобы давить на долото в требуемом боковом направлении в скважине.
Принципиальной особенностью настоящего изобретения является создание нового бурового устройства, которое приводят в действие вращательной бурильной колонной или забойным турбинным двигателем, присоединенным к вращательной или невращательной бурильной колонне, и с помощью которого можно производить избирательное бурение криволинейных участков ствола скважины путем точного управления буровым долотом, которое вращают с помощью бурильной колонны и управляемого бурового инструмента.
Еще одной особенностью настоящего изобретения является создание нового активно контролируемого вращательного направленного устройства для бурения скважин, содержащего вал долота, который приводят во вращение посредством переходной муфты бура во время выполнения операции бурения и который установлен в средней части его длины для осуществления шарнирных перемещений в переходной муфте инструмента с целью геостационарного позиционирования вала долота и бурового долота относительно переходной муфты инструмента, чтобы, таким образом, постоянно нацеливать буровое долото, поддерживаемое таким образом под требуемыми углами наклона и азимута, для бурения криволинейного ствола скважины до предполагаемой цели.
Еще одной особенностью настоящего изобретения является создание нового активно управляемого вращательного направляемого устройства для бурения скважин, содержащего отклоняющую оправку или вал долота, который удерживают в стационарном положении под предварительно определенным наклоном и азимутом для нацеливания пробуриваемого ствола скважины в направлении предварительно определенной подземной цели.
Еще одной особенностью настоящего изобретения является создание нового активно контролируемого вращательного направляемого устройства для бурения скважин, содержащего в инструменте гидравлический насос, приводимый в действие буровым раствором, с помощью которого подают гидравлическую жидкость под давлением для управления положением отклоняющей оправки посредством соленоидно управляемого введения в действие гидравлически позиционируемых поршней, посредством которых выполняют геостационарное позиционирование шарнирной отклоняющей оправки с целью управления буровым долотом.
Еще одной особенностью настоящего изобретения является создание нового активно контролируемого вращательного направляемого устройства для бурения скважин, содержащего “на борту” электронные средства для энергопитания, чувствительные датчики положения и системы управления, установленные по всей длине невращаемого компонента инструмента и, таким образом, защищенные от возможных повреждений, которые могут быть вызваны вращением.
Еще одной особенностью настоящего изобретения является создание нового активно контролируемого вращательного направляемого устройства для бурения скважин, содержащего стабилизирующую переходную муфту, внутри которой установлены с возможностью вращения вращаемые компоненты управляемого бурового инструмента, так что стабилизирующую переходную муфту не приводят во вращение, и, таким образом, ей предоставлена возможность скольжения или медленного вращения под действием внутреннего трения инструмента, которое может преодолеть трение переходной муфты инструмента о стенки ствола скважины, когда эту муфту перемещают вдоль стенки ствола скважины во время бурения.
Еще одной особенностью настоящего изобретения является создание нового активно контролируемого вращательного направляемого устройства для бурения скважин, содержащего в существенной степени невращаемую поворотную муфту инструмента и удлиненные изогнутые эластичные стабилизирующие лопасти, с помощью которых поддерживают контакт скольжения со стенками ствола скважины во время бурения.
Целью настоящего изобретения является создание системы или инструментальной структуры, которая в отличие от устройства с фиксированным углом, описанным в патенте США № 5113953, предназначена для варьируемого позиционирования вала долота или оправки.
Другой целью изобретения является создание вместо управляющих устройств с гибким шлангом в соответствии с Английскими патентами GB 2177738 В, GB 2172324 В и GB 2172325 В системы или инструментальной структуры, которой обеспечивают управление буровым долотом путем гидравлического удерживания отклоняющей оправки, к которой присоединено долото.
Еще одной целью изобретения является создание вместо управляющих устройств, предложенных в Английском патенте GB 2172325 В, системы или инструментальной структуры, которой обеспечивают управление буровым долотом посредством гидравлического удерживания отклоняющей оправки, к которой присоединено буровое долото, в геостационарном положении и ориентированной относительно шарнира или точки поворота, расположенной внутри скользящей переходной муфты инструмента, в то время как отклоняющую оправку приводят во вращение внутри скользящей переходной муфты инструмента.
И наконец, еще одной целью изобретения является создание вместо системы управления буровым долотом в соответствии с патентом США № 5265682 системы, содержащей гидравлическую систему, как это описано, для поддержания вала долота в геостационарном и в угловом отношении сориентированным относительно скользящей переходной муфты инструмента, чтобы удерживать буровое долото нацеленным в требуемом направлении скважины. Изобретение далее отличается тем, что гидравлическая система позиционирования вала долота, с помощью которой позиционируют ось вала долота в его шарнирном отклонителе или опоре универсального шарнира, расположена внутри скользящей переходной муфты инструмента, чтобы удерживать буровое долото нацеленным в требуемом направлении. Настоящее изобретение отличается далее от решений, используемых в данной области техники, сборкой управляемого забойного турбинного двигателя, толкателя и гибкого переходника бурового устройства, которые могут быть установлены в любой подходящей сборке для обеспечения направленного управляемого процесса бурения, избирательно снабжаемого энергией от вращаемой бурильной колонны, забойного турбинного двигателя или от обоих устройств вместе так, чтобы обеспечить возможность точного контроля действия веса на долото и точность ориентирования бурового долота во время бурения. И наконец, активно контролируемое вращательное направленное устройство для бурения скважин, выполненное в соответствии с настоящим изобретением, содержит различные системы для точного определения положения и для управления положением в ответ на управляющие сигналы. Таким образом, в объем настоящего изобретения входят различные датчики положения и электронные средства инструмента, расположенные в скользящей переходной муфте бурового инструмента, скорее чем во вращаемом компоненте, для обеспечения точности и продолжительного срока службы устройства.
Коротко говоря, различные цели и особенности настоящего изобретения реализуют посредством создания активно управляемого вращательного направляемого бурового устройства, содержащего вращаемую приводную оправку, которая присоединена непосредственно к вращаемому приводному компоненту бурильной колонны, например, выходному валу забойного турбинного двигателя или вращаемой бурильной колонне, которую приводят с помощью буровой установки. Отклоняющая оправка, которую также иногда в данной заявке называют валом долота, установлена внутри скользящей поворотной муфты инструмента посредством универсальной опоры или шарнирного бурового отклонителя и с возможностью вращения непосредственно с помощью вращаемой приводной оправки с целью выполнения бурения. Нижняя часть отклоняющей оправки выступает из нижнего конца скользящей переходной муфты инструмента и обеспечивает место сочленения, к которому буровое долото присоединено резьбовым соединением. В соответствии с концепцией настоящего изобретения ось отклоняющей оправки поддерживают нацеленной в заданном направлении, которое наклонено под варьируемым углом относительно оси вращаемой приводной оправки во время вращения отклоняющей оправки с помощью вращаемой приводной оправки, обеспечивая таким образом возможность того, чтобы буровое долото производило бурение криволинейной скважины вдоль кривизны, которую определяют выбранным углом. Прямолинейная скважина может быть пробурена путем установки угла между осью вала долота и осью инструмента, равного нулю.
Угол между осью вращаемой приводной оправки и осью отклоняющей оправки поддерживают с помощью ряда гидравлических поршней, которые размещены внутри скользящей переходной муфты инструмента и которыми выборочно управляют и позиционируют с помощью реагирующих на сигналы датчиков электромагнитных клапанов, чтобы поддерживать ось отклоняющей оправки геостационарно и под предварительно определенными углами наклона и азимута. Кроме того, эти предварительно определенные углы наклона и азимута можно избирательно регулировать с помощью управляющих сигналов, генерируемых на поверхности, сигналов, генерируемых компьютером, сигналов, генерируемых датчиками, или комбинацией сигналов. Таким образом, вращаемым управляемым буровым инструментом, выполненным в соответствии с настоящим изобретением, можно управлять в то время, когда инструмент находится на глубине в скважине и во время бурения, для контролируемого изменения угла отклоняющей оправки относительно скользящей переходной муфты инструмента, что требуется с целью контролируемого управления буровым долотом, которое поворачивают с помощью отклоняющей оправки инструмента.
Крутящий момент передают от вращаемой приводной оправки к отклоняющей оправке непосредственно через шарнирное приводное соединение. Кроме того, гидравлические позиционирующие поршни оправки являются сервоуправляемыми для гарантирования того, чтобы предварительно определенное “лицо” инструмента сохранялось при наличии внешних возмущений. Так как инструмент должен всегда оставаться в геостационарном положении, отклоняющую оправку удерживают в ее геостационарном положении внутри скользящей переходной муфты инструмента с помощью гидравлически вводимых в действие поршней, которые установлены с возможностью перемещения внутри скользящей переходной муфты инструмента. Эта цель достигается с помощью автоматического, управляемого соленоида, введения в действие с использованием гидравлических средств позиционирующих поршней, положением которых с высокой точностью управляют в ответ на сигналы от различных датчиков положения и в ответ на различные силы, которые имеют тенденцию изменять ориентацию оси скользящей переходной муфты инструмента и отклоняющей оправки.
Для повышения гибкости действия активно контролируемого вращательного управляемого бурового инструмента обеспечена возможность выборочного введения в состав инструмента множества электронных чувствительных элементов, измерительных средств, систем обратной связи и позиционирования. В трехкоординатной системе позиционирования инструмента могут быть использованы магнитные датчики для определения магнитного поля земли и могут быть использованы акселерометры и гироскопические датчики для точного определения положения инструмента в любой момент времени. Для управления вращательным направляемым буровым инструментом его обычно оснащают тремя акселерометрами и тремя магнитометрами. Один гироскопический датчик обычно устанавливают внутри инструмента для обеспечения обратной связи по скорости вращения для способствования стабилизации оправки, хотя может быть использовано множество гироскопических датчиков без отступления от сущности и объема настоящего изобретения. Система обработки сигналов от электронных средств, находящихся “на борту” инструмента, обеспечивает измерения положения в реальном времени, в то время когда отклоняющую оправку инструмента приводят во вращение.
Датчики и система обработки данных электронных средств инструмента также обеспечивают возможность постоянного измерения азимута и реального угла наклона по мере бурения так, что неотложные меры для корректировки могут быть предприняты в реальном времени без необходимости прерывания процесса бурения. Инструмент содержит цепь управления, основанную на его расположении, в которой используют магнитные датчики, акселерометры и гироскопические датчики для генерирования сигналов положения для контролирования ориентации оси отклоняющей оправки. Также с точки зрения операционной гибкости инструмент может содержать систему обратной связи, средства для определения гамма-излучения, для каротажа сопротивления, каротажа плотности и пористости, акустического каротажа, для формирования изображения ствола скважины, датчики наблюдения за тем, что впереди и вокруг, и для измерения уклона у долота, скорости вращения долота, вибрации, веса, действующего на долото, крутящего момента на долоте и, например, бокового усилия, действующего на долото.
Кроме того, электронные средства и контрольный инструментарий вращательного направляемого бурового инструмента обеспечивают возможность программирования действия инструмента с поверхности так, чтобы задать или изменять азимут и наклонение и задать или изменять соотношение угла кривизны между отклоняющей оправкой и переходной муфтой инструмента. Электронная память электронной системы “на борту” инструмента может сохранять, использовать и передавать весь профиль ствола скважины и выполнять геоуправляемые возможности на глубине скважины так, что ее можно использовать от начала до расширенного бурения. Кроме того, гибкий переходник может быть использован с инструментом для отделения вращательного направляемого бурового инструмента от остальной части сборки, находящейся в нижней части ствола скважины, и бурильной колонны, и позволяет вести проводку скважины с помощью электронной системы вращательного управляемого бурильного устройства.
В дополнение к другим чувствительным элементам и измерительным средствам настоящего изобретения активно контролируемый вращательный направляемый буровой инструмент может быть также оснащен индукционной катушкой для телеметрии или катушками для передачи каротажа и информации о процессе бурения, которая была получена во время процессов бурения, в систему исследований при бурении по двум направлениям через гибкий переходник и другие измерительные переходники. Для осуществления индукционной телеметрии вращательный направляемый буровой инструмент может также содержать индуктор в переходной муфте инструмента. Инструмент может также содержать передатчики и приемники, расположенные в предварительно определенных, отстоящих друг от друга в осевом направлении местах так, чтобы таким образом генерировать сигналы, которые преодолевали бы предварительно определенные расстояния в подземных пластах рядом со скважиной, чтобы таким образом измерять его удельное сопротивление в то время, когда процесс бурения находится в развитии.
Электронные блоки для определения удельного сопротивления инструмента, так же как и электронные блоки для различных измерений и контрольных систем, размещены внутри переходной муфты инструмента, который, как упомянуто выше, может скользить вдоль стенки ствола скважины или может медленно вращаться, скорее чем его можно вращать вместе с вращаемыми компонентами инструмента. Таким образом электронные блоки защищены от потенциальной возможности повреждения в результате вращения по мере ведения буровых операций.
В предпочтительном варианте исполнения настоящего изобретения гидравлический насос размещен внутри скользящей переходной муфты вращательного направляемого бурового инструмента для создания гидравлического давления в бортовой гидравлической системе инструмента, для приведения в действие гидравлически задействуемых компонентов. Гидравлический насос приводят в действие путем относительного вращения вращаемой приводной оправки относительно трубчатой скользящей переходной муфты инструмента путем прямого вращательного взаимодействия либо через последовательность зубчатых передач, чтобы обеспечить оптимальный диапазон скоростей вращения гидравлического насоса относительно скорости вращения вращаемой приводной оправки. Гидравлическую жидкость под давлением контролируемо подают в камеры поршней, реагирующих на сигнал датчика, вызывающий введение в действие электромагнитных клапанов для поддержания оси отклоняющей оправки геостационарно и под требуемыми углами наклона и азимута во время бурения. Гидравлическое давление, создаваемое гидравлическим насосом, может также быть использовано в бортовой системе, включающей дифференциальные трансформаторы линейного напряжения (ДТЛН), предназначенные для измерения радиального смещения эластичных лопастей, препятствующих вращению, для идентификации точного положения активно контролируемого вращательного направляемого инструмента относительно центральной оси пробуреваемой скважины. ДТЛН также используют для определения смещения поршней, предназначенных для введения в действие оправки, и для генерирования сигналов смещения, которые обрабатывают и используют для контролирования гидравлического действия поршней.
С целью обеспечения механической эффективности согласно предпочтительному варианту исполнения в системе позиционирования отклоняющей оправки используют универсальную опору отклоняющей оправки в форме любого подходящего универсального шарнира или шарнирного бурового отклонителя для обеспечения отклоняющей оправки эффективной опорой как в осевом направлении, так и для восприятия крутящих моментов, и в то же время для снижения до минимума трения в универсальном шарнире. Трение в универсальном шарнире также сводят к минимуму путем обеспечения наличия смазочного масла вокруг его компонентов и путем исключения попадания бурового раствора в универсальный шарнир, в то же время обеспечивая существенное циклическое управляющее движение отклоняющей оправки относительно переходной муфты инструмента и вращаемой приводной оправки во время бурения. Универсальный шарнир обычно может иметь форму суставов позвонков; универсальный шарнир может включать шлицы и кольца, или универсальный шарнир может включать множество шариков, которые обеспечивают относительное угловое расположение оси отклоняющей оправки относительно оси вращаемой приводной оправки, которая расположена внутри и концентрично относительно воротника инструмента.
Энергопитание для управления и работы электромагнитных клапанов и электронных систем бурового инструмента генерируют находящимся “на борту” генератором переменного тока, который также приводят в действие путем вращения вращаемой приводной оправки относительно скользящей переходной муфты инструмента при относительном вращении, передаваемом через систему передач для вращения вала генератора переменного тока в диапазоне скоростей вращения, который достаточен для обеспечения на выходе электрической энергии, которая необходима для различных электронных систем инструмента. Электрический выход генератора переменного тока может быть также использован для подзарядки блока электробатарей, от которых производят электропитание бортовой электроники и работы различного другого бортового оборудования в те периоды времени, когда генератор переменного тока не задействован с помощью потока жидкости.
Для того чтобы способ, посредством которого достигаются упомянутые выше возможности, преимущества и цели настоящего изобретения, мог быть понят в деталях, более подробное описание изобретения, кратко изложенное выше, приведено ниже со ссылками на предпочтительный вариант его исполнения, который проиллюстрирован на прилагаемых фигурах.
Следует, однако, отметить, что на прилагаемых фигурах проиллюстрирован только типичный вариант исполнения настоящего изобретения, и поэтому их не следует рассматривать как ограничивающие объем изобретения, так как оно может быть воплощено в других эквивалентных и эффективных вариантах исполнения.
На фигурах изображено следующее:
фиг.1 представляет схематический вид скважины, которую бурят в соответствии с настоящим изобретением, на котором показано отклонение нижней части ствола скважины, выполненное с помощью активно управляемого вращательного направляемого бурового устройства и с использованием предлагаемого способа;
фиг.2 - альтернативный схематический вид, на котором показан вращательный направляемый буровой инструмент, выполненный в соответствии с настоящим изобретением, соединенный для привода с забойным турбинным двигателем;
фиг.3 - верхняя часть вращательного направляемого бурового устройства в разрезе, выполненного в соответствии с принципами настоящего изобретения;
фиг.4 - нижняя часть вращательного направляемого бурового устройства, представленного на фиг.3, и часть бурового долота, соединенного с ним, в разрезе, для выполнения бурения;
фиг.5 - сечение V-V на фиг.4, на котором показаны гидравлически приводимые в действие позиционирующие поршни отклоняющей оправки и возвращающие элементы поршней и схематическое изображение гидравлической цепи управления системы приведения в действие гидравлических поршней вращательного направляемого бурового инструмента.
На фиг.1 показана скважина 10, пробуренная буровым долотом 12, которое присоединено к нижнему концу бурильной колонны 14, направленной вверх к поверхности, где ее приводят в действие с помощью ротора 16 обычной буровой установки (на чертеже не показана). Бурильная колонна 14 обычно содержит бурильную трубу 18, имеющую один или несколько переходных муфт 20, соединенных с ней с целью приложения силы веса к буровому долоту 12. Ствол скважины 10 имеет вертикальную или, в основном, вертикальную верхнюю часть 22 и отклоненную криволинейную или горизонтальную нижнюю часть 24, которая пробурена под контролем активно контролируемого вращательного направляемого бурового инструмента 26, который выполнен в соответствии с настоящим изобретением. Для обеспечения гибкости, которая необходима при проходке криволинейной нижней части 24 ствола скважины, нижняя часть бурильной трубы 28 может быть использована для соединения удлинителей (утяжеленных бурильных труб) 20 с буровым инструментом 26 так, чтобы удлинители оставались в верхней вертикальной части 22 ствола скважины 10. Нижняя часть 24 ствола скважины 10 должна быть отклонена от вертикального направления верхней части 22 путем управляемого действия бурового инструмента 26 в соответствии с принципами, раскрытыми в настоящей заявке. Бурильная труба 28, показанная непосредственно рядом с вращательным направляемым буровым инструментом 26, может содержать гибкий переходник, с помощью которого можно сообщать инструменту 26 повышенную точность бурения. В соответствии с обычной практикой буровой раствор нагнетают насосом, расположенным на поверхности (на чертеже не показан), вниз через бурильную колонну 14, где он выходит через форсунки, которые выполнены в буровом долоте 12, и возвращается на поверхность по каналу 30 кольцевого сечения между бурильной колонной 14 и стенками ствола скважины 10.
Как будет описано более подробно ниже, вращательный направляемый буровой инструмент 26 выполнен и расположен так, чтобы обеспечить буровым долотом 12, прикрепленным к нему, бурение вдоль криволинейной траектории, определяемой контролирующими средствами бурильного инструмента 26. Угол расположения отклоняющей оправки, поддерживающей буровое долото 12 в контролируемом угловом положении относительно переходной муфты бурового инструмента, поддерживают даже тогда, когда буровое долото и промежуточную вращаемую приводную оправку бурового инструмента приводят во вращение бурильной колонной, забойным турбинным двигателем или с помощью других вращающих механизмов, таким образом обеспечивая управление буровым долотом при бурении криволинейной части ствола скважины. Управление буровым инструментом осуществляют избирательно с точки зрения наклона и с точки зрения азимута. Кроме того, установки отклоняющей оправки вращательного направляемого бурового инструмента могут быть изменены при желании, например, с помощью телеметрии по пульсации давления бурового раствора для обеспечения буровым долотом избирательного изменения направления пробуриваемого ствола скважины так, чтобы таким образом направлять отклоняемую часть ствола скважины относительно осей X, Y и Z для точного управления буровым долотом, и, таким образом, осуществлять точный контроль за пробуриваемым стволом скважины.
На фиг.2 представлена схематическая иллюстрация, на которой показан вращательный направляемый буровой инструмент 26, выполненный в соответствии с изобретением, который приводят во вращение выходным валом 32, в данном случае гибким валом, забойного турбинного двигателя 34, который соединен с вращаемой или невращаемой бурильной колонной 18 или с гибким участком бурильной трубы 28 и приспособлен для управляемого поворота с помощью электронно-генерируемой акустической управляемой пульсацией, которую передают с поверхности по столбу бурового раствора в соответствии с известной технологией.
Для обеспечения контролируемого генерирования пульсации акустический узел 36 генерирования пульсации и контроля присоединен в бурильной колонне и электронно соединен с различными электронно-контролирующими системами вращательного направляемого бурового устройства, включая вращательный направляемый буровой инструмент 26. Процессорный и управляющий узел 36 содержит датчики акустической пульсации для определения телеметрии пульсации бурового раствора от передающего акустическую пульсацию оборудования, расположенного на поверхности, и для генерирования электронных управляющих сигналов, чувствительных к ней. Эти электронные управляющие сигналы затем обрабатывают на бортовых электронных системах для выработки управляющих сигналов, которые можно использовать для управления широким рядом бортовых устройств и систем вращательного направляемого бурового инструмента 26. Например, некоторые из управляющих сигналов могут быть использованы для контролируемого управления буровым долотом 12, чтобы корректировать или изменять направление пробуриваемого ствола скважины в процессе бурения.
Другие управляющие сигналы могут быть использованы для включения и отключения различных бортовых систем, например, систем для измерения удельного сопротивления геологической формации, систем для двухсторонней индукционной телеметрии и систем управления забойного турбинного двигателя. Система 38 передачи сигналов, обычно называемая “быстропередающей системой телеметрии”, может быть присоединена к бурильной колонне для создания индуктивной передачи 37 через формацию, непосредственно окружающую ствол скважины, и обеспечения коммуникации сигналов к и от управляющих систем вращательного направляемого бурового инструмента и, если это требуется, для снабжения электронной системы роторного управляемого бурового инструмента данными об окружающей формации. Эта система обеспечивает интеграцию забойного турбинного двигателя в систему 38 передачи сигналов активно контролируемого вращательного управляемого бурового инструмента 26.
На фиг.3 и 4 показаны соответствующие верхняя и нижняя части активно контролируемого вращательного направляемого бурового инструмента 26, представляющего предпочтительный вариант исполнения настоящего изобретения, причем буровой инструмент 26 оснащен трубчатой скользящей переходной муфтой 40 инструмента, которая предназначена для перемещения со скольжением, в основном, относительно стенок ствола пробуриваемой скважины, причем скольжение может быть линейным или, возможно, медленным вращением под действием внутреннего трения бурильного инструмента по мере ведения бурения. Например, скользящая переходная муфта 40 инструмента может вращаться под действием его внутреннего трения с частотой вращения в несколько оборотов в час, тогда как буровое долото вращают с гораздо более высокой частотой, например 50 мин-1. Вращение скользящей муфты 40 инструмента с очень низкой скоростью не оказывает влияния на различные механические и электронные системы вращательного управляемого бурового инструмента 26. Вращение скользящей переходной муфты инструмента снижено до минимума с целью защиты различных систем электроники и систем датчиков, размещенных здесь, от повреждений, которые могут быть произведены силами, вызванными вращением, и для поддержания эффективного и стабильного взаимодействия между переходной муфтой инструмента и пробуриваемого ствола скважины.
Трубчатая скользящая переходная муфта 40 инструмента оснащена элементами 42, 44 стабилизатора на соответствующих верхнем и нижнем его концах для обеспечения стабилизации и центрирования переходной муфты 40 инструмента внутри ствола скважины. Антенна для двухсторонней индукционной телеметрии также вмонтирована в переходную муфту инструмента. Кроме того, для препятствования вращению бурового инструмента 26 во время бурения переходная муфта 40 также оснащена множеством, предпочтительно тремя или более, продолговатых изогнутых эластичных элементов для препятствования вращению, два из которых показаны и обозначены поз. 46 и 48, которые имеют соответственно верхние и нижние края, расположенные в существенно фиксированном положении относительно переходной муфты 40 инструмента, в то время как промежуточные их части выступают наружу от переходной муфты 40 инструмента в существенной мере так, что они прогибаются внутрь к муфте 40 инструмента при контакте со стенками ствола скважины. Изогнутые эластичные элементы 46, 48 для препятствования вращению, таким образом, находятся в скользящем контакте со стенками ствола скважины все время и таким образом способствуют сдерживанию вращения переходной муфты 40 инструмента во время бурения до минимальных значений и во многих случаях способствуют исключению вращения переходной муфты 40 инструмента во время бурения. Элементы 46, 48 для препятствования вращению также помогают стабилизаторам в центрировании переходной муфты 40 инструмента внутри ствола скважины. Благодаря предотвращению вращения переходной муфты 40 бурового инструмента 26 эластичные элементы для препятствования вращению обеспечивают возможность использования акселерометров для определения ориентации передней грани (“лица”) инструмента, таким образом исключая или сводя к минимуму необходимость в использовании датчиков с большой шириной спектра сигнала, например гироскопов, в буровом инструменте и, таким образом, в существенной степени упрощая бортовые электронные системы инструмента.
Кроме того, могут также быть измерены относительное отклонение эластичных элементов 46, 48, препятствующих вращению, и, таким образом, положение переходной муфты 40 инструмента внутри ствола скважины. Эластичные элементы 46, 48, препятствующие вращению, и переходная муфта 40 инструмента могут быть оснащены узлами гидравлических дифференциальных трансформаторов линейного напряжения (ДТЛН) типа поршень-цилиндр, которые обозначены в общем поз. 50 и 51 на фиг.4, с помощью которых измеряют вытеснение гидравлической жидкости по мере перемещения элементов, препятствующих вращению, в радиальном направлении внутрь и наружу по мере того, как переходная муфта 40 инструмента временно смещается от центральной оси ствола скважины, и которые генерируют сигналы положения, которые обрабатывают электронными средствами и используют для управления во время бурения. Эти сигналы положения используют для проведения измерений по типу измерения кронциркулем путем измерения осевого смещения каждого из эластичных элементов, препятствующих вращению.
Вращательный приводной вал 54, который может быть выходным валом забойного турбинного двигателя, например, обозначенного поз. 32 на фиг.2, ведущим соединительным переходником, приводимым выходным валом забойного турбинного двигателя, ведущим соединительным звеном вращательной бурильной колонны или каким-либо другим соответствующим вращательным приводным средством, проходящим в переходную муфту 40 инструмента и вращаемым с целью сообщения приводящего в движение усилия отклоняющей оправке 56, которая будет описана более подробно ниже. Во время его вращения вращательный приводной вал 54 вращается внутри переходной муфты 40 инструмента, в то время как муфта 40 инструмента удерживается от вращения с той скоростью, с которой вращается вал 54, благодаря трению при скольжении эластичных элементов 46, 48, препятствующих вращению, относительно стенок ствола скважины. Вращательный приводной вал 54 уплотнен относительно переходной муфты 40 инструмента с помощью уплотнительного узла или сальника 57.
Уплотнительный узел или сальник 57 взаимодействует с валом 54 и переходной муфтой 40 инструмента для образования направленного вверх по стволу скважины конца внутренней масляной камеры 60, которая изолирована у нижнего края уплотнительным узлом или сальником 58 от бурового раствора, подаваемого в инструмент через вал 54. Масляная камера 60 содержит определенное количество масла или другого смазочного вещества и защитной жидкой среды. Уплотнительным узлом или сальником 58 также изолируют буровой раствор, находящийся под давлением, от внутренней масляной камеры 60. В валу 54 выполнен внутренний проход 62 для потока, через который буровой раствор проходит к буровому долоту 12. Вал 54 взаимодействует с продолговатой вращательной приводной оправкой 64, которая зафиксирована на приводном валу 54, например, путем резьбового соединения, в которой также выполнен внутренний проход 66, составляющий часть проходного канала для бурового раствора через буровой инструмент. Приводная оправка 64 взаимодействует с переходной муфтой 40 инструмента так, чтобы образовать подшипниковую камеру, имеющую упорные заплечики, в которой установлены подшипники 52 так, что ориентированные в осевом и радиальном направлении силы давления, возникающие между вращательной приводной оправкой 64 и переходной муфтой 40 инструмента, воспринимались во время бурения. Вращательная приводная оправка 64 снабжена нижней трубчатой приводной частью 68, около которой расположен уплотнительный узел или сальник 58 и которая образует концевое приводное соединение 70, имеющее шарнирное приводное соединение с приводной втулкой 74.
Множество сферических приводных элементов 76 установлено между конечным приводным соединением 70 и верхним концом приводной втулки 74 и размещено в приводных приемниках, которые совместно образованы конечным приводным соединением 70 и верхним концом приводной втулки 74. Приводную вращательную оправку 64 и ее нижнюю трубчатую приводную часть 68 поддерживают в соосном взаимном расположении с переходной муфтой 40 инструмента с помощью подшипников 52, в то время как приводной втулке 74 предоставлена возможность шарнирного поворота, но при этом поддерживают ее приводное соединение с отклоняющей оправкой 56. Нижний конец приводной втулки 74 является в существенной степени дубликатом его верхнего конца. Сферические приводные элементы 78, захваченные внутри приводных приемников, совместно образованных нижним концом приводной втулки 74 и верхним приводным соединением 80 отклоняющей оправки 56, обеспечивают прямое приводное соединение между приводной втулкой 74 и отклоняющей оправкой 56, в то же время позволяя относительные шарнирные перемещения между приводной втулкой и отклоняющей оправкой. В альтернативном варианте исполнения оправка, состоящая из одной части с гибкой частью в ней, может быть использована вместо вращательной приводной оправки 64, шарнирного приводного соединения и отклоняющей оправки 56.
Отклоняющая оправка 56 установлена для вращения внутри переходной муфты 40 инструмента для пространственного движения вокруг универсального шарнирного соединения 82, которое может быть выполнено в форме шарового шарнира и функционировать так, как показано на фиг. 4 и как описано ниже. В альтернативном варианте исполнения шарнирный буровой отклонитель 82 может быть выполнен в форме шлицевого соединения или любой другой подходящей конфигурации, которая позволяла бы всенаправленное перемещение отклоняющей оправки 56 и во время вращательного привода его позволяла бы отклоняющей оправке 56 быть сориентированной в переходной муфте 40 инструмента, чтобы поддерживать ее ось в геостационарном положении относительно формации, в которой ведут бурение.
Как показано на фиг.4, шарнирный буровой отклонитель 82 отклоняющей оправки 56 относительно переходной муфты 40 инструмента образован сферическим элементом 84, который изготовлен за одно целое с отклоняющей оправкой 56 или прикреплен к ней. Сферический элемент 84 имеет наружную сферическую поверхность 86, которая находится внутри приемной опорной оправки 88, выполненной в нижнем конце 90 переходной муфты 40 инструмента. Приемная опорная оправка 88 представляет собой сегмент внутренней сферической опорной поверхности, находящейся в сопряженном положении с наружной сферической поверхностью 86 сферического шарнирного элемента 84. Отклоняющей оправке 56, таким образом, предоставлена возможность поворачиваться относительно нижнего конца 90 переходной муфты 40 инструмента вокруг воображаемой точки поворота Р, и одновременно ее можно вращать для приведения в движение бурового долота 12 посредством вращаемого приводного соединения, которое создано между нижней трубчатой приводной частью 68 вращаемой приводной оправки 64 и приводной втулки 74. Возможность поворотного движения отклоняющей оправки 56 относительно точки поворота Р (в то время как поддерживают ее вращательное приводное соединение) предоставлена путем использования шарнирного приводного соединения, которое создано у каждого конца приводной втулки 74 посредством соответствующих сферических приводных элементов 76, 78.
Во время бурильных операций должно быть обеспечено поворотное движение отклоняющей оправки 56 относительно переходной муфты 40 инструмента, но при этом должна быть предотвращена возможность проникновения бурового раствора из внутреннего канала 66 вращаемой приводной оправки 64 и канала 92, который проходит через отклоняющую оправку 56 и сообщается с внутренним проходом для потока в буровом долоте 12. В соответствии с вариантом исполнения, представленным на фиг.3 и 4, с помощью деформируемого гофрированного уплотнительного элемента 94 создают уплотненное соединение с нижней трубчатой приводной частью 68 вращаемой приводной оправки 64 и верхним концом отклоняющей оправки 56.
Таким образом, при перемещении отклоняющей оправки 56 относительно ее точки поворота Р деформируемый гофрированный уплотнительный элемент 94 поддерживает эффективное уплотнение, чтобы предотвратить проникновение бурового раствора в масляную камеру или камеру для гидравлической жидкости в переходной муфте 40 инструмента. У нижнего конца вращательного направляемого бурового инструмента другой гофрированный уплотнительный элемент 96 соединен с уплотнением с нижним концом переходной муфты 40 инструмента и также соединен с круглым элементом 98 для удерживания уплотнения, расположенного вокруг цилиндрической части 100 отклоняющей оправки 56, и снабжено круглым уплотнительным элементом 102, расположенным во внутренней канавке для уплотнения круглого элемента 98 для удерживания уплотнения. Когда отклоняющую оправку 56 вращают во время бурения, круглый элемент 98 для удерживания уплотнения остается в невращающемся состоянии относительно переходной муфты 40 инструмента, и уплотнительный элемент 102 сохраняет уплотненное соединение с цилиндрической частью 100 отклоняющей оправки 56. Гибкий гофрированный уплотнительный элемент 96 сохраняет уплотненное соединение между переходной муфтой 40 инструмента и элементом 98 для удерживания уплотнения и предотвращает проникновение бурового раствора во внутреннюю масляную камеру 61.
Во время бурения ось отклоняющей оправки 56 поддерживают геостационарно в то время, как эту отклоняющую оправку 56 вращают с помощью вращаемой приводной оправки 64. В соответствии с настоящим изобретением позиционирование геостационарной оси отклоняющей оправки 56 производят с использованием гидравлики под контролем электромагнитных клапанов, которые выборочно включают в ответ на соответствующие сигналы датчиков положения. Энергию, сообщаемую гидравлическим давлением, для управления положением отклоняющей оправки 56 (фиг.4) генерируют гидравлическим насосом 104, расположенным внутри приемного пространства для насоса, образованного в переходной муфте 40 инструмента. Приводной вал 110 насоса установлен в соответствующих подшипниках 106. Гидравлический насос 104 приводят в действие с помощью вращательного приводного механизма 108, чувствительного к вращению вращательной приводной оправки 64 относительно переходной муфты 40 инструмента.
Вращательный приводной механизм 108 может быть соединен для привода вращением с нижней трубчатой приводной частью 68 вращательной приводной оправки 64 и может содержать внутреннюю систему передач или передачу, чтобы создавать требуемое передаточное отношение между трубчатой приводной частью 68 и приводным валом 110 насоса для сообщения соответствующей частоты вращения и соответствующего крутящего момента приводному механизму гидравлического насоса 104, чтобы, таким образом, получить на выходе насоса соответствующие гидравлическое давление и мощность для выполнения соответствующего движения отклоняющей оправки 56 по мере поворота оправки.
Выходной поток гидравлической жидкости от гидравлического насоса 104 направляют в канал 112 для жидкости, сообщенный с кольцевой камерой 114 для гидравлической жидкости, содержащей кольцевой поршень 116 в ней, который уплотнен относительно внутренней и наружной цилиндрических стенок 118 и 120 гидравлической камеры 114 для гидравлической жидкости с помощью внутреннего и наружного уплотнительных колец 124, 126, размещенных в соответствующих канавках для уплотнений поршня 116. Поршень 116 поджимают к гидравлическому насосу 104 посредством одной или нескольких пружин 128 сжатия, которые воздействуют на фиксированный кольцевой коллекторный блок 130, в котором размещено множество клапанов.
Конструкция кольцевого коллекторного блока 130 схематически изображена на фиг.5. Обратным клапаном 132 (пружинным обратным клапаном) контролируют возврат гидравлической жидкости под давлением в кольцевую аккумулирующую камеру 134 для гидравлической жидкости, из которой питают гидравлический насос 104. Парой электромагнитных клапанов 140 и 142 контролируют подачу гидравлической жидкости под давлением в каналы 144, 146 соответственно для подачи гидравлической жидкости. По каналам 144, 146 подают гидравлическую жидкость под давлением в гидравлические цилиндры 148, 150 соответственно для приведения в действие гидравлических поршней 152, 154. Гидравлические поршни 152, 154 действуют через подшипники или другие контактные элементы 156 так, чтобы передать позиционирующую силу к отклоняющей оправке 56. Поршни 152, 154 могут быть независимо перемещены в ответ на управляемое по сигналу положения действие электромагнитных клапанов 140, 142 для поворота отклоняющей оправки 56 относительно ее точки поворота Р так, чтобы отклоняющая оправка 56 была сориентирована под действием поршней. Относительные положения поршней 152, 154, воздействующих на отклоняющую оправку, также определяют чувствительными датчиками и управляют с помощью электромагнитных клапанов 140, 142 с целью поддержания продольной оси А отклоняющей оправки 56 в геостационарном положении относительно формации, в которой производят бурение, и ориентирования под определенными углами наклона и азимута, чтобы выполнить бурение криволинейного ствола скважины вдоль предварительно определенной траектории для бурения скважины в направлении установленной подземной цели.
Как особенно четко показано на фиг.3, вращательный направляемый буровой инструмент согласно настоящему изобретению оснащен электронными блоками и блоками датчиков, в общем обозначенными поз. 160. В группу электронных блоков и блоков датчиков входит цепь управления, которая содержит трехкоординатный акселерометр 162, предназначенный для определения ориентации переходной муфты 40 инструмента относительно гравитационного поля.
Как особенно четко показано на фиг.5, узлы цилиндр - поршень оснащены парами дифференциальных трансформаторов линейного напряжения (ДТЛН) 164, 166, которые действуют так, чтобы измерить смещение поршней 152, 154, когда они перемещаются либо под действием гидравлического давления, создаваемого в результате действия электромагнитных клапанов 140, 142, либо под действием возвратного движения, создаваемого пружинами, например, возвратных элементов 168, 170, снабженных пружинами сжатия 172, 174, которые передают создаваемую пружинами реактивную силу через возвратные элементы 168, 170 посредством элемента 176 для позиционирования оправки, который находится в передающем усилие сопряжении с отклоняющей оправкой 56 через множество подшипников или контактных элементов 156, которые воспринимают вращательные и поворотные перемещения отклоняющей оправки 56 и в то же время предоставляют возможность позиционирования отклоняющей оправки 56. С помощью ДТЛН 164, 166 определяют положение каждого гидравлического поршня 152, 154 относительно переходной муфты 40 инструмента и передают сигналы, соответствующие этим измерениям, по проводникам 180, 182 сигналов в контроллер 184.
Сигналы от трехкоординатного акселерометра 162 также направляют по проводникам 186 сигналов в контроллер 184. Электропитание для действия контроллера 184 и других электронных компонентов вращательного направляемого бурового инструмента, выполненного в соответствии с настоящим изобретением, осуществляют от генератора 188 переменного тока, показанного на фиг.4, снабженного приводной муфтой или передачей 190, которую приводят в движение с помощью вращательной приводной оправки 64 через нижнюю трубчатую приводную ее часть 68. Приводное соединение 190 генератора переменного тока снабжено выходным валом 192, который поддерживают в переходной муфте 40 инструмента с помощью подшипников 194 и который находится в приводном соединении с генератором 188 переменного тока. Приводное соединение или передача 190, может быть любого подходящего вида, например, это может быть система зубчатых передач или ременная передача.
Как показано на фиг.5, контроллер 184 передает управляющие сигналы для действия электромагнитных катушек по проводнику 196 сигналов для управления действием электромагнитного клапана 140 и управляющие сигналы по проводнику 198 сигналов для управления действием электромагнитного клапана 142. Таким образом, электромагнитные клапаны 140, 142 вводят в действие в ответ на управляющие сигналы от контроллера 184, в ответ на входные сигналы от ДТЛН 164, 166 и акселерометров 162. Посредством сигналов от ДТЛН 164, 166 идентифицируют контролируемые отклонения оси отклоняющей оправки 56 вдоль осей Х и Y; таким образом, с помощью гидравлических поршней 152, 154 контролируют ориентацию оси А отклоняющей оправки 56 внутри переходной муфты 40 инструмента, чтобы управлять электромагнитными клапанами 140, 142 гидравлически действующих поршней. Контролирование давления к гидравлическим цилиндрам 148, 150 обеспечивают с помощью предохранительных клапанов 210, 212.
В переходной муфте 40 инструмента (фиг.3) имеется полость 214, в которой размещены различные электронные блоки, контролирующие системы и системы датчиков. Эта полость изолирована от защитной масляной среды с помощью изолирующей втулки 216, концы которой уплотнены относительно переходной муфты 40 инструмента посредством кольцевых уплотнительных элементов 218, расположенных в соответствующих канавках для уплотнений, выполненных в концевых частях изолирующей втулки 216. Различные электронные компоненты, например блок телеметрии 220, центральный процессор 222 и блок 224 сбора данных, расположены во внутренней кольцевой полости 214. Помимо контроллера 184 накопитель энергии 226 может быть также расположен в полости 214, чтобы обеспечить достаточное количество накопленной энергии для приведения в действие катушек электромагнитных клапанов и для выполнения других управляющих действий, которые нужны для управления вращаемым управляемым буровым инструментом.
Внутренняя масляная камера 228 изолирована от окружающей среды, находящейся снаружи от переходной муфты 40 инструмента, свободным поршнем 230, находящимся в уплотненном сопряжении с внутренней и наружной цилиндрическими поверхностями 232, 234 с помощью кольцевого уплотнения 236. Внутренняя масляная камера 228 уравновешена по давлению с окружающей средой путем сообщения окружающего давления через вентиляционное отверстие 238 во внешнюю часть 240 камеры. Таким образом, давление защитной масляной среды во внутренней масляной камере 228 является давлением, уравновешенным относительно окружающего давления, несмотря на расположение бурильного инструмента в скважине.
Имея в виду приведенное выше описание, очевидно, что настоящее изобретение является предназначенным для решения всех целей и задач, поставленных выше, вместе с другими целями и задачами, которые присущи устройствам, описанным здесь. Очевидно для специалистов в данной области техники, что настоящее изобретение может быть легко выполнено в других конкретных формах без отступления от существа или существенных особенностей настоящего изобретения. Описанный вариант исполнения, следовательно, нужно рассматривать просто как иллюстрацию, но не ограничение объема изобретения, определенного формулой изобретения скорее, чем предыдущим описанием, и все изменения, которые подпадают под смысл и объем эквивалента формулы изобретения, таким образом охватываются этой формулой.

Claims (24)

1. Способ бурения скважин и одновременного направления бурового долота активно контролируемым вращательным направляемым скважинным буровым устройством, отличающийся тем, что вращают внутри ствола пробуриваемой скважины приводной компонент внутри скользящей переходной муфты бурового инструмента, находящийся во вращательном отношении с отклоняющей оправкой, расположенной с возможностью поворота внутри скользящей переходной муфты инструмента и несущей буровое долото, генерируют управляющие сигналы направления, в соответствии с управляющими сигналами направления гидравлически позиционируют отклоняющую оправку относительно ее шарнирной опоры во время приводного вращения отклоняющей оправки с помощью вращательного приводного компонента для поддержания оси отклоняющей оправки в существенной степени геостационарно и под предварительно определенными углами наклона и азимута; перемещают со скольжением скользящую переходную муфту инструмента в соприкосновении со стенками ствола скважины во время бурения.
2. Способ по п.1, отличающийся тем, что используют скользящую переходную муфту инструмента, имеющую внешние эластичные элементы, выступающие в существенной степени радиально наружу от него и поддерживают скользящий контакт внешних эластичных элементов со стенками ствола скважины при бурении для существенного предотвращения вращения переходной муфты инструмента внутри ствола скважины во время бурения.
3. Способ по п.1, отличающийся тем, что используют скользящую переходную муфту инструмента, вмещающую системы для генерирования давления гидравлической жидкости и электрической энергии и гидравлическое поршневое средство для осуществления позиционного управления отклоняющей оправкой относительно скользящей переходной муфты инструмента во время вращения отклоняющей оправки с помощью приводного компонента и содержащую электрически управляемые клапанные средства для контролирования создаваемого гидравлическим давлением перемещения гидравлического поршневого средства, и генерируют гидравлическое давление и электрическую энергию в ответ на поток бурового раствора, электрически приведенной в действие электрически управляемых клапанных средств, реагирующих на управляющие сигналы для контролирования передачи гидравлического давления к гидравлическому поршневому средству для осуществления гидравлического позиционирования отклоняющей оправки.
4. Способ по п.3, отличающийся тем, что используют поршневое средство, содержащее, по меньшей мере, два поршня, каждый из которых расположен между скользящей переходной муфтой инструмента и отклоняющей оправкой и способен передавать им усилие, и выборочно и независимо контролируют повышение и снижение гидравлического давления, подаваемого к каждому поршню, для осуществления вызванного поршнем поворотного позиционирования отклоняющей оправки внутри скользящей переходной муфты инструмента.
5. Способ по п.4, отличающийся тем, что используют гидравлическое поршневое средство, подвижно расположенное внутри гидравлического цилиндрического средства, и определяют соответствующие положения поршневого средства внутри цилиндрического средства и соотносят соответствующие положения поршневого средства к поворотным положениям отклоняющей оправки внутри скользящей переходной муфты инструмента; идентифицируют изменения соответствующих положений поршневого средства для желаемого изменения поворотного положения отклоняющей оправки, под контролем вводят в действие электрически контролируемые клапанные средства для независимого контролируемого гидравлического сообщения давления к цилиндрическому средству для выполнения желаемого изменения положения поршневого средства.
6. Способ по п.5, отличающийся тем, что определяют объем гидравлической жидкости в гидравлическом цилиндрическом средстве для идентификации положения поршня в гидравлическом цилиндрическом средстве; изменяют объем гидравлической жидкости в гидравлическом цилиндрическом средстве, чтобы таким образом изменять положение поршня и положение отклоняющей оправки в скользящей переходной муфте инструмента; последовательно изменяют положение отклоняющей оправки в скользящей переходной муфте инструмента, чтобы таким образом поддержать отклоняющую оправку, в основном, в геостационарном положении и ориентировано относительно азимута и наклона во время вращения ее с помощью вращательного приводного компонента.
7. Способ по п.1, отличающийся тем, что при генерировании управляющих сигналов направления определяют расположение и ориентацию скользящей переходной муфты инструмента и угловое положение отклоняющей оправки относительно скользящей переходной муфты инструмента и генерируют сигналы положения в реальном масштабе времени, обрабатывают упомянутые сигналы положения в реальном масштабе времени и генерируют управляющие сигналы направления, контролируют позиционирование отклоняющей оправки с помощью управляющих сигналов направления.
8. Способ по п.1, отличающийся тем, что используют вращательное направляемое буровое устройство, содержащее бортовую электронику для приема управляющих сигналов направления и передают управляющие сигналы направления с расположенной на поверхности установки к бортовой электронике; контролируют позиционирование отклоняющей оправки с помощью управляющих сигналов направления.
9. Способ по п.1, отличающийся тем, что используют скользящую переходную муфту инструмента, содержащую, по меньшей мере, два гидравлических цилиндра, каждый из которых содержит гидравлический поршень, находящийся в позиционном сопряжении с отклоняющей оправкой, подают гидравлическую жидкость под давлением к гидравлическим цилиндрам, электронно контролируемые клапанные средства для гидравлической жидкости для выборочной подачи гидравлической жидкости под давлением к гидравлическим цилиндрам и электронный контроллер для приема сигналов положения и выборочного приведения в действие электронно контролируемых клапанных средств для гидравлической жидкости для гидравлически контролируемого позиционирования отклоняющей оправки относительно скользящей переходной муфты инструмента, и генерируют электронные сигналы положения поршней, представляющих положения гидравлических поршней внутри гидравлических цилиндров, создают электронные сигналы положения переходной муфты инструмента, представляющие положение скользящей переходной муфты инструмента, обрабатывают электронные сигналы положения поршней и электронные сигналы положения переходной муфты инструмента с помощью контроллера и вырабатывают выходные сигналы положения клапана от контроллера для изменения положения клапанных средств для контролирования гидравлической жидкости, когда необходимо изменить положение отклоняющей оправки относительно скользящей переходной муфты инструмента.
10. Вращательное направляемое скважинное буровое устройство, содержащее скользящую муфту бурового инструмента и средство для поддержания соприкосновения скользящей муфты инструмента со стенками ствола пробуриваемой скважины и, в существенной степени, предотвращения вращения скользящей муфты инструмента во время бурения, отличающееся тем, что имеет отклоняющую оправку, поддерживаемую в скользящей муфте инструмента для поворотного перемещения относительно скользящей муфты инструмента и для вращения относительно скользящей муфты инструмента, средство для сообщения приводного вращения отклоняющей оправке, гидравлическое приводящее в действие средство для поддерживания отклоняющей оправки выборочно поворотно позиционированной в скользящей муфте инструмента во время ее вращения в скользящей муфте инструмента, чтобы таким образом поддерживать отклоняющую оправку и буровое долото, соединенное с ней, направленными в выбранном направлении для управления буровым долотом по выбранному направлению.
11. Устройство по п.10, отличающееся тем, что гидравлическое приводящее в действие средство содержит гидравлическое цилиндрическое средство в скользящей муфте инструмента, гидравлическое поршневое средство в гидравлическом цилиндрическом средстве, имеющем силовую передачу с отклоняющей оправкой, средство для подачи гидравлической жидкости под давлением к гидравлическому цилиндрическому средству для поворотного перемещения при поддержании положения отклоняющей оправки внутри скользящей переходной муфты инструмента; средство, реагирующее на позиционирующие сигналы для контролируемо приводимого в действие средства для подачи гидравлической жидкости под давлением и, таким образом, для поддерживания отклоняющей оправки, выборочно расположенной относительно скользящей переходной муфты инструмента.
12. Устройство по п.10, отличающееся тем, что средство для поддерживания соприкосновения скользящей переходной муфты инструмента со стенками ствола пробуриваемой скважины содержит эластичное сопрягаемое средство, поддерживаемое скользящей переходной муфтой инструмента и выступающее в радиальном направлении от него в существенной степени для силового зацепления со стенками ствола скважины.
13. Устройство по п.10, отличающееся тем, что эластичное сопрягаемое средство содержит множество эластичных соединительных элементов, расположенных в отстоящем положении относительно скользящей переходной муфты инструмента, и имеется средство для определения относительных положений эластичных соединительных элементов относительно скользящей переходной муфты инструмента и для генерирования электронных сигналов, представляющих относительные положения и, таким образом, для измерения диаметра ствола пробуриваемой скважины.
14. Устройство по п.10, отличающееся тем, что средство для поддерживания соприкосновения скользящей переходной муфты инструмента со стенками ствола пробуриваемой скважины содержит множество продолговатых эластичных лопастей, имеющих, по меньшей мере, один конец, соединенный со скользящей переходной муфтой инструмента, выступающих в радиальном направлении наружу от скользящей переходной муфты инструмента для силового зацепления со стенками ствола скважины.
15. Устройство по п.10, отличающееся тем, что средство для поддерживания соприкосновения скользящей переходной муфты инструмента со стенками ствола пробуриваемой скважины содержит множество удлиненных изогнутых эластичных лопастей, каждая из которых имеет концы и центральную часть, причем концы соединены со скользящей переходной муфтой инструмента, а центральные части каждой лопасти выступают радиально наружу от скользящей переходной муфты инструмента для силового зацепления со стенками ствола скважины.
16. Устройство по п.10, отличающееся тем, что содержит универсальный шарнир в скользящей переходной муфте инструмента, а отклоняющая оправка поддерживается с возможностью поворота и вращения с помощью универсального шарнира, обеспечивающего возможность вращательного и всенаправленного поворотного перемещения отклоняющей оправки относительно скользящей переходной муфты инструмента.
17. Устройство по п.10, отличающееся тем, что средство для сообщения приводного вращения отклоняющей оправке содержит трубчатый вращательный приводной вал, образующий проход для потока и расположенный в скользящей переходной муфте инструмента и имеющий приводной конец, приспособленный для соединения с вращательным приводным элементом и имеющий ведущий конец, подшипниковое средство, поддерживающее трубчатый вращательный вал внутри скользящей переходной муфты инструмента, средство, создающее шарнирное приводное соединение приводного конца трубчатого вращательного приводного вала с отклоняющей оправкой.
18. Устройство по п.17, отличающееся тем, что отклоняющая оправка образует проход для потока для пропуска бурового раствора через него, и имеются средство для уплотнения переходной муфты, посредством которого образуют уплотненный участок между переходной муфтой инструмента и отклоняющей оправкой, создают защитную камеру для жидкости, предназначенную для содержания защитной жидкой среды, и изолируют камеру от проникновения бурового раствора, и средство для уплотнения оправки, посредством которого образуют уплотнение между отклоняющей оправкой и приводным концом трубчатого вращательного приводного вала и изолируют защитную камеру для жидкости от проникновения бурового раствора.
19. Устройство по п.10, отличающееся тем, что содержит систему для подачи гидравлической жидкости, расположенную внутри скользящей переходной муфты инструмента и приводимую в действие путем вращения приводного средства во время бурения, причем с помощью системы подачи гидравлической жидкости подают гидравлическую жидкость под давлением в гидравлическое приводящее в действие средство, систему для обеспечения электропитания, расположенную внутри скользящей переходной муфты инструмента и приводимую в действие путем вращения приводного средства во время бурения, приводимые в действие электрически клапанные средства, вмонтированные в систему для подачи гидравлической жидкости, с помощью которых управляют подачей гидравлической жидкости под давлением к гидравлически приводящему в действие средству.
20. Устройство по п.9, отличающееся тем, что содержит датчик для определения положения, расположенный внутри скользящей переходной муфты инструмента, для определения положения скользящей переходной муфты инструмента внутри формации, в которой ведут бурение, и для генерирования сигналов положения, контролирующее средство, расположенное внутри скользящей переходной муфты инструмента, предназначенное для приема сигналов положения и генерирующее выходные сигналы управления клапанами для выборочного управления действием приводимых в действие электрических клапанных средств.
21. Устройство по п.10, отличающееся тем, что содержит средство для подачи гидравлической жидкости, расположенное внутри скользящей переходной муфты инструмента; средство для электропитания, расположенное внутри скользящей переходной муфты инструмента; электрически приводимые в действие клапанные средства, вмонтированные в средстве для подачи гидравлической жидкости, с помощью которых управляют подачей гидравлической жидкости под давлением к гидравлически приводимому в действие средству; датчик для определения положения, предназначенный для определения положения гидравлически приводимого в действие средства и генерирующий выходные сигналы положения; контролирующее средство, предназначенное для приема и обработки выходных сигналов положения и генерирования управляющих сигналов для выборочного управляющего приведения в действие электрически приводимых в действие клапанных средств.
22. Устройство по п.21, отличающееся тем, что содержит средство телеметрии, расположенное внутри скользящей переходной муфты инструмента, предназначенное для приема управляющих сигналов позиционирования, передаваемых с поверхности, и создающее выходной телеметрический сигнал, который принимает и обрабатывает контролирующее средство.
23. Устройство по п.21, отличающееся тем, что содержит, по меньшей мере, один акселерометр, расположенный внутри скользящей переходной муфты инструмента, предназначенный для определения изменений положения скользящей переходной муфты инструмента и генерирования сигналов положения, чувствительных к этим изменениям, которые принимаются и обрабатываются контролирующим средством.
24. Устройство по п.10, отличающееся тем, что гидравлически приводимое в действие средство содержит, по меньшей мере, два гидравлически перемещаемых элемента, каждый из которых взаимодействует с передачей усилия с отклоняющей оправкой в местах расположения, отдаленных от шарнирной опоры, размещенной внутри скользящей переходной муфты инструмента, при этом при введении в действие гидравлически перемещаемые элементы способны перемещать отклоняющую оправку относительно шарнирной опоры, чтобы поддержать выбранное положение ее относительно скользящей переходной муфты инструмента.
RU99126648/03A 1998-12-11 1999-12-10 Способ бурения скважин и одновременного направления бурового долота активно контролируемым вращательным направляемым скважинным буровым устройством и вращательное направляемое скважинное буровое устройство RU2229012C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/210,520 US6158529A (en) 1998-12-11 1998-12-11 Rotary steerable well drilling system utilizing sliding sleeve
US09/210,520 1998-12-11

Publications (2)

Publication Number Publication Date
RU99126648A RU99126648A (ru) 2001-09-20
RU2229012C2 true RU2229012C2 (ru) 2004-05-20

Family

ID=22783234

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99126648/03A RU2229012C2 (ru) 1998-12-11 1999-12-10 Способ бурения скважин и одновременного направления бурового долота активно контролируемым вращательным направляемым скважинным буровым устройством и вращательное направляемое скважинное буровое устройство

Country Status (11)

Country Link
US (1) US6158529A (ru)
EP (1) EP1008717B1 (ru)
CN (1) CN1222677C (ru)
AU (1) AU745767B2 (ru)
BR (1) BR9905828A (ru)
CA (1) CA2291922C (ru)
DE (1) DE69921429D1 (ru)
GC (1) GC0000115A (ru)
ID (1) ID24512A (ru)
NO (1) NO314196B1 (ru)
RU (1) RU2229012C2 (ru)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2435015C2 (ru) * 2006-06-01 2011-11-27 Сондекс Лимитед Управляемый роторный инструмент
RU2452839C2 (ru) * 2007-12-21 2012-06-10 Шлюмбергер Текнолоджи Б.В. Система для направленного бурения
RU2457310C2 (ru) * 2007-12-19 2012-07-27 Шлюмбергер Текнолоджи Б.В. Направляющая система и система направленного бурения, содержащая указанную систему
RU2471066C2 (ru) * 2007-07-30 2012-12-27 Шлюмбергер Текнолоджи Б.В. Способ использования датчика положения торца бурильного инструмента
WO2013016471A1 (en) * 2011-07-28 2013-01-31 Schlumberger Canada Limited System and method for enhancing hydraulic fluids for down hole use
US8556000B2 (en) 2005-02-21 2013-10-15 Lynx Drilling Tools Limited Device for monitoring a drilling or coring operation and installation comprising such a device
RU2530952C2 (ru) * 2010-06-18 2014-10-20 Шлюмбергер Текнолоджи Б.В. Гибкий соединитель для бурения с погружным пневмоударником
RU2564546C2 (ru) * 2010-04-23 2015-10-10 Дженерал Электрик Компани Буровой блок и роторно-управляемый инструмент
RU2598671C2 (ru) * 2012-06-12 2016-09-27 Халлибертон Энерджи Сервисез, Инк. Модульный управляемый вращательный привод, отклоняющий инструмент и управляемая вращательная буровая система с модульным приводом
RU2612403C1 (ru) * 2016-04-04 2017-03-09 Общество с ограниченной ответственностью Научно-производственное предприятие "БУРИНТЕХ" (ООО НПП "БУРИНТЕХ") Устройство для гидромеханического управления направленным роторным бурением
RU2645693C1 (ru) * 2017-04-05 2018-02-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины
RU2713256C1 (ru) * 2017-01-12 2020-02-04 Дженерал Электрик Компани Устройство и способ автоматической регулировки наклонно-направленного бурения
RU2722611C2 (ru) * 2016-02-08 2020-06-02 Смарт Дриллинг Гмбх Буровой инструмент для бурения наклонно-направленных скважин с автоматическим контролем
RU2733536C1 (ru) * 2020-05-21 2020-10-05 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Устройство для контроля положения ствола горизонтальной скважины при бурении
RU2740390C2 (ru) * 2015-03-24 2021-01-13 Бейкер Хьюз, Э Джии Компани, Ллк Устройство для наклонно-направленного бурения с автоматической регулировкой и способ бурения наклонно-направленных скважин
RU2740878C1 (ru) * 2017-11-13 2021-01-21 Хэллибертон Энерджи Сервисиз, Инк. Надуваемый отклонитель для повторного входа в боковой ствол скважины
EA038036B1 (ru) * 2019-12-03 2021-06-25 Общество С Ограниченной Ответственностью "Мемпэкс" Пилотный бур для буровых машин
US11193331B2 (en) 2019-06-12 2021-12-07 Baker Hughes Oilfield Operations Llc Self initiating bend motor for coil tubing drilling
RU2764974C2 (ru) * 2016-07-14 2022-01-24 Бейкер Хьюз, Э Джии Компани, Ллк Роторная управляемая буровая компоновка с вращающимся рулевым устройством для бурения наклонно направленных скважин
RU2820666C2 (ru) * 2019-07-31 2024-06-07 АНДЕРСОН, Чарльз Абернети Устройство для бурения участков подземных скважин, применяемое с генератором крутящего момента, (варианты) и способы его применения для управления тулфейсом (варианты)

Families Citing this family (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340063B1 (en) 1998-01-21 2002-01-22 Halliburton Energy Services, Inc. Steerable rotary directional drilling method
US6467557B1 (en) * 1998-12-18 2002-10-22 Western Well Tool, Inc. Long reach rotary drilling assembly
US6470974B1 (en) * 1999-04-14 2002-10-29 Western Well Tool, Inc. Three-dimensional steering tool for controlled downhole extended-reach directional drilling
NO309491B1 (no) * 1999-06-24 2001-02-05 Bakke Technology As Anordning ved verktöy tilpasset for å endre boreretningen under boring
US6948572B2 (en) * 1999-07-12 2005-09-27 Halliburton Energy Services, Inc. Command method for a steerable rotary drilling device
US6308787B1 (en) * 1999-09-24 2001-10-30 Vermeer Manufacturing Company Real-time control system and method for controlling an underground boring machine
US6257356B1 (en) * 1999-10-06 2001-07-10 Aps Technology, Inc. Magnetorheological fluid apparatus, especially adapted for use in a steerable drill string, and a method of using same
US6427783B2 (en) * 2000-01-12 2002-08-06 Baker Hughes Incorporated Steerable modular drilling assembly
US6419014B1 (en) * 2000-07-20 2002-07-16 Schlumberger Technology Corporation Apparatus and method for orienting a downhole tool
GB0026315D0 (en) 2000-10-27 2000-12-13 Antech Ltd Directional drilling
FR2817905B1 (fr) * 2000-12-07 2003-01-10 Inst Francais Du Petrole Dispositif de forage directionnel rotary comportant un moyen de flexion a glissieres
FR2817904B1 (fr) * 2000-12-07 2003-04-18 Inst Francais Du Petrole Dispositif de forage directionnel rotary comportant un moyen de flexion a nacelle
FR2817903B1 (fr) * 2000-12-07 2003-04-18 Inst Francais Du Petrole Dispositif de forage directionnel rotary comportant un moyen de flexion stabilise
US6467341B1 (en) 2001-04-24 2002-10-22 Schlumberger Technology Corporation Accelerometer caliper while drilling
US6837315B2 (en) * 2001-05-09 2005-01-04 Schlumberger Technology Corporation Rotary steerable drilling tool
US6840336B2 (en) 2001-06-05 2005-01-11 Schlumberger Technology Corporation Drilling tool with non-rotating sleeve
US6571888B2 (en) 2001-05-14 2003-06-03 Precision Drilling Technology Services Group, Inc. Apparatus and method for directional drilling with coiled tubing
CA2494237C (en) * 2001-06-28 2008-03-25 Halliburton Energy Services, Inc. Drill tool shaft-to-housing locking device
AR034780A1 (es) * 2001-07-16 2004-03-17 Shell Int Research Montaje de broca giratoria y metodo para perforacion direccional
US7188685B2 (en) * 2001-12-19 2007-03-13 Schlumberge Technology Corporation Hybrid rotary steerable system
US6810972B2 (en) 2002-02-08 2004-11-02 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having a one bolt attachment system
US6810973B2 (en) 2002-02-08 2004-11-02 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having offset cutting tooth paths
US6827159B2 (en) 2002-02-08 2004-12-07 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having an offset drilling fluid seal
US6814168B2 (en) 2002-02-08 2004-11-09 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having elevated wear protector receptacles
US6810971B1 (en) 2002-02-08 2004-11-02 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit
US6742604B2 (en) 2002-03-29 2004-06-01 Schlumberger Technology Corporation Rotary control of rotary steerables using servo-accelerometers
US7556105B2 (en) * 2002-05-15 2009-07-07 Baker Hughes Incorporated Closed loop drilling assembly with electronics outside a non-rotating sleeve
DE10235700B3 (de) * 2002-08-03 2004-01-22 Deutsche Montan Technologie Gmbh Richtbohrgerät
US6761232B2 (en) 2002-11-11 2004-07-13 Pathfinder Energy Services, Inc. Sprung member and actuator for downhole tools
US7270198B2 (en) * 2002-12-09 2007-09-18 American Kinetics, Inc. Orienter for drilling tool assembly and method
US7084782B2 (en) * 2002-12-23 2006-08-01 Halliburton Energy Services, Inc. Drill string telemetry system and method
US6857484B1 (en) * 2003-02-14 2005-02-22 Noble Drilling Services Inc. Steering tool power generating system and method
US6942043B2 (en) * 2003-06-16 2005-09-13 Baker Hughes Incorporated Modular design for LWD/MWD collars
WO2004113666A1 (en) * 2003-06-17 2004-12-29 Noble Drilling Services Inc. Split housing for rotary steerable tool
US7267184B2 (en) * 2003-06-17 2007-09-11 Noble Drilling Services Inc. Modular housing for a rotary steerable tool
EP1933003B1 (en) * 2003-09-15 2010-11-10 Baker Hughes Incorporated Steerable bit assembly and methods
US7287604B2 (en) * 2003-09-15 2007-10-30 Baker Hughes Incorporated Steerable bit assembly and methods
CA2448723C (en) * 2003-11-07 2008-05-13 Halliburton Energy Services, Inc. Variable gauge drilling apparatus and method of assembly thereof
GB2408526B (en) * 2003-11-26 2007-10-17 Schlumberger Holdings Steerable drilling system
US7243739B2 (en) * 2004-03-11 2007-07-17 Rankin Iii Robert E Coiled tubing directional drilling apparatus
GB2415972A (en) * 2004-07-09 2006-01-11 Halliburton Energy Serv Inc Closed loop steerable drilling tool
US7287605B2 (en) * 2004-11-02 2007-10-30 Scientific Drilling International Steerable drilling apparatus having a differential displacement side-force exerting mechanism
US7669668B2 (en) * 2004-12-01 2010-03-02 Schlumberger Technology Corporation System, apparatus, and method of conducting measurements of a borehole
US7204325B2 (en) * 2005-02-18 2007-04-17 Pathfinder Energy Services, Inc. Spring mechanism for downhole steering tool blades
US7481282B2 (en) 2005-05-13 2009-01-27 Weatherford/Lamb, Inc. Flow operated orienter
US7383897B2 (en) * 2005-06-17 2008-06-10 Pathfinder Energy Services, Inc. Downhole steering tool having a non-rotating bendable section
GB0521693D0 (en) 2005-10-25 2005-11-30 Reedhycalog Uk Ltd Representation of whirl in fixed cutter drill bits
US7584800B2 (en) * 2005-11-09 2009-09-08 Schlumberger Technology Corporation System and method for indexing a tool in a well
US20070241670A1 (en) * 2006-04-17 2007-10-18 Battelle Memorial Institute Organic materials with phosphine sulfide moieties having tunable electric and electroluminescent properties
US8590636B2 (en) * 2006-04-28 2013-11-26 Schlumberger Technology Corporation Rotary steerable drilling system
US7607478B2 (en) * 2006-04-28 2009-10-27 Schlumberger Technology Corporation Intervention tool with operational parameter sensors
CA2545377C (en) * 2006-05-01 2011-06-14 Halliburton Energy Services, Inc. Downhole motor with a continuous conductive path
EP1857631A1 (en) * 2006-05-19 2007-11-21 Services Pétroliers Schlumberger Directional control drilling system
WO2007143773A1 (en) 2006-06-16 2007-12-21 Harrofam Pty Ltd Microtunnelling system and apparatus
WO2008004999A1 (en) * 2006-06-30 2008-01-10 Baker Hughes Incorporated Closed loop drilling assembly with electronics outside a non-rotating sleeve
US7748466B2 (en) 2006-09-14 2010-07-06 Thrubit B.V. Coiled tubing wellbore drilling and surveying using a through the drill bit apparatus
US7967081B2 (en) * 2006-11-09 2011-06-28 Smith International, Inc. Closed-loop physical caliper measurements and directional drilling method
US7464770B2 (en) * 2006-11-09 2008-12-16 Pathfinder Energy Services, Inc. Closed-loop control of hydraulic pressure in a downhole steering tool
US8118114B2 (en) * 2006-11-09 2012-02-21 Smith International Inc. Closed-loop control of rotary steerable blades
US20080142268A1 (en) * 2006-12-13 2008-06-19 Geoffrey Downton Rotary steerable drilling apparatus and method
US7377333B1 (en) 2007-03-07 2008-05-27 Pathfinder Energy Services, Inc. Linear position sensor for downhole tools and method of use
FR2914419B1 (fr) * 2007-03-30 2009-10-23 Datc Europ Sa Dispositif de protection d'une sonde geotechnique ou geophysique
US7725263B2 (en) * 2007-05-22 2010-05-25 Smith International, Inc. Gravity azimuth measurement at a non-rotating housing
US8497685B2 (en) 2007-05-22 2013-07-30 Schlumberger Technology Corporation Angular position sensor for a downhole tool
US8727036B2 (en) * 2007-08-15 2014-05-20 Schlumberger Technology Corporation System and method for drilling
US8534380B2 (en) * 2007-08-15 2013-09-17 Schlumberger Technology Corporation System and method for directional drilling a borehole with a rotary drilling system
US8066085B2 (en) * 2007-08-15 2011-11-29 Schlumberger Technology Corporation Stochastic bit noise control
US8763726B2 (en) * 2007-08-15 2014-07-01 Schlumberger Technology Corporation Drill bit gauge pad control
US7845430B2 (en) * 2007-08-15 2010-12-07 Schlumberger Technology Corporation Compliantly coupled cutting system
US8720604B2 (en) * 2007-08-15 2014-05-13 Schlumberger Technology Corporation Method and system for steering a directional drilling system
US8757294B2 (en) * 2007-08-15 2014-06-24 Schlumberger Technology Corporation System and method for controlling a drilling system for drilling a borehole in an earth formation
US7588100B2 (en) * 2007-09-06 2009-09-15 Precision Drilling Corporation Method and apparatus for directional drilling with variable drill string rotation
US7836975B2 (en) 2007-10-24 2010-11-23 Schlumberger Technology Corporation Morphable bit
WO2009064732A1 (en) * 2007-11-12 2009-05-22 Schlumberger Canada Limited Wellbore depth computation
GB2455734B (en) * 2007-12-19 2010-03-24 Schlumberger Holdings Steerable system
US7946361B2 (en) 2008-01-17 2011-05-24 Weatherford/Lamb, Inc. Flow operated orienter and method of directional drilling using the flow operated orienter
US8813869B2 (en) * 2008-03-20 2014-08-26 Schlumberger Technology Corporation Analysis refracted acoustic waves measured in a borehole
US8528662B2 (en) * 2008-04-23 2013-09-10 Amkin Technologies, Llc Position indicator for drilling tool
US7779933B2 (en) * 2008-04-30 2010-08-24 Schlumberger Technology Corporation Apparatus and method for steering a drill bit
US8061444B2 (en) 2008-05-22 2011-11-22 Schlumberger Technology Corporation Methods and apparatus to form a well
EP2304174A4 (en) 2008-05-22 2015-09-23 Schlumberger Technology Bv DRILLING MEASUREMENT OF FORMAT VALUES FOR DRILLING
CA2725133A1 (en) 2008-05-23 2009-11-26 Schlumberger Canada Limited Drilling wells in compartmentalized reservoirs
US7818128B2 (en) * 2008-07-01 2010-10-19 Schlumberger Technology Corporation Forward models for gamma ray measurement analysis of subterranean formations
US8960329B2 (en) * 2008-07-11 2015-02-24 Schlumberger Technology Corporation Steerable piloted drill bit, drill system, and method of drilling curved boreholes
US20100018770A1 (en) * 2008-07-25 2010-01-28 Moriarty Keith A System and Method for Drilling a Borehole
US7971662B2 (en) 2008-09-25 2011-07-05 Baker Hughes Incorporated Drill bit with adjustable steering pads
US8205686B2 (en) 2008-09-25 2012-06-26 Baker Hughes Incorporated Drill bit with adjustable axial pad for controlling torsional fluctuations
US9915138B2 (en) 2008-09-25 2018-03-13 Baker Hughes, A Ge Company, Llc Drill bit with hydraulically adjustable axial pad for controlling torsional fluctuations
US20100101867A1 (en) * 2008-10-27 2010-04-29 Olivier Sindt Self-stabilized and anti-whirl drill bits and bottom-hole assemblies and systems for using the same
US7950473B2 (en) * 2008-11-24 2011-05-31 Smith International, Inc. Non-azimuthal and azimuthal formation evaluation measurement in a slowly rotating housing
US8146679B2 (en) * 2008-11-26 2012-04-03 Schlumberger Technology Corporation Valve-controlled downhole motor
US7819666B2 (en) * 2008-11-26 2010-10-26 Schlumberger Technology Corporation Rotating electrical connections and methods of using the same
US8179278B2 (en) * 2008-12-01 2012-05-15 Schlumberger Technology Corporation Downhole communication devices and methods of use
US7980328B2 (en) * 2008-12-04 2011-07-19 Schlumberger Technology Corporation Rotary steerable devices and methods of use
US8157024B2 (en) * 2008-12-04 2012-04-17 Schlumberger Technology Corporation Ball piston steering devices and methods of use
US8376366B2 (en) * 2008-12-04 2013-02-19 Schlumberger Technology Corporation Sealing gland and methods of use
US8276805B2 (en) * 2008-12-04 2012-10-02 Schlumberger Technology Corporation Method and system for brazing
US8783382B2 (en) * 2009-01-15 2014-07-22 Schlumberger Technology Corporation Directional drilling control devices and methods
US7975780B2 (en) * 2009-01-27 2011-07-12 Schlumberger Technology Corporation Adjustable downhole motors and methods for use
EP2396511B1 (en) 2009-02-11 2018-11-28 Vermeer Manufacturing Company Tunneling apparatus
US8061455B2 (en) 2009-02-26 2011-11-22 Baker Hughes Incorporated Drill bit with adjustable cutters
US9976360B2 (en) 2009-03-05 2018-05-22 Aps Technology, Inc. System and method for damping vibration in a drill string using a magnetorheological damper
US20100243242A1 (en) * 2009-03-27 2010-09-30 Boney Curtis L Method for completing tight oil and gas reservoirs
US8301382B2 (en) 2009-03-27 2012-10-30 Schlumberger Technology Corporation Continuous geomechanically stable wellbore trajectories
WO2010121346A1 (en) 2009-04-23 2010-10-28 Schlumberger Canada Limited Drill bit assembly having electrically isolated gap joint for measurement of reservoir properties
CA2795478C (en) 2009-04-23 2014-05-27 Kjell Haugvaldstad A drill bit assembly having aligned features
US9109403B2 (en) 2009-04-23 2015-08-18 Schlumberger Technology Corporation Drill bit assembly having electrically isolated gap joint for electromagnetic telemetry
US8322416B2 (en) 2009-06-18 2012-12-04 Schlumberger Technology Corporation Focused sampling of formation fluids
US8087479B2 (en) 2009-08-04 2012-01-03 Baker Hughes Incorporated Drill bit with an adjustable steering device
US8919459B2 (en) * 2009-08-11 2014-12-30 Schlumberger Technology Corporation Control systems and methods for directional drilling utilizing the same
US8307914B2 (en) 2009-09-09 2012-11-13 Schlumberger Technology Corporation Drill bits and methods of drilling curved boreholes
US8469104B2 (en) * 2009-09-09 2013-06-25 Schlumberger Technology Corporation Valves, bottom hole assemblies, and method of selectively actuating a motor
CN102725479A (zh) 2009-10-20 2012-10-10 普拉德研究及开发股份有限公司 用于地层的特征化、导航钻探路径以及在地下钻井中布置井的方法
US8777598B2 (en) 2009-11-13 2014-07-15 Schlumberger Technology Corporation Stators for downwhole motors, methods for fabricating the same, and downhole motors incorporating the same
US20110116961A1 (en) * 2009-11-13 2011-05-19 Hossein Akbari Stators for downhole motors, methods for fabricating the same, and downhole motors incorporating the same
US9347266B2 (en) 2009-11-13 2016-05-24 Schlumberger Technology Corporation Stator inserts, methods of fabricating the same, and downhole motors incorporating the same
US8235146B2 (en) 2009-12-11 2012-08-07 Schlumberger Technology Corporation Actuators, actuatable joints, and methods of directional drilling
US8245781B2 (en) * 2009-12-11 2012-08-21 Schlumberger Technology Corporation Formation fluid sampling
US8235145B2 (en) * 2009-12-11 2012-08-07 Schlumberger Technology Corporation Gauge pads, cutters, rotary components, and methods for directional drilling
US8905159B2 (en) * 2009-12-15 2014-12-09 Schlumberger Technology Corporation Eccentric steering device and methods of directional drilling
CA2785278A1 (en) 2009-12-23 2011-06-30 Schlumberger Canada Limited Hydraulic deployment of a well isolation mechanism
US8550186B2 (en) * 2010-01-08 2013-10-08 Smith International, Inc. Rotary steerable tool employing a timed connection
US8579044B2 (en) * 2010-03-30 2013-11-12 Gyrodata, Incorporated Bending of a shaft of a steerable borehole drilling tool
US8694257B2 (en) 2010-08-30 2014-04-08 Schlumberger Technology Corporation Method for determining uncertainty with projected wellbore position and attitude
US8869916B2 (en) 2010-09-09 2014-10-28 National Oilwell Varco, L.P. Rotary steerable push-the-bit drilling apparatus with self-cleaning fluid filter
AU2011301169B2 (en) 2010-09-09 2016-11-10 National Oilwell Varco, L.P. Downhole rotary drilling apparatus with formation-interfacing members and control system
US9435649B2 (en) 2010-10-05 2016-09-06 Schlumberger Technology Corporation Method and system for azimuth measurements using a gyroscope unit
US9309884B2 (en) 2010-11-29 2016-04-12 Schlumberger Technology Corporation Downhole motor or pump components, method of fabrication the same, and downhole motors incorporating the same
US9175515B2 (en) 2010-12-23 2015-11-03 Schlumberger Technology Corporation Wired mud motor components, methods of fabricating the same, and downhole motors incorporating the same
US8590628B2 (en) * 2011-01-24 2013-11-26 Baker Hughes Incorporated Selective sleeve system and method of moving a sleeve
US9638020B2 (en) 2011-02-17 2017-05-02 Halliburton Energy Services, Inc. System and method for kicking-off a rotary steerable
CN102162336B (zh) * 2011-03-01 2013-12-18 中国海洋石油总公司 用电机泵旋转导向钻井工具的定位装置
EP2715068B1 (en) * 2011-06-01 2018-12-05 Vermeer Manufacturing Company Tunneling apparatus
CA2838278C (en) 2011-06-20 2016-02-02 David L. Abney, Inc. Adjustable bent drilling tool having in situ drilling direction change capability
US8890341B2 (en) 2011-07-29 2014-11-18 Schlumberger Technology Corporation Harvesting energy from a drillstring
US9181754B2 (en) 2011-08-02 2015-11-10 Haliburton Energy Services, Inc. Pulsed-electric drilling systems and methods with formation evaluation and/or bit position tracking
US20130032399A1 (en) * 2011-08-02 2013-02-07 Halliburton Energy Services, Inc. Systems and Methods for Directional Pulsed-Electric Drilling
US9556679B2 (en) 2011-08-19 2017-01-31 Precision Energy Services, Inc. Rotary steerable assembly inhibiting counterclockwise whirl during directional drilling
GB2498831B (en) 2011-11-20 2014-05-28 Schlumberger Holdings Directional drilling attitude hold controller
CN102606073A (zh) * 2012-04-06 2012-07-25 西安石油大学 一种指向式旋转导向钻井工具的导向机构
CN102704841B (zh) * 2012-05-30 2014-09-10 中国石油化工集团公司 一种页岩气开发用导向钻井工具
WO2013180822A2 (en) 2012-05-30 2013-12-05 Tellus Oilfield, Inc. Drilling system, biasing mechanism and method for directionally drilling a borehole
US9057223B2 (en) 2012-06-21 2015-06-16 Schlumberger Technology Corporation Directional drilling system
US9140114B2 (en) 2012-06-21 2015-09-22 Schlumberger Technology Corporation Instrumented drilling system
US9121223B2 (en) 2012-07-11 2015-09-01 Schlumberger Technology Corporation Drilling system with flow control valve
US9303457B2 (en) 2012-08-15 2016-04-05 Schlumberger Technology Corporation Directional drilling using magnetic biasing
US9970235B2 (en) 2012-10-15 2018-05-15 Bertrand Lacour Rotary steerable drilling system for drilling a borehole in an earth formation
WO2014098892A1 (en) * 2012-12-21 2014-06-26 Halliburton Energy Services, Inc. Directional drilling control using a bendable driveshaft
US9371696B2 (en) 2012-12-28 2016-06-21 Baker Hughes Incorporated Apparatus and method for drilling deviated wellbores that utilizes an internally tilted drive shaft in a drilling assembly
WO2014190439A1 (en) 2013-05-31 2014-12-04 Evolution Engineering Inc. Downhole pocket electronics
US10443309B2 (en) 2013-06-04 2019-10-15 Halliburton Energy Services, Inc. Dynamic geo-stationary actuation for a fully-rotating rotary steerable system
RU2640058C2 (ru) * 2013-08-29 2017-12-26 Хэллибертон Энерджи Сервисиз, Инк. Регулируемый забойный двигатель для наклонно-направленного бурения
CA2928467C (en) * 2013-11-25 2018-04-24 Halliburton Energy Services, Inc. Rotary steerable drilling system
GB2538868B (en) 2013-12-30 2020-08-26 Halliburton Energy Services Inc Directional drilling system and methods
US10066438B2 (en) 2014-02-14 2018-09-04 Halliburton Energy Services, Inc. Uniformly variably configurable drag members in an anit-rotation device
WO2015122918A1 (en) 2014-02-14 2015-08-20 Halliburton Energy Services Inc. Drilling shaft deflection device
WO2015122917A1 (en) 2014-02-14 2015-08-20 Halliburton Energy Services Inc. Individually variably configurable drag members in an anti-rotation device
US9869140B2 (en) 2014-07-07 2018-01-16 Schlumberger Technology Corporation Steering system for drill string
US10316598B2 (en) 2014-07-07 2019-06-11 Schlumberger Technology Corporation Valve system for distributing actuating fluid
US10006249B2 (en) 2014-07-24 2018-06-26 Schlumberger Technology Corporation Inverted wellbore drilling motor
CN104265168B (zh) * 2014-07-28 2016-08-17 西南石油大学 一种动态内偏置指向钻头式旋转导向装置
US9797204B2 (en) 2014-09-18 2017-10-24 Halliburton Energy Services, Inc. Releasable locking mechanism for locking a housing to a drilling shaft of a rotary drilling system
CN105525875B (zh) * 2014-09-28 2017-09-15 中国石油化工集团公司 旋转导向钻井装置
US10184873B2 (en) 2014-09-30 2019-01-22 Schlumberger Technology Corporation Vibrating wire viscometer and cartridge for the same
WO2016080978A1 (en) 2014-11-19 2016-05-26 Halliburton Energy Services, Inc. Drilling direction correction of a steerable subterranean drill in view of a detected formation tendency
GB2545372B (en) 2014-12-31 2020-10-21 Halliburton Energy Services Inc Improving geosteering inversion using look-ahead look-around electromagnetic tool
US10563498B2 (en) 2015-03-05 2020-02-18 Halliburton Energy Services, Inc. Adjustable bent housings with measurement mechanisms
US10378286B2 (en) 2015-04-30 2019-08-13 Schlumberger Technology Corporation System and methodology for drilling
WO2016187373A1 (en) 2015-05-20 2016-11-24 Schlumberger Technology Corporation Directional drilling steering actuators
US10830004B2 (en) 2015-05-20 2020-11-10 Schlumberger Technology Corporation Steering pads with shaped front faces
US9890592B2 (en) 2015-07-02 2018-02-13 Bitswave Inc. Drive shaft for steerable earth boring assembly
US9890593B2 (en) * 2015-07-02 2018-02-13 Bitswave Inc. Steerable earth boring assembly having flow tube with static seal
WO2017019073A1 (en) 2015-07-29 2017-02-02 Halliburton Energy Services, Inc. Steering force control mechanism for a downhole drilling tool
WO2017065741A1 (en) 2015-10-12 2017-04-20 Halliburton Energy Services, Inc. An actuation apparatus of a directional drilling module
US9657561B1 (en) 2016-01-06 2017-05-23 Isodrill, Inc. Downhole power conversion and management using a dynamically variable displacement pump
US9464482B1 (en) * 2016-01-06 2016-10-11 Isodrill, Llc Rotary steerable drilling tool
MX2018008275A (es) * 2016-01-06 2018-09-07 Isodrill Inc Herramienta de perforacion orientable giratoria.
DE102016001780A1 (de) * 2016-02-08 2017-08-24 Stefan von den Driesch Kostengünstiges Verfahren zum Kalibrieren von Magnetfeldsensoren in einem hoch präzise arbeitenden Richtbohrgerät zur frühzeitigen, zuverlässigen und zeitnahen Bestimmung des Bohrlochs und ein hoch präzise arbeitendes Richtbohrgerät zum kostengünstigen Tiefrichtbohren
WO2017142815A1 (en) 2016-02-16 2017-08-24 Extreme Rock Destruction LLC Drilling machine
WO2017172563A1 (en) 2016-03-31 2017-10-05 Schlumberger Technology Corporation Equipment string communication and steering
DK3464789T3 (da) * 2016-06-07 2021-06-21 Welltec As Brønddriftsværktøj
US10378283B2 (en) * 2016-07-14 2019-08-13 Baker Hughes, A Ge Company, Llc Rotary steerable system with a steering device around a drive coupled to a disintegrating device for forming deviated wellbores
US10267091B2 (en) 2016-07-14 2019-04-23 Baker Hughes, A Ge Company, Llc Drilling assembly utilizing tilted disintegrating device for drilling deviated wellbores
US11396775B2 (en) * 2016-07-14 2022-07-26 Baker Hughes, A Ge Company, Llc Rotary steerable drilling assembly with a rotating steering device for drilling deviated wellbores
US10415363B2 (en) 2016-09-30 2019-09-17 Weatherford Technology Holdings, Llc Control for rotary steerable system
US10364608B2 (en) 2016-09-30 2019-07-30 Weatherford Technology Holdings, Llc Rotary steerable system having multiple independent actuators
US10890030B2 (en) 2016-12-28 2021-01-12 Xr Lateral Llc Method, apparatus by method, and apparatus of guidance positioning members for directional drilling
US11255136B2 (en) 2016-12-28 2022-02-22 Xr Lateral Llc Bottom hole assemblies for directional drilling
RU2658703C1 (ru) * 2017-01-20 2018-06-22 Общество с ограниченной ответственностью "Буровые гидромашины - Центр" Роторное управляемое устройство
US20180216418A1 (en) * 2017-01-27 2018-08-02 Rime Downhole Technologies, Llc Adjustable Hydraulic Coupling For Drilling Tools And Related Methods
US11047419B2 (en) 2017-02-20 2021-06-29 Keith Boutte Segmented driveshaft
CN108505940B (zh) * 2017-02-28 2020-10-20 通用电气公司 复合旋转导向钻井系统和方法
US10287821B2 (en) 2017-03-07 2019-05-14 Weatherford Technology Holdings, Llc Roll-stabilized rotary steerable system
US10641077B2 (en) 2017-04-13 2020-05-05 Weatherford Technology Holdings, Llc Determining angular offset between geomagnetic and gravitational fields while drilling wellbore
US11118407B2 (en) 2017-05-15 2021-09-14 Halliburton Energy Services, Inc. Mud operated rotary steerable system with rolling housing
US11111725B2 (en) 2017-05-15 2021-09-07 Halliburton Energy Services, Inc. Rotary steerable system with rolling housing
WO2018217201A1 (en) 2017-05-24 2018-11-29 Halliburton Energy Services, Inc. Methods and systems for characterizing fractures in a subterranean formation
WO2019014142A1 (en) 2017-07-12 2019-01-17 Extreme Rock Destruction, LLC LATERALLY ORIENTED CUTTING STRUCTURES
US20190128069A1 (en) * 2017-10-27 2019-05-02 Gyrodata, Incorporated Using Rotary Steerable System Drilling Tool Based on Dogleg Severity
CN107701107B (zh) * 2017-10-31 2019-02-12 中国科学院地质与地球物理研究所 一种静态内推靠铰接式高造斜率旋转导向工具及控制方法
WO2019142024A1 (en) * 2018-01-19 2019-07-25 Kohzadi Keivan Intelligent self-control rotary steerable
CN110359863A (zh) * 2018-02-01 2019-10-22 西南石油大学 一种用于旋转导向工具的防落井悬挂装置
CA3091751A1 (en) 2018-02-23 2019-08-29 Michael George Azar Rotary steerable system with cutters
US10858934B2 (en) 2018-03-05 2020-12-08 Baker Hughes, A Ge Company, Llc Enclosed module for a downhole system
US11230887B2 (en) * 2018-03-05 2022-01-25 Baker Hughes, A Ge Company, Llc Enclosed module for a downhole system
AR123395A1 (es) 2018-03-15 2022-11-30 Baker Hughes A Ge Co Llc Amortiguadores para mitigar vibraciones de herramientas de fondo de pozo y dispositivo de aislamiento de vibración para arreglo de fondo de pozo
US11448015B2 (en) 2018-03-15 2022-09-20 Baker Hughes, A Ge Company, Llc Dampers for mitigation of downhole tool vibrations
US11199242B2 (en) 2018-03-15 2021-12-14 Baker Hughes, A Ge Company, Llc Bit support assembly incorporating damper for high frequency torsional oscillation
EP3765705B1 (en) 2018-03-15 2024-04-24 Baker Hughes Holdings Llc Dampers for mitigation of downhole tool vibrations and vibration isolation device for downhole bottom hole assembly
US10947814B2 (en) 2018-08-22 2021-03-16 Schlumberger Technology Corporation Pilot controlled actuation valve system
CN109372836B (zh) * 2018-11-23 2020-03-24 中国科学院地质与地球物理研究所 一种全旋转导向工具用液压油路系统及导向工具控制方法
RU189409U1 (ru) * 2019-03-11 2019-05-22 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Алмазное долото
US11434748B2 (en) 2019-04-01 2022-09-06 Schlumberger Technology Corporation Instrumented rotary tool with sensor in cavity
US11668184B2 (en) 2019-04-01 2023-06-06 Schlumberger Technology Corporation Instrumented rotary tool with compliant connecting portions
CN112049570A (zh) * 2019-06-06 2020-12-08 万晓跃 一种旋转导向复合钻井装置及其钻井方法
CN110617011A (zh) * 2019-06-06 2019-12-27 万晓跃 一种基于钻压转向传递结构的旋转导向钻井工具
CN112211556B (zh) * 2019-07-09 2023-05-05 万晓跃 一种基于液压原理的静态指向旋转导向装置
CN112302595B (zh) * 2019-07-24 2022-12-02 中国石油天然气股份有限公司 旋转开闭式分层采油管柱
CN110748336B (zh) * 2019-08-06 2024-01-23 中国石油天然气集团有限公司 一种磁信号控制电磁力驱动机械定位器及方法
US11519227B2 (en) 2019-09-12 2022-12-06 Baker Hughes Oilfield Operations Llc Vibration isolating coupler for reducing high frequency torsional vibrations in a drill string
CN114502817A (zh) 2019-09-12 2022-05-13 贝克休斯油田作业有限责任公司 通过模态振型调谐优化振动阻尼器工具的放置
US11280187B2 (en) * 2019-12-20 2022-03-22 Schlumberger Technology Corporation Estimating a formation index using pad measurements
AU2021326249B2 (en) 2020-08-10 2024-08-01 Xiaoyue WAN Short radius, controllable track drilling tool and composite guiding and drilling tool
CN113404429B (zh) * 2021-07-19 2023-12-22 万晓跃 复合式导向钻井工具及方法
CN111852337B (zh) * 2020-08-24 2025-02-07 重庆科技学院 一种多分支增产工具内增程纠偏导向工具
CN112033658B (zh) * 2020-09-03 2022-05-27 西南石油大学 一种钻井牵引机器人支撑机构测试系统及方法
WO2022178526A1 (en) * 2021-02-18 2022-08-25 Arcbyt, Inc. Methods and systems for tunnel profiling
CN113279690A (zh) * 2021-03-29 2021-08-20 四川伟创石油装备制造有限公司 一种旋转导向钻井系统
EP4337836B1 (en) 2021-05-12 2025-07-02 Amb-Reb Llc Fluid control valve for rotary steerable tool
CN113137178A (zh) * 2021-05-19 2021-07-20 中石化江钻石油机械有限公司 一种钻头式智能导向钻井装置
NO20210892A1 (ru) * 2021-07-09 2023-01-10
WO2023012442A1 (en) 2021-08-03 2023-02-09 Reme, Llc Piston shut-off valve for rotary steerable tool
CN113605842B (zh) * 2021-08-05 2024-04-09 常州大学 一种用于地热井的钻井台
CN114061655B (zh) * 2021-10-29 2023-03-24 中国石油天然气集团有限公司 一种动态非接触传输单元测试评价装置
CN114109252B (zh) * 2021-11-18 2023-07-28 西南石油大学 实现钻柱全旋转定向的控制装置
CN115898272B (zh) * 2022-11-29 2023-09-22 北京探矿工程研究所 一种用于柔性动力钻具的闭环轨迹控制装置
NO348130B1 (en) * 2023-04-21 2024-09-02 Aziwell As A system and a method for down hole control of devices within rotary steerable drilling assembly
US20250084703A1 (en) * 2023-09-08 2025-03-13 Ontarget Drilling, Llc Modular rotary steerable system
CN116905981B (zh) * 2023-09-12 2023-12-15 山东优图机械制造有限公司 一种石油井下开采作业用扶正器
CN118653783B (zh) * 2024-08-14 2024-10-22 兰州城市学院 页岩气提取设备、提取方法及在页岩开采中的应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667556A (en) * 1970-01-05 1972-06-06 John Keller Henderson Directional drilling apparatus
US4040494A (en) * 1975-06-09 1977-08-09 Smith International, Inc. Drill director
DE2734020A1 (de) * 1977-07-28 1979-02-08 Graefer Albrecht Dipl Berging Stabilisator fuer tieflochbohrungen
US4492276A (en) * 1982-11-17 1985-01-08 Shell Oil Company Down-hole drilling motor and method for directional drilling of boreholes
SU1532678A1 (ru) * 1987-10-27 1989-12-30 Казахский политехнический институт им.В.И.Ленина Устройство дл направленного бурени ударным способом
US4895214A (en) * 1988-11-18 1990-01-23 Schoeffler William N Directional drilling tool
US5113953A (en) * 1988-11-03 1992-05-19 Noble James B Directional drilling apparatus and method
GB2278137A (en) * 1993-05-17 1994-11-23 Camco Int Movable joint bent sub
US5467834A (en) * 1994-08-08 1995-11-21 Maverick Tool Company Method and apparatus for short radius drilling of curved boreholes
RU2072419C1 (ru) * 1991-11-01 1997-01-27 Амоко Корпорейшн Устройство для бурения искривленного ствола скважины
US5617926A (en) * 1994-08-05 1997-04-08 Schlumberger Technology Corporation Steerable drilling tool and system
RU2114273C1 (ru) * 1994-09-26 1998-06-27 Государственное научно-производственное предприятие "Пилот" Способ бурения наклонно направленных скважин и устройство для его осуществления

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33751A (en) * 1861-11-19 Improvement in oilers
US2319236A (en) * 1940-08-22 1943-05-18 Sperry Sun Well Surveying Co Deflecting tool
US2687282A (en) * 1952-01-21 1954-08-24 Eastman Oil Well Survey Co Reaming bit structure for earth bores
US2694549A (en) * 1952-01-21 1954-11-16 Eastman Oil Well Survey Co Joint structure between flexible shafting and drill bit structure for drilling lateral bores
US2876992A (en) * 1954-11-04 1959-03-10 Eastman Oil Well Survey Co Deflecting tools
US3068946A (en) * 1958-12-15 1962-12-18 Eastman Oil Well Survey Co Knuckle joint
US3098534A (en) * 1960-06-14 1963-07-23 Carr Warren Farrell Directional drill with hydraulically extended shoe
US3370657A (en) * 1965-10-24 1968-02-27 Trudril Inc Stabilizer and deflecting tool
US3457999A (en) * 1967-08-31 1969-07-29 Intern Systems & Controls Corp Fluid actuated directional drilling sub
US3561549A (en) * 1968-06-07 1971-02-09 Smith Ind International Inc Slant drilling tools for oil wells
US3575247A (en) * 1969-03-06 1971-04-20 Shell Oil Co Diamond bit unit
US3637032A (en) * 1970-01-22 1972-01-25 John D Jeter Directional drilling apparatus
US3743034A (en) * 1971-05-03 1973-07-03 Shell Oil Co Steerable drill string
US3799279A (en) * 1972-09-25 1974-03-26 R Farris Optionally stabilized drilling tool
US4076084A (en) * 1973-07-16 1978-02-28 Amoco Production Company Oriented drilling tool
US3878903A (en) * 1973-12-04 1975-04-22 Martin Dee Cherrington Apparatus and process for drilling underground arcuate paths
US3903974A (en) * 1974-03-12 1975-09-09 Roy H Cullen Drilling assembly, deviation sub therewith, and method of using same
US4040495A (en) * 1975-12-22 1977-08-09 Smith International, Inc. Drilling apparatus
US4080115A (en) * 1976-09-27 1978-03-21 A-Z International Tool Company Progressive cavity drive train
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
US4291773A (en) * 1978-07-27 1981-09-29 Evans Robert F Strictive material deflectable collar for use in borehole angle control
US4211292A (en) * 1978-07-27 1980-07-08 Evans Robert F Borehole angle control by gage corner removal effects
US4184553A (en) * 1978-10-25 1980-01-22 Conoco, Inc. Method for controlling direction of horizontal borehole
US4220213A (en) * 1978-12-07 1980-09-02 Hamilton Jack E Method and apparatus for self orienting a drill string while drilling a well bore
US4428441A (en) * 1979-04-04 1984-01-31 Mobil Oil Corporation Method and apparatus for reducing the differential pressure sticking tendency of a drill string
US4305474A (en) * 1980-02-04 1981-12-15 Conoco Inc. Thrust actuated drill guidance device
US4456080A (en) * 1980-09-19 1984-06-26 Holbert Don R Stabilizer method and apparatus for earth-boring operations
US4416339A (en) * 1982-01-21 1983-11-22 Baker Royce E Bit guidance device and method
ATE15927T1 (de) * 1982-02-02 1985-10-15 Shell Int Research Verfahren und vorrichtung zum regeln der bohrlochrichtung.
US4461359A (en) * 1982-04-23 1984-07-24 Conoco Inc. Rotary drill indexing system
US4449595A (en) * 1982-05-17 1984-05-22 Holbert Don R Method and apparatus for drilling a curved bore
US4523652A (en) * 1983-07-01 1985-06-18 Atlantic Richfield Company Drainhole drilling assembly and method
US4560013A (en) * 1984-02-16 1985-12-24 Baker Oil Tools, Inc. Apparatus for directional drilling and the like of subterranean wells
US4638873A (en) * 1984-05-23 1987-01-27 Welborn Austin E Direction and angle maintenance tool and method for adjusting and maintaining the angle of deviation of a directionally drilled borehole
US4732223A (en) * 1984-06-12 1988-03-22 Universal Downhole Controls, Ltd. Controllable downhole directional drilling tool
ATE32930T1 (de) * 1985-01-07 1988-03-15 Smf Int Durchflussferngesteuerte vorrichtung zum betaetigen insbesondere von stabilisatoren in einem bohrstrang.
GB2172324B (en) * 1985-03-16 1988-07-20 Cambridge Radiation Tech Drilling apparatus
GB2177738B (en) 1985-07-13 1988-08-03 Cambridge Radiation Tech Control of drilling courses in the drilling of bore holes
GB2172325B (en) * 1985-03-16 1988-07-20 Cambridge Radiation Tech Drilling apparatus
FR2581698B1 (fr) * 1985-05-07 1987-07-24 Inst Francais Du Petrole Ensemble permettant d'effectuer des forages orientes
US4637479A (en) * 1985-05-31 1987-01-20 Schlumberger Technology Corporation Methods and apparatus for controlled directional drilling of boreholes
USRE33751E (en) 1985-10-11 1991-11-26 Smith International, Inc. System and method for controlled directional drilling
US4667751A (en) * 1985-10-11 1987-05-26 Smith International, Inc. System and method for controlled directional drilling
US4662458A (en) * 1985-10-23 1987-05-05 Nl Industries, Inc. Method and apparatus for bottom hole measurement
US4635736A (en) * 1985-11-22 1987-01-13 Shirley Kirk R Drill steering apparatus
GB8529651D0 (en) * 1985-12-02 1986-01-08 Drilex Ltd Directional drilling
US4828050A (en) * 1986-05-08 1989-05-09 Branham Industries, Inc. Single pass drilling apparatus and method for forming underground arcuate boreholes
US4699224A (en) * 1986-05-12 1987-10-13 Sidewinder Joint Venture Method and apparatus for lateral drilling in oil and gas wells
US4739843A (en) * 1986-05-12 1988-04-26 Sidewinder Tool Joint Venture Apparatus for lateral drilling in oil and gas wells
GB2190411B (en) * 1986-05-16 1990-02-21 Shell Int Research Apparatus for directional drilling.
US4714118A (en) * 1986-05-22 1987-12-22 Flowmole Corporation Technique for steering and monitoring the orientation of a powered underground boring device
US4821815A (en) * 1986-05-22 1989-04-18 Flowmole Corporation Technique for providing an underground tunnel utilizing a powered boring device
ES2022895B3 (es) * 1986-07-03 1991-12-16 Charles Abernethy Anderson Estabilizadores de perforacion.
US4811798A (en) * 1986-10-30 1989-03-14 Team Construction And Fabrication, Inc. Drilling motor deviation tool
US4697651A (en) * 1986-12-22 1987-10-06 Mobil Oil Corporation Method of drilling deviated wellbores
US4947944A (en) * 1987-06-16 1990-08-14 Preussag Aktiengesellschaft Device for steering a drilling tool and/or drill string
US5050692A (en) * 1987-08-07 1991-09-24 Baker Hughes Incorporated Method for directional drilling of subterranean wells
US4880067A (en) * 1988-02-17 1989-11-14 Baroid Technology, Inc. Apparatus for drilling a curved borehole
US4867255A (en) * 1988-05-20 1989-09-19 Flowmole Corporation Technique for steering a downhole hammer
US4901804A (en) * 1988-08-15 1990-02-20 Eastman Christensen Company Articulated downhole surveying instrument assembly
FR2641315B1 (fr) * 1988-12-30 1996-05-24 Inst Francais Du Petrole Garniture de forage a trajectoire controlee comportant un stabilisateur a geometrie variable et utilisation de cette garniture
US4938298A (en) * 1989-02-24 1990-07-03 Becfield Horizontal Drilling Services Company Directional well control
US4995465A (en) * 1989-11-27 1991-02-26 Conoco Inc. Rotary drillstring guidance by feedrate oscillation
US4948925A (en) * 1989-11-30 1990-08-14 Amoco Corporation Apparatus and method for rotationally orienting a fluid conducting conduit
US5220963A (en) * 1989-12-22 1993-06-22 Patton Consulting, Inc. System for controlled drilling of boreholes along planned profile
FR2659383B1 (fr) * 1990-03-07 1992-07-10 Inst Francais Du Petrole Dispositif de forage rotary comportant des moyens de reglage en azimut de la trajectoire de l'outil de forage et procede de forage correspondant.
AU8044091A (en) 1990-07-17 1992-01-23 Camco Drilling Group Limited A drilling system and method for controlling the directions of holes being drilled or cored in subsurface formations
CA2022452C (en) * 1990-08-01 1995-12-26 Douglas Wenzel Adjustable bent housing
CA2024061C (en) * 1990-08-27 2001-10-02 Laurier Emile Comeau System for drilling deviated boreholes
US5103919A (en) * 1990-10-04 1992-04-14 Amoco Corporation Method of determining the rotational orientation of a downhole tool
FR2671130B1 (fr) * 1990-12-28 1993-04-23 Inst Francais Du Petrole Dispositif comportant deux elements articules dans un plan, applique a un equipement de forage.
US5139094A (en) * 1991-02-01 1992-08-18 Anadrill, Inc. Directional drilling methods and apparatus
US5117927A (en) * 1991-02-01 1992-06-02 Anadrill Downhole adjustable bent assemblies
US5410303A (en) * 1991-05-15 1995-04-25 Baroid Technology, Inc. System for drilling deivated boreholes
CA2044945C (en) * 1991-06-19 1997-11-25 Kenneth Hugo Wenzel Adjustable bent housing
US5265682A (en) * 1991-06-25 1993-11-30 Camco Drilling Group Limited Steerable rotary drilling systems
FR2679957B1 (fr) * 1991-08-02 1998-12-04 Inst Francais Du Petrole Methode et dispositif pour effectuer des mesures et/ou interventions dans un puits fore ou en cours de forage.
US5553678A (en) * 1991-08-30 1996-09-10 Camco International Inc. Modulated bias units for steerable rotary drilling systems
US5265687A (en) * 1992-05-15 1993-11-30 Kidco Resources Ltd. Drilling short radius curvature well bores
US5311952A (en) * 1992-05-22 1994-05-17 Schlumberger Technology Corporation Apparatus and method for directional drilling with downhole motor on coiled tubing
US5311953A (en) * 1992-08-07 1994-05-17 Baroid Technology, Inc. Drill bit steering
US5375098A (en) * 1992-08-21 1994-12-20 Schlumberger Technology Corporation Logging while drilling tools, systems, and methods capable of transmitting data at a plurality of different frequencies
US5332048A (en) * 1992-10-23 1994-07-26 Halliburton Company Method and apparatus for automatic closed loop drilling system
US5325714A (en) * 1993-05-12 1994-07-05 Baker Hughes Incorporated Steerable motor system with integrated formation evaluation logging capacity
US5421420A (en) * 1994-06-07 1995-06-06 Schlumberger Technology Corporation Downhole weight-on-bit control for directional drilling
US5484029A (en) * 1994-08-05 1996-01-16 Schlumberger Technology Corporation Steerable drilling tool and system
US5520256A (en) * 1994-11-01 1996-05-28 Schlumberger Technology Corporation Articulated directional drilling motor assembly
US5594343A (en) * 1994-12-02 1997-01-14 Schlumberger Technology Corporation Well logging apparatus and method with borehole compensation including multiple transmitting antennas asymmetrically disposed about a pair of receiving antennas
EP0744526B1 (de) * 1995-05-24 2001-08-08 Baker Hughes Incorporated Verfahren zum Steuern eines Bohrwerkzeugs
US5738178A (en) * 1995-11-17 1998-04-14 Baker Hughes Incorporated Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667556A (en) * 1970-01-05 1972-06-06 John Keller Henderson Directional drilling apparatus
US4040494A (en) * 1975-06-09 1977-08-09 Smith International, Inc. Drill director
DE2734020A1 (de) * 1977-07-28 1979-02-08 Graefer Albrecht Dipl Berging Stabilisator fuer tieflochbohrungen
US4492276B1 (ru) * 1982-11-17 1991-07-30 Shell Oil Co
US4492276A (en) * 1982-11-17 1985-01-08 Shell Oil Company Down-hole drilling motor and method for directional drilling of boreholes
SU1532678A1 (ru) * 1987-10-27 1989-12-30 Казахский политехнический институт им.В.И.Ленина Устройство дл направленного бурени ударным способом
US5113953A (en) * 1988-11-03 1992-05-19 Noble James B Directional drilling apparatus and method
US4895214A (en) * 1988-11-18 1990-01-23 Schoeffler William N Directional drilling tool
RU2072419C1 (ru) * 1991-11-01 1997-01-27 Амоко Корпорейшн Устройство для бурения искривленного ствола скважины
GB2278137A (en) * 1993-05-17 1994-11-23 Camco Int Movable joint bent sub
US5617926A (en) * 1994-08-05 1997-04-08 Schlumberger Technology Corporation Steerable drilling tool and system
US5467834A (en) * 1994-08-08 1995-11-21 Maverick Tool Company Method and apparatus for short radius drilling of curved boreholes
RU2114273C1 (ru) * 1994-09-26 1998-06-27 Государственное научно-производственное предприятие "Пилот" Способ бурения наклонно направленных скважин и устройство для его осуществления

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8556000B2 (en) 2005-02-21 2013-10-15 Lynx Drilling Tools Limited Device for monitoring a drilling or coring operation and installation comprising such a device
RU2435015C2 (ru) * 2006-06-01 2011-11-27 Сондекс Лимитед Управляемый роторный инструмент
RU2471066C2 (ru) * 2007-07-30 2012-12-27 Шлюмбергер Текнолоджи Б.В. Способ использования датчика положения торца бурильного инструмента
RU2457310C2 (ru) * 2007-12-19 2012-07-27 Шлюмбергер Текнолоджи Б.В. Направляющая система и система направленного бурения, содержащая указанную систему
RU2452839C2 (ru) * 2007-12-21 2012-06-10 Шлюмбергер Текнолоджи Б.В. Система для направленного бурения
RU2564546C2 (ru) * 2010-04-23 2015-10-10 Дженерал Электрик Компани Буровой блок и роторно-управляемый инструмент
US9803426B2 (en) 2010-06-18 2017-10-31 Schlumberger Technology Corporation Flex joint for downhole drilling applications
RU2530952C2 (ru) * 2010-06-18 2014-10-20 Шлюмбергер Текнолоджи Б.В. Гибкий соединитель для бурения с погружным пневмоударником
US10066185B2 (en) 2011-07-28 2018-09-04 Schlumberger Technology Corporation System and method for enhancing hydraulic fluids for down hole use
WO2013016471A1 (en) * 2011-07-28 2013-01-31 Schlumberger Canada Limited System and method for enhancing hydraulic fluids for down hole use
RU2598671C2 (ru) * 2012-06-12 2016-09-27 Халлибертон Энерджи Сервисез, Инк. Модульный управляемый вращательный привод, отклоняющий инструмент и управляемая вращательная буровая система с модульным приводом
US11643877B2 (en) 2015-03-24 2023-05-09 Baker Hughes Holdings Llc Self-adjusting directional drilling apparatus and methods for drilling directional wells
US11459828B2 (en) 2015-03-24 2022-10-04 Baker Hughes, LLC Drilling apparatus using a self-adjusting deflection device and deflection sensors for drilling directional wells
RU2757846C2 (ru) * 2015-03-24 2021-10-21 Бейкер Хьюз, Э Джии Компани, Ллк Буровая компоновка с использованием саморегулируемого отклоняющего устройства и датчиков направления для бурения наклонных скважин
US11428047B2 (en) 2015-03-24 2022-08-30 Baker Hughes, A Ge Company, Llc Drilling assembly using a self-adjusting tilt device and sensors for drilling directional wellbores
US11421480B2 (en) 2015-03-24 2022-08-23 Baker Hughes, A Ge Company, Llc Drilling apparatus using a sealed self-adjusting deflection device for drilling directional wells
RU2740390C2 (ru) * 2015-03-24 2021-01-13 Бейкер Хьюз, Э Джии Компани, Ллк Устройство для наклонно-направленного бурения с автоматической регулировкой и способ бурения наклонно-направленных скважин
RU2759374C2 (ru) * 2015-03-24 2021-11-12 Бейкер Хьюз, Э Джии Компани, Ллк Буровая компоновка с использованием герметичного саморегулируемого отклоняющего устройства для бурения наклонных скважин
RU2722611C2 (ru) * 2016-02-08 2020-06-02 Смарт Дриллинг Гмбх Буровой инструмент для бурения наклонно-направленных скважин с автоматическим контролем
RU2612403C1 (ru) * 2016-04-04 2017-03-09 Общество с ограниченной ответственностью Научно-производственное предприятие "БУРИНТЕХ" (ООО НПП "БУРИНТЕХ") Устройство для гидромеханического управления направленным роторным бурением
RU2764974C2 (ru) * 2016-07-14 2022-01-24 Бейкер Хьюз, Э Джии Компани, Ллк Роторная управляемая буровая компоновка с вращающимся рулевым устройством для бурения наклонно направленных скважин
RU2713256C1 (ru) * 2017-01-12 2020-02-04 Дженерал Электрик Компани Устройство и способ автоматической регулировки наклонно-направленного бурения
RU2645693C1 (ru) * 2017-04-05 2018-02-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины
RU2740878C1 (ru) * 2017-11-13 2021-01-21 Хэллибертон Энерджи Сервисиз, Инк. Надуваемый отклонитель для повторного входа в боковой ствол скважины
US11193331B2 (en) 2019-06-12 2021-12-07 Baker Hughes Oilfield Operations Llc Self initiating bend motor for coil tubing drilling
RU2820666C2 (ru) * 2019-07-31 2024-06-07 АНДЕРСОН, Чарльз Абернети Устройство для бурения участков подземных скважин, применяемое с генератором крутящего момента, (варианты) и способы его применения для управления тулфейсом (варианты)
EA038036B1 (ru) * 2019-12-03 2021-06-25 Общество С Ограниченной Ответственностью "Мемпэкс" Пилотный бур для буровых машин
RU2733536C1 (ru) * 2020-05-21 2020-10-05 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Устройство для контроля положения ствола горизонтальной скважины при бурении

Also Published As

Publication number Publication date
EP1008717A1 (en) 2000-06-14
NO996051L (no) 2000-06-13
ID24512A (id) 2000-07-20
AU6317899A (en) 2000-06-15
CN1263977A (zh) 2000-08-23
GC0000115A (en) 2005-06-29
EP1008717B1 (en) 2004-10-27
NO314196B1 (no) 2003-02-10
CA2291922C (en) 2007-09-25
BR9905828A (pt) 2000-09-05
CN1222677C (zh) 2005-10-12
US6158529A (en) 2000-12-12
CA2291922A1 (en) 2000-06-11
DE69921429D1 (de) 2004-12-02
AU745767B2 (en) 2002-03-28
NO996051D0 (no) 1999-12-08

Similar Documents

Publication Publication Date Title
RU2229012C2 (ru) Способ бурения скважин и одновременного направления бурового долота активно контролируемым вращательным направляемым скважинным буровым устройством и вращательное направляемое скважинное буровое устройство
CA2298375C (en) Rotary steerable well drilling system utilizing hydraulic servo-loop
CA2291600C (en) Actively controlled rotary steerable system and method for drilling wells
US7866415B2 (en) Steering device for downhole tools
US8827006B2 (en) Apparatus and method for measuring while drilling
CA2587884C (en) Modular drilling apparatus with power and/or data transmission
CA2366002C (en) Three-dimensional steering tool for controlled downhole extended-reach directional drilling
US7004263B2 (en) Directional casing drilling
US6837315B2 (en) Rotary steerable drilling tool
RU2239042C2 (ru) Способ бурения скважины и одновременного направления буровой коронки активно управляемой вращательной направляемой буровой системой и активно управляемая вращательная направляемая система
GB2395505A (en) Steerable modular drilling assembly
NO311847B1 (no) Boreanordning og fremgangsmåte for avviksboring under anvendelse av kveilrör
RU99126648A (ru) Способ бурения скважин и одновременного напраления бурового долота активно контролируемым вращательным направляемым буровым устройством и вращательное направляемое буровое устройство
EP1245783A2 (en) Apparatus and method for directional drilling using coiled tubing
AU766588B2 (en) Actively controlled rotary steerable system and method for drilling wells
CA2578828C (en) Torque transmitting coupling
HK1051886A (en) Apparatus and method for directional drilling using coiled tubing

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161211