RU2645693C1 - Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины - Google Patents

Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины Download PDF

Info

Publication number
RU2645693C1
RU2645693C1 RU2017111536A RU2017111536A RU2645693C1 RU 2645693 C1 RU2645693 C1 RU 2645693C1 RU 2017111536 A RU2017111536 A RU 2017111536A RU 2017111536 A RU2017111536 A RU 2017111536A RU 2645693 C1 RU2645693 C1 RU 2645693C1
Authority
RU
Russia
Prior art keywords
base
shock absorber
torque motor
geostationary
housing
Prior art date
Application number
RU2017111536A
Other languages
English (en)
Inventor
Сергей Николаевич Кривощеков
Евгений Павлович Рябоконь
Михаил Сергеевич Турбаков
Сергей Евгеньевич Чернышов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет"
Priority to RU2017111536A priority Critical patent/RU2645693C1/ru
Application granted granted Critical
Publication of RU2645693C1 publication Critical patent/RU2645693C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

Изобретение относится к области роторного бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины включает пустотелый цилиндрический герметичный корпус, содержащий основание, выполненное с возможностью вращения. На основании установлены навигационные датчики. В корпусе установлены датчик частоты вращения, моментный двигатель, в статоре моментального двигателя выполнено цилиндрическое отверстие, в которое установлены токопровод и первая втулка, соединенная с основанием. С обеих сторон корпуса расположены два амортизатора с прокладками. Первый амортизатор с одной стороны закреплен на моментном двигателе, а с другой стороны выполнен с возможностью жесткого соединения, например, с оборудованием телеметрической системы. Вторая втулка содержит подшипник вращения, жестко связана со вторым амортизатором и через подшипник вращения соединена с основанием. Второй амортизатор выполнен с возможностью жесткого соединения, например, с силовой частью компоновки низа бурильной колонны. Жесткость амортизационных прокладок в поперечном направлении превышает продольную. Техническим результатом является повышение надежности работы устройства, повышение стабильности геостационарного положения навигационных датчиков, повышение точности определения пространственного положения бурового инструмента. 1 ил.

Description

Изобретение относится к области роторного бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин.
Известно устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины, входящее во вращательное направляемое скважинное буровое устройство, раскрытое в патенте на изобретение РФ №2229012, 2004 г. Устройство содержит электронные средства для энергопитания, чувствительные датчики положения и системы управления, установленные по всей длине невращаемого компонента, стабилизирующую переходную муфту, внутри которой установлены вращаемые компоненты управляемого бурового инструмента. При бурении стабилизирующая переходная муфта, в которой расположены телеметрические датчики положения и электронные средства бурового инструмента, содержащая удлиненные изогнутые эластичные стабилизирующие лопасти, с помощью которых поддерживается контакт скольжения со стенками ствола скважины, может скользить или медленно вращаться относительно горной породы, что обеспечивает нахождение бурового инструмента в геостационарном положении.
Недостатком устройства является неплотный контакт изогнутых эластичных лопастей стабилизирующей переходной муфты с горной породой в момент прохождения бурового раствора по кольцевому пространству при бурении, что не обеспечивает снижения частоты вращения стабилизирующей переходной муфты. В результате встроенные в муфту датчики положения выдают ошибочные навигационные данные, что не обеспечивает достаточной точности траектории бурения скважины. Кроме того, недостатком является повышенный износ эластичных элементов, обусловленный трением о горную породу, а также частицами шлама, что создает контакт стабилизирующей переходной муфты с горной породой, и геостационарность датчиков положения не обеспечивается. Кроме того, недостатком является низкая надежность конструкции элементов стабилизатора, в результате чего при бурении может произойти отделение элементов стабилизатора и эластичных элементов от стабилизирующей переходной муфты, что приведет к неплотному контакту стабилизирующей переходной муфты с горной породой и геостационарность датчиков положения не будет обеспечивается.
Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является устройство для поддержания глубинного навигационного оборудования в состоянии, стабилизированном от вращения по отношению к буровой колонне, входящее в роторную управляемую буровую систему, раскрытую в патенте на изобретение США №5265682, 1993 г. Известное устройство содержит опору, подсоединяемую к буровой колонне, пустотелый цилиндрический корпус, содержащий комплект датчиков и находящийся в опоре, подшипник вращения, крыльчатку, установленную на корпусе и вращаемую потоком бурового раствора, средства, обеспечивающие передачу момента от крыльчатки корпусу, акселерометры, определяющие частоту вращения навигационного оборудования, а также датчики стабилизации вращения навигационного оборудования по отношению к буровой колонне. Вырабатываемая в результате вращения потоком бурового раствора крыльчатки электроэнергия питает навигационное оборудование и преобразуется во вращение корпуса, обратное вращению буровой колонны, обеспечивающее геостационарное положение навигационного оборудования. Данное устройство принято в качестве прототипа.
Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения, - пустотелый цилиндрический герметичный корпус, содержащий основание, выполненное с возможностью вращения; навигационные датчики, установленные на основании; подшипник вращения и датчик частоты вращения, размещенные внутри корпуса.
Недостатками известной системы, принятой за прототип, являются:
- зависимость геостационарного положения навигационного оборудования от двух факторов: частоты вращения буровой колонны и скорости потока бурового раствора, колебание которых не всегда позволяет обеспечить вращение корпуса с частотой, компенсирующей вращение буровой колонны, например, в случае снижения скорости поступления бурового раствора, что приведет к ошибкам навигационных датчиков;
- значительный износ и низкий срок службы тормозной системы при постоянном биении бурильной колонны, поддерживающей навигационные датчики в геостационарном положении;
- высокая скорость абразивного износа лопастей крыльчатки буровым раствором, что приводит к необходимости частых ремонтов системы;
- образующаяся в результате прохождения бурового раствора пленка твердой фракции, которая препятствует прохождению магнитного поля от магнитов крыльчатки к ротору, в результате чего тормозная система не обеспечивает геостационарное положение навигационного оборудования.
Задачей заявляемого изобретения является повышение надежности работы устройства, повышение стабильности геостационарного положения навигационных датчиков, повышение точности определения пространственного положения бурового инструмента.
Поставленная задача была решена за счет того, что в известном устройстве обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины, включающем пустотелый цилиндрический герметичный корпус, содержащий основание, выполненное с возможностью вращения, установленные на основании навигационные датчики и размещенные внутри корпуса подшипник вращения и датчик частоты вращения, согласно изобретению в корпусе дополнительно установлены моментный двигатель, токопровод, две втулки, два амортизатора с прокладками, расположенные с обеих сторон корпуса, при этом первый амортизатор с одной стороны закреплен на моментном двигателе, а с другой стороны выполнен с возможностью жесткого соединения, например, с оборудованием телеметрической системы, в статоре моментного двигателя выполнено цилиндрическое отверстие, в которое установлены токопровод и первая втулка, соединенная с основанием, вторая втулка содержит подшипник вращения, жестко связана со вторым амортизатором и через подшипник вращения соединена с основанием, второй амортизатор выполнен с возможностью жесткого соединения, например, с силовой частью компоновки низа бурильной колонны, причем жесткость амортизационных прокладок в поперечном направлении превышает продольную.
Признаки заявляемого технического решения, отличительные от прототипа, - в корпусе дополнительно установлены моментный двигатель, токопровод, две втулки, два амортизатора с прокладками, расположенные с обеих сторон корпуса; первый амортизатор с одной стороны закреплен на моментном двигателе, а с другой стороны выполнен с возможностью жесткого соединения, например, с оборудованием телеметрической системы; в статоре моментного двигателя выполнено цилиндрическое отверстие, в которое установлены токопровод и первая втулка, соединенная с основанием; вторая втулка содержит подшипник вращения, жестко связана со вторым амортизатором и через подшипник вращения соединена с основанием; второй амортизатор выполнен с возможностью жесткого соединения, например, с силовой частью компоновки низа бурильной колонны; жесткость амортизационных прокладок в поперечном направлении превышает продольную.
Наличие моментного двигателя, установленного в корпусе, обеспечивает плавность хода на всех углах редукции, отсутствие люфтов и микроударов в начале кручения и при изменении скорости кручения, что позволяет повысить надежность работы устройства и тем самым повысить стабильность геостационарного положения навигационных датчиков и точность определения пространственного положения бурового инструмента.
Наличие амортизаторов, расположенных с обеих сторон внутри корпуса, обеспечивает гашение колебаний в продольном направлении, что позволяет повысить надежность работы устройства.
Для передачи крутящего момента от моментного двигателя основанию и обеспечения требуемой величины демпфирования жесткость амортизационной прокладки в поперечном направлении должна превышать продольную, что позволяет обеспечить виброзащиту инклинометров и отсутствие механического резонанса конструктивных элементов. В результате повышается надежность работы устройства.
Установка в цилиндрическое отверстие статора моментного двигателя токопровода и втулки, соединенной с основанием, обеспечивает двухстороннюю передачу информации между навигационными датчиками и пультом оператора на устье скважины в момент вращения основания.
Наличие втулки, расположенной в корпусе, содержащей подшипник вращения и жестко связанной со вторым амортизатором и через подшипник вращения соединенной с основанием, позволяет основанию свободно вращаться. В результате обеспечивается плавность хода моментного двигателя, и, следовательно, повышается надежность работы устройства, стабильность геостационарного положения навигационных датчиков и точность определения пространственного положения бурового инструмента.
На чертеже схематично представлено заявляемое устройство в горизонтальном положении (разрез сбоку).
Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины включает пустотелый цилиндрический герметичный корпус 1, содержащий основание 2, выполненное с возможностью вращения. В корпусе 1 размещен моментный двигатель 3, представляющий собой двигатель прямого привода с электромагнитной индукцией. В статоре моментного двигателя 3 выполнено цилиндрическое отверстие, ось которого совмещена с осью моментного двигателя 3. В цилиндрическое отверстие установлены токопровод 4 и втулка 5, соединенная с основанием 2. Внутри корпуса 1 расположены с обеих сторон два амортизатора. Амортизаторы состоят соответственно из крышек 6, 7, контейнеров 8, 9, установленных в контейнерах 8, 9 прокладок 10, 11. Контейнер 8 амортизатора с помощью винтов 12 жестко закреплен на моментном двигателе 3. Амортизационные прокладки 10, 11 могут быть выполнены из силикона. Жесткость амортизационных прокладок 10, 11 в поперечном направлении должна превышать продольную.
Первый амортизатор выполнен с возможностью жесткого соединения, например, с оборудованием телеметрической системы. Второй амортизатор выполнен с возможностью жесткого соединения, например, с силовой частью компоновки низа бурильной колонны,
На основании 2 установлены навигационные датчики 13, например инклинометры, акселерометры, микропроцессор и электронная плата 14, соединенная с токопроводом 4. Внутри корпуса 1 размещены датчик частоты вращения 15, втулка 16, содержащая подшипник вращения 17, например шариковый. Втулка 16 жестко связана со вторым амортизатором и через подшипник вращения 17 соединена с основанием 2.
Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины работает следующим образом.
При строительстве горизонтальных и наклонно направленных скважин используются навигационные системы, которые для изменения направления бурения позволяют управлять долотом. Отклонение долота в заданном направлении возможно при нахождении навигационных датчиков 13 в геостационарном положении (неподвижном относительно координат Земли). Предлагаемое изобретение используется при роторном бурении. В предлагаемом изобретении датчик частоты вращения 15 передает на микропроцессор текущую частоту вращения компоновки низа бурильной колонны, определяющий требуемую для обеспечения геостационарного положения навигационных датчиков 13 частоту вращения в противоположном направлении. В соответствии с сигналом, приходящим от микропроцессора, моментный двигатель 3, представляющий собой двигатель прямого привода с электромагнитной индукцией, вращает основание 2 с навигационными датчиками 13, установленное в подшипнике вращения 17, в направлении, обратном направлению вращения компоновки низа бурильной колонны. Амортизаторы, моментный двигатель 3 и втулка 5 являются невращаемыми элементами устройства обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины. Амортизаторы гасят колебания в продольном направлении, которые могут быть вызваны, например, ударами компоновки низа бурильной колонны о забой скважины. Для передачи крутящего момента от моментного двигателя 3 основанию 2 и обеспечения требуемой величины демпфирования жесткость амортизационной прокладки в поперечном направлении превышает продольную, что обеспечивает виброзащиту инклинометров и отсутствие механического резонанса конструктивных элементов. Токопровод 4 обеспечивает передачу электроэнергии от источника питания постоянного тока навигационным датчикам, а также двухстороннюю передачу информации между навигационными датчиками 13 и пультом оператора на устье скважины. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины содержит жесткий герметичный корпус 1, не подверженный влиянию бурого раствора. Подшипник вращения 17 содержит антифрикционную смазку. В случае использования магнитных инклинометров все металлические элементы устройства обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины должны быть изготовлены из немагнитных материалов.
Конструкция моментного двигателя 3 обеспечивает плавность хода на всех углах редукции, отсутствие люфтов и микроударов в начале кручения и при изменении скорости кручения. Моментный двигатель 3 работает от электропитания постоянного тока.
Такая конструкция устройства позволяет повысить надежность работы устройства, повысить стабильность геостационарного положения навигационных датчиков и повысить точность определения пространственного положения бурового инструмента.

Claims (1)

  1. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины, включающее пустотелый цилиндрический герметичный корпус, содержащий основание, выполненное с возможностью вращения, установленные на основании навигационные датчики и размещенные внутри корпуса подшипник вращения и датчик частоты вращения, отличающееся тем, что в корпусе дополнительно установлены моментный двигатель, токопровод, две втулки, два амортизатора с прокладками, расположенные с обеих сторон корпуса, при этом первый амортизатор с одной стороны закреплен на моментном двигателе, а с другой стороны выполнен с возможностью жесткого соединения, например, с оборудованием телеметрической системы, в статоре моментного двигателя выполнено цилиндрическое отверстие, в которое установлены токопровод и первая втулка, соединенная с основанием, вторая втулка содержит подшипник вращения, жестко связана со вторым амортизатором и через подшипник вращения соединена с основанием, второй амортизатор выполнен с возможностью жесткого соединения, например, с силовой частью компоновки низа бурильной колонны, причем жесткость амортизационных прокладок в поперечном направлении превышает продольную.
RU2017111536A 2017-04-05 2017-04-05 Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины RU2645693C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017111536A RU2645693C1 (ru) 2017-04-05 2017-04-05 Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017111536A RU2645693C1 (ru) 2017-04-05 2017-04-05 Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины

Publications (1)

Publication Number Publication Date
RU2645693C1 true RU2645693C1 (ru) 2018-02-27

Family

ID=61258812

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017111536A RU2645693C1 (ru) 2017-04-05 2017-04-05 Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины

Country Status (1)

Country Link
RU (1) RU2645693C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265682A (en) * 1991-06-25 1993-11-30 Camco Drilling Group Limited Steerable rotary drilling systems
RU2229012C2 (ru) * 1998-12-11 2004-05-20 Шлюмбергер Холдингз Лимитед Способ бурения скважин и одновременного направления бурового долота активно контролируемым вращательным направляемым скважинным буровым устройством и вращательное направляемое скважинное буровое устройство
RU2345217C1 (ru) * 2007-04-25 2009-01-27 Николай Николаевич Галкин Электронный блок скважинного прибора телеметрической системы
RU2434131C1 (ru) * 2010-04-12 2011-11-20 Общество с ограниченной ответственностью Научно-производственная фирма "ГОРИЗОНТ" (ООО НПФ "ГОРИЗОНТ") Электронный блок забойной телеметрической системы
WO2016061616A1 (en) * 2014-10-23 2016-04-28 Imdex Global B.V Improvements in or relating to down hole surveying
US9506326B2 (en) * 2013-07-11 2016-11-29 Halliburton Energy Services, Inc. Rotationally-independent wellbore ranging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265682A (en) * 1991-06-25 1993-11-30 Camco Drilling Group Limited Steerable rotary drilling systems
RU2229012C2 (ru) * 1998-12-11 2004-05-20 Шлюмбергер Холдингз Лимитед Способ бурения скважин и одновременного направления бурового долота активно контролируемым вращательным направляемым скважинным буровым устройством и вращательное направляемое скважинное буровое устройство
RU2345217C1 (ru) * 2007-04-25 2009-01-27 Николай Николаевич Галкин Электронный блок скважинного прибора телеметрической системы
RU2434131C1 (ru) * 2010-04-12 2011-11-20 Общество с ограниченной ответственностью Научно-производственная фирма "ГОРИЗОНТ" (ООО НПФ "ГОРИЗОНТ") Электронный блок забойной телеметрической системы
US9506326B2 (en) * 2013-07-11 2016-11-29 Halliburton Energy Services, Inc. Rotationally-independent wellbore ranging
WO2016061616A1 (en) * 2014-10-23 2016-04-28 Imdex Global B.V Improvements in or relating to down hole surveying

Similar Documents

Publication Publication Date Title
US11459828B2 (en) Drilling apparatus using a self-adjusting deflection device and deflection sensors for drilling directional wells
US11199242B2 (en) Bit support assembly incorporating damper for high frequency torsional oscillation
US11448015B2 (en) Dampers for mitigation of downhole tool vibrations
US8622153B2 (en) Downhole assembly
CN111989457B (zh) 用于减轻井下工具振动的阻尼器
US9771787B2 (en) Multi-directionally rotating downhole drilling assembly and method
US20150176344A1 (en) Downhole assembly
CN112088240B (zh) 用于减轻井下工具振动的阻尼器及用于井下井底钻具组合的振动隔离设备
GB2487022A (en) Steerable bit
US8528661B2 (en) Drill bit with electrical power generation devices
US11713623B2 (en) Motor power section with integrated sensors
CN114502817A (zh) 通过模态振型调谐优化振动阻尼器工具的放置
US20160053557A1 (en) Torsional isolator
EP4028628A1 (en) Dampers for mitigation of downhole tool vibrations
US20230009235A1 (en) Shock-based damping systems and mechanisms for vibration damping in downhole applications
RU2645693C1 (ru) Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины
NO20220386A1 (en) Bit support assembly incorporating damper for high frequency torsional oscillation
EP3902975B1 (en) Systems and methods for recycling excess energy
CN109844256B (zh) 使用自调整偏转装置和方向传感器以用于钻出定向井的钻井设备
WO2018057697A1 (en) Drilling apparatus using a self-adjusting deflection device and deflection sensors for drilling directional wells
US20200157932A1 (en) System and method for monitoring motion of downhole tool components of a drilling system

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20191022

Effective date: 20191022