RU2223221C1 - Способ получения гидроксидов или оксидов алюминия и водорода - Google Patents
Способ получения гидроксидов или оксидов алюминия и водорода Download PDFInfo
- Publication number
- RU2223221C1 RU2223221C1 RU2003103784/15A RU2003103784A RU2223221C1 RU 2223221 C1 RU2223221 C1 RU 2223221C1 RU 2003103784/15 A RU2003103784/15 A RU 2003103784/15A RU 2003103784 A RU2003103784 A RU 2003103784A RU 2223221 C1 RU2223221 C1 RU 2223221C1
- Authority
- RU
- Russia
- Prior art keywords
- aluminum
- water
- pressure
- ratio
- suspension
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 239000001257 hydrogen Substances 0.000 title claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 27
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 12
- 150000004679 hydroxides Chemical class 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 39
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 39
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical class [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims abstract description 9
- 239000002002 slurry Substances 0.000 claims abstract description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical class O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000000725 suspension Substances 0.000 claims description 35
- 239000007789 gas Substances 0.000 claims description 9
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical group O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 8
- 229910001593 boehmite Inorganic materials 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 7
- 229910001680 bayerite Inorganic materials 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 11
- 238000000889 atomisation Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- 230000003993 interaction Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 5
- -1 diaspora Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910001679 gibbsite Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001354 calcination Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000004131 Bayer process Methods 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XFBXDGLHUSUNMG-UHFFFAOYSA-N alumane;hydrate Chemical compound O.[AlH3] XFBXDGLHUSUNMG-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910006636 γ-AlOOH Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/42—Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
- C01F7/428—Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation by oxidation in an aqueous solution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/08—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/10—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Изобретение относится к способу и устройству для получения гидроксидов или оксидов алюминия, а именно к способам получения оксидов или гидроксидов алюминия из металлического алюминия окислением. Способ относится также к получению водорода. Способ получения гидроксидов или оксидов алюминия и водорода из алюминия и воды заключается в том, что из мелкодисперсного алюминия размером частиц не более 20 мкм готовят суспензию порошкообразного алюминия в воде при соотношении Al:Н2О=1:4-16 вес.ч., которую непрерывно подают в реактор высокого давления, где суспензию порошкообразного алюминия распыляют при диаметре капель не более 100 мкм в воду при температуре 220-900oС и давлении 20-40 МПа, при соотношении суспензии к воде 1:50-100 вес.ч., после выхода из реактора высокого давления парогаз подают в конденсатор и из него выводят водород, а гидроксид алюминия или оксид алюминия - в отстойник для суспензии. Способ осуществляют в установке, включающей смеситель, реактор высокого давления, снабженный форсункой, обеспечивающей распыление суспензии порошкообразного алюминия в воде при диаметре капель не более 100 мкм, отстойник для суспензии, конденсатор. Изобретение позволяет получить гидроксид алюминия с содержанием основного вещества не менее 99,5% и водород, имеющий чистоту 99%. 8 з.п.ф-ы, 1 ил, 1 табл.
Description
Изобретение относится к способам получения гидроксидов или оксидов алюминия, а именно - к способам получения оксидов или гидроксидов алюминия из металлического алюминия окислением. Оксиды и гидроксиды алюминия используются в различных областях промышленности в качестве адсорбентов, катализаторов, и т.п. Гидроксиды и оксиды алюминия высокой чистоты используются в электронной и оптической промышленности в виде тонкого порошка - в качестве абразивных порошков, в частности, для жестких дисков или магнитных головок. Изобретение относится, в частности, к способам получения гидроксидов алюминия бемитной и байеритной формы.
Способ относится также к получению водорода, а именно - к способам получения водорода химическим способом при взаимодействии металлов и воды. Водород может использоваться в различных химических процессах как восстановитель, а также в определенных условиях как топливо.
Гидроксиды алюминия существуют в различных кристаллических видах - гидраргиллита (гиббсита), байерита, диаспора, бемита и т.д, оксиды - в виде α,β,γ,θ-формы. Основное различие этих форм состоит в расположении ионов алюминия Аl3+ и ионов кислорода О2- относительно друг друга. В данном описании под термином "гидроксид алюминия" понимаются также и гидратированные оксиды алюминия Аl2О3. Основным способом промышленного получения гидроксидов алюминия является процесс Байера, а последующая их сушка и прокалка приводит к получению оксидов алюминия [Химическая энциклопедия, изд. "Советская энциклопедия", М., 1988 г., т.1, с.213-214]. Однако обычные способы получения гидроксидов алюминия не обеспечивают достижения высокой чистоты продукта.
Известен [ЕР 1262457 А2, кл. C 01 F 7/02, Sumitomo Chemical Co, опуб. 04.12.2002 г.] способ получения гидроксидов алюминия в виде тонкого порошка, который заключается в перемешивании соединения алюминия - прекурсора α-алюминия и по крайней мере одного из соединений, применяющихся в виде затравочного материала для кристаллов гидроксида алюминия, с последующей прокалкой в атмосфере, содержащей хлористый водород. Однако этот способ не обеспечивает получения материала требуемой чистоты и заданной структуры. Кроме того, способ получения гидроксидов в виде гелей неудобен тем, что его выделение сопряжено с трудностями при фильтрации и кроме того, для получения мелкодисперсных порошков необходимы стадии размола или экструдирования.
Представляется, что более удобно получать гидроксиды алюминия взаимодействием металлического алюминия с водой, однако из-за образования на поверхности алюминия оксидной пленки его активность быстро падает. Для предотвращения этого явления используют различные добавки.
Так, известны способы получения водорода, заключающиеся во взаимодействии металлов, в том числе алюминия с водой [патент США 3348919, кл. 423-657, Colgate-Palmolive Со, опуб. 24.10.1967, патент США 3985866, кл. 423-657, Oda and al, опуб. 12.10.1976 г.]. Однако в этих способах, кроме алюминия, используются другие металлы - щелочные, щелочно-земельные металлы, или сплавы [ЕР 248960 А1, кл. С 01 В 3/086 Osaka Fuji Kogyo, Ltd. oп. 16.12.1987].
В других способах [патенты США 2958582 кл. 423-627, опуб. 1.10.1958 и пат. США 2958583, кл. 423-627, опуб. 1.10.1958] получения гидроксидов алюминия и водорода необходимо использовать дополнительные вещества, способствующие проведению взаимодействия реагентов, например каталитические количества органических аминов. Введение этих веществ не дает возможности получать чистый гидроксид алюминия. Процесс взаимодействия алюминия или его соединений и водорода проводят на установке, включающей реактор с мешалкой, куда вводятся исходные реагенты. Установка включает теплообменник, сепаратор и фильтр для разделения получаемой суспензии гидроксидов алюминия с водой.
Известен [патент США 2758011, кл. 423-627, Universal Oil Products Co, опуб. 7.08.1956 г. ] способ получения оксида алюминия в форме бемита (γ-АlOOН), который заключается во взаимодействии, проводимом в автоклаве, куда загружают воду и алюминий в виде мелкодисперсных частиц. Затем смесь нагревают до температуры 482-705oF (250-374oC), после чего начинают перемешивание при этой же температуре под давлением, достаточным для поддержания воды в жидкой фазе. Процесс ведут в течение времени, достаточного для взаимодействия всего алюминия, в приведенных примерах это время составляет около 4 часов. После того, как весь алюминий прореагировал, перемешивание прекращают, автоклав с реакционной смесью охлаждают и отделяют полученный гидроксид алюминия. Установка для проведения способа включает реактор с мешалкой, отверстия для ввода воды и порошкообразного алюминия, отстойник, конденсатор для приема парогаза. Проведение такого способа в промышленном масштабе не технологично из-за его периодического режима; способ не позволяет варьировать форму получаемого продукта - гидроксида алюминия.
Известен [патент РФ 2165388, кл. С 01 В 3/10, ЗАО "Фирма РИКОМ", оп. 04.07.2000 г.] способ получения водорода, который состоит в том, что металлсодержащие вещества взаимодействуют с водой. Металлосодержащие вещества перед подачей в реактор покрывают водорастворимой полимерной пленкой. Взаимодействие проводят в водной среде, параметры которой соответствуют параметрам ее сверхкритического состояния, что дает возможность проведения процесса послойного горения металлосодержащих веществ с выделением водорода.
В качестве металлосодержащих веществ может использоваться порошкообразный алюминий, а в качестве водорастворимой полимерной пленки - раствор полиэтиленоксида в диоксане или метиловом спирте. Давление сверхкритического состояния водной среды составляет более 22,12 МПа, а температура - более 647,3 К (374oС). Способ позволяет получать водородную смесь состава: 96,1 об.% водорода, 3,9 об.% оксида углерода; и осуществлять регенерацию исходного сырья. Однако форма получаемого в результате проведения способа гидроксида алюминия не является бемитной.
Известен [патент США 5435986, кл. C 01 F 7/02, Industrial Technology Res. Institute, on. 25.07.1995 г.] усовершенствованный процесс получения высокочистого гидроксида алюминия [Al(OH)3•3Н2О] в форме гидраргиллита, который включает стадии: (а) введение твердого, не порошкообразного алюминия, лучше в виде слитков, в горячую воду около 70oС, с получением реакционной смеси; (b) перемешивание этой смеси около 20 минут; (с) введение твердого вещества, образующего щелочь - желательно гидроксида натрия, в смесь, и нагревание ее до температуры кипения; (d) снижение температуры до 75-80oС и перемешивание в течение 60 минут; (е) снижение температуры до комнатной; и (f) фильтрацию смеси, в результате получают гидроксид алюминия высокой чистоты. В этом способе используется дополнительное вещество - гидроксид натрия, что способствует образованию примесей.
Задачей, стоящей перед разработчиками данного изобретения, было создание непрерывного способа, позволяющего одновременно получать водород и гидроксиды (оксиды) алюминия, с возможностью варьирования формы (структуры) указанных соединений, при этом оба продукта - водород и гидроксиды (оксиды) алюминия должны обладать высокой чистотой. Была поставлена также задача создания установки, позволяющей осуществить указанный способ.
Задача решается способом получения гидроксидов или оксидов алюминия и водорода из алюминия и воды, заключающимся в том, что из мелкодисперсного алюминия размером частиц не более 20 мкм готовят суспензию порошкообразного алюминия в воде при соотношении Al:Н2O=1:4-16 вес.ч., которую непрерывно подают в реактор высокого давления, где суспензию порошкообразного алюминия распыляют при диаметре капель не более 100 мкм в воду при температуре 220-900oС и давлении 20-40 МПа при соотношении суспензии к воде 1:50-100 вес.ч., после выхода из реактора высокого давления парогаз подают в конденсатор, и из него выводят водород, а гидроксид алюминия или оксид алюминия - в отстойник для суспензии.
При этом гидроксид алюминия бемитной формы получают при температуре 250-350oС, давлении 32-35 МПа при соотношении Аl:Н2O=1:8-12 вес.ч.;
гидроксид алюминия байеритной формы получают при температуре 220-250oС, давлении 30-33 МПа при соотношении Аl:Н2O=1:12-14 вес.ч.;
α-оксид алюминия получают при температуре 750-900oС, давлении 30-35 МПа при соотношении Аl:H2О=1:4-5 вес.ч.;
θ - оксид алюминия получают при температуре 600-900oС, давлении 30-35 МПа при соотношении Аl:Н2O=1:5-6 вес.ч.;
γ - оксид алюминия получают при температуре 450-750oС, давлении 34-35 МПа при соотношении Аl:Н2O=1:5-8 вес.ч.;
Способ, проводимый как описано выше, при этом получают смесь гидроксидов алюминия бемитной и байеритной формы при температуре 230-280oС, давлении 30-33 МПа, при соотношении Аl:Н2O=1:12 вес.ч..
гидроксид алюминия байеритной формы получают при температуре 220-250oС, давлении 30-33 МПа при соотношении Аl:Н2O=1:12-14 вес.ч.;
α-оксид алюминия получают при температуре 750-900oС, давлении 30-35 МПа при соотношении Аl:H2О=1:4-5 вес.ч.;
θ - оксид алюминия получают при температуре 600-900oС, давлении 30-35 МПа при соотношении Аl:Н2O=1:5-6 вес.ч.;
γ - оксид алюминия получают при температуре 450-750oС, давлении 34-35 МПа при соотношении Аl:Н2O=1:5-8 вес.ч.;
Способ, проводимый как описано выше, при этом получают смесь гидроксидов алюминия бемитной и байеритной формы при температуре 230-280oС, давлении 30-33 МПа, при соотношении Аl:Н2O=1:12 вес.ч..
При получении водорода высокой чистоты используют дистиллированную воду.
Способ осуществляют в установке, включающей смеситель, реактор высокого давления, снабженный форсункой, обеспечивающей распыление суспензии порошкообразного алюминия в воде при диаметре капель не более 100 мкм, отстойник для суспензии, конденсатор.
Форма полученных продуктов и их характеристики подтверждены методами РФА, кондуктометрическим, газосорбционным методами и сканирующей электронной микроскопией (SEM).
Для осуществления описанного выше способа создана установка, включающая смеситель, реактор, отстойник для суспензии, конденсатор, При этом реактор представляет собой аппарат, работающий под высоким давлением, снабженный форсункой, обеспечивающей распыление суспензии порошкообразного алюминия в воде до диаметра капель не более 100 мкм.
Для реализации способа сначала готовят суспензию порошкообразного алюминия (размер частиц до 20 мкм, предпочтительно до 5 мкм) в воде при соотношении Al:Н2O=1:4-16 вес.ч.. Эту дисперсию подают в реактор, где распыляют в воде, находящейся под давлением 20-40 МПа при температуре 220-900oС. Необходимо обеспечить тонкое распыление суспензии - размер капель должен быть не более 100 мкм, при этом соотношение суспензии к воде 1:50-100 вес.ч., при непрерывном отводе водорода и гидроксида алюминия. При указанных температуре и давлении, но без распыления суспензии, или с распылением каплями большего размера невозможно решение поставленной задачи.
Предварительная подготовка суспензии перемешиванием в указанном интервале соотношения порошкообразного алюминия (предпочтительный размер частиц до 20 мкм) и воды (1:4-16) обеспечивает постоянство заданного состава суспензии в течение времени, достаточного для подачи исходной суспензии в реактор.
Для того, чтобы прошло взаимодействие порошкообразного металлического алюминия с водой, при указанных температуре и давлении необходимо обеспечить тонкое распыление суспензии (Al:H2O) - размер капель должен быть до 100 мкм, при этом соотношение суспензии к воде 1:50-100 вес.ч., с непрерывным отводом водорода и суспензии гидроксида алюминия.
Подача мелкодисперсной суспензии в определенном соотношении к горячей воде (1:50-100), находящейся в реакторе под давлением, способствует быстрому, практически мгновенному началу взаимодействия алюминия и воды:
2Al+4Н2O-2AlOOH+3Н2 (газ)+Q (ккал)
Образующиеся продукты непрерывно выводят из реактора. Водород в составе парогаза (около 25 мас. % водорода и около 75 мас.% воды) и гидроксиды (оксиды) алюминия в виде водной суспензии (25-35 мас.% гидроксидов (оксидов), отводятся из реактора на стадию разделения. Для проведения способа использовались порошки алюминия двух видов, с максимальным размером частиц до 50 мкм. Первый имел состав: фракция менее 5 мкм - 25%; фракция 5-10 мкм - 65%, 10-20 мкм - 10%. Второй порошок имел следующий дисперсный состав: фракция менее 5 мкм - 20%; фракция 5-10 мкм - 36%, 10-20 мкм - 35%; 20-30 мкм - 6%, 30-50 мкм - 3%. Опыты показали, что результаты не зависели от фракционного состава исходных порошков алюминия, если размер частиц не превышал указанного максимального значения. При необходимости получения продуктов высокой чистоты используется очищенная вода, например дистиллированная, однако способ позволяет использовать и обычную воду.
2Al+4Н2O-2AlOOH+3Н2 (газ)+Q (ккал)
Образующиеся продукты непрерывно выводят из реактора. Водород в составе парогаза (около 25 мас. % водорода и около 75 мас.% воды) и гидроксиды (оксиды) алюминия в виде водной суспензии (25-35 мас.% гидроксидов (оксидов), отводятся из реактора на стадию разделения. Для проведения способа использовались порошки алюминия двух видов, с максимальным размером частиц до 50 мкм. Первый имел состав: фракция менее 5 мкм - 25%; фракция 5-10 мкм - 65%, 10-20 мкм - 10%. Второй порошок имел следующий дисперсный состав: фракция менее 5 мкм - 20%; фракция 5-10 мкм - 36%, 10-20 мкм - 35%; 20-30 мкм - 6%, 30-50 мкм - 3%. Опыты показали, что результаты не зависели от фракционного состава исходных порошков алюминия, если размер частиц не превышал указанного максимального значения. При необходимости получения продуктов высокой чистоты используется очищенная вода, например дистиллированная, однако способ позволяет использовать и обычную воду.
Способ осуществляется на установке, включающей смеситель для приготовления исходной суспензии, реактор, снабженный форсункой, в которой имеется, по крайней мере, одно отверстие диаметром до 100 мкм, трубу для отвода парогаза и трубу для отвода готовой суспензии, циклон, конденсатор, фильтр-осушитель и накопитель. Способ проводят следующим образом.
В смесителе готовят суспензию в воде, подавая при перемешивании порошкообразный алюминий размером частиц до 20 мкм и воду в соотношении 1:4-16 вес. ч. при температуре окружающей среды. Эту суспензию под давлением от 20 МПа подают в верхнюю часть реактора через распылитель, например форсунку. В реактор, внутри которого вначале создается температура от 100 до 330oС, подается вода таким образом, чтобы обеспечить его заполнение не менее чем на 1/3. Распыляемая суспензия, содержащая частицы алюминия, при минимальном диаметре капель до 100 мкм, подается в зависимости от объема реактора (в опытах - 5 литров), при этом соблюдается соотношение исходной суспензии и воды в реакторе в интервале 1:50-100. Давление в реакторе в пределах 20-40 МПа и температура в пределах 220-900oС поддерживаются за счет непрерывного отвода парогаза и суспензии гидроксида алюминия. Количество выводимых продуктов - парогаза и суспензии бемита определяются количеством подаваемых исходных реагентов - воды и суспензии алюминия, и регулируются автоматически. После выхода из реактора парогаз поступает в теплообменник, где охлаждается, из него выводится водород и направляется в накопительную емкость, а основная часть воды конденсируется в сепараторе, и затем может подаваться на рецикл. Твердый влажный продукт поступает в циклон, откуда подается на окончательную сушку. Полученный гидроксид алюминия обладает высокой чистотой - содержание основного вещества не менее 99,9%. Второй продукт - водород, также характеризуется высокой чистотой, и может быть использован в процессах восстановления, или направлен для использования в замкнутом цикле для восстановления гидроксида водорода. Его чистота - не менее 99%. Тепловая энергия также утилизируется.
Выход из расчета на подаваемый порошкообразный алюминий составляет не менее 99,8%.
В таблице приведены конкретные параметры проведения способа.
Таким образом, отличительными признаками предлагаемого изобретения являются:
- совместное получение гидроксидов или оксидов алюминия заданной структуры, и водорода, при проведении способа в непрерывном режиме, с предварительной подготовкой суспензии порошкообразного алюминия в воде при соотношении Аl:Н2О, равном 1:4-16;
- подача суспензии на стадию взаимодействия с водой при температуре 220-900oС и давлении 20-40 МПа, при соотношении суспензии к воде 1:50-100 вес.ч.;
- распыление подаваемой в реактор суспензии с тонкостью распыла, обеспечивающей введение капель диаметром до 100 мкм;
Возможно использование как очищенной, например дистиллированной, так и обычной воды.
- совместное получение гидроксидов или оксидов алюминия заданной структуры, и водорода, при проведении способа в непрерывном режиме, с предварительной подготовкой суспензии порошкообразного алюминия в воде при соотношении Аl:Н2О, равном 1:4-16;
- подача суспензии на стадию взаимодействия с водой при температуре 220-900oС и давлении 20-40 МПа, при соотношении суспензии к воде 1:50-100 вес.ч.;
- распыление подаваемой в реактор суспензии с тонкостью распыла, обеспечивающей введение капель диаметром до 100 мкм;
Возможно использование как очищенной, например дистиллированной, так и обычной воды.
Полученный способ характеризуется безотходностью, технологичностью и высокой производительностью, а также экологической безопасностью.
Claims (9)
1. Способ получения гидроксидов или оксидов алюминия и водорода из алюминия и воды, отличающийся тем, что из мелкодисперсного алюминия размером частиц не более 20 мкм готовят суспензию порошкообразного алюминия в воде при соотношении А1:Н2О=1:4-16 вес.ч., которую непрерывно подают в реактор высокого давления, где суспензию порошкообразного алюминия распыляют при диаметре капель не более 100 мкм в воду при температуре 220-900°С и давлении 20-40 МПа, при соотношении суспензии к воде 1:50-100 вес.ч., после выхода из реактора высокого давления парогаз подают в конденсатор и из него выводят водород, а гидроксид алюминия или оксид алюминия - в отстойник для суспензии.
2. Способ по п.1, отличающийся тем, что гидроксид алюминия бемитной формы получают при температуре 250-350°С, давлении 32-35 МПа при соотношении А1:Н2О=1:8-12 вес.ч.
3. Способ по п.1, отличающийся тем, что гидроксид алюминия байеритной формы получают при температуре 220-250°С, давлении 30-33 МПа при соотношении А1:Н2О=1:12-14 вес.ч.
4. Способ по п.1, отличающийся тем, что α-оксид алюминия получают при температуре 750-900°С, давлении 30-35 МПа при соотношении А1:Н2О=1:4-5 вес.ч.
5. Способ по п.1, отличающийся тем, что θ-оксид алюминия получают при температуре 600-900°С, давлении 30-35 МПа при соотношении А1:Н2О=1:5-6 вес.ч.
6. Способ по п.1, отличающийся тем, что γ-оксид алюминия получают при температуре 450-750°С, давлении 34-35 МПа при соотношении А1:Н2О=1:5-8 вес.ч.
7. Способ по п.1, отличающийся тем, что получают смесь гидроксидов алюминия бемитной и байеритной формы при температуре 230-280°С, давлении 30-33 МПа и соотношении А1:Н2О=1:12 вес.ч.
8. Способ по п.1, отличающийся тем, что при получении водорода высокой чистоты используют дистиллированную воду.
9. Способ по п.1, отличающийся тем, что его осуществляют в установке, включающей смеситель, реактор высокого давления, снабженный форсункой, обеспечивающей распыление суспензии порошкообразного алюминия в воде при диаметре капель не более 100 мкм, отстойник для суспензии, конденсатор.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003103784/15A RU2223221C1 (ru) | 2003-02-11 | 2003-02-11 | Способ получения гидроксидов или оксидов алюминия и водорода |
AU2003277764A AU2003277764A1 (en) | 2003-02-11 | 2003-10-21 | Method for producing hydroxides or aluminium oxides and hydrogen and device for carrying out said method |
PCT/RU2003/000445 WO2004071950A1 (fr) | 2003-02-11 | 2003-10-21 | Procede de fabrication d'oxydes ou d'hydroxydes d'aluminium et d'hydrogene et dispositif pour mettre en oeuvre ce procede |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003103784/15A RU2223221C1 (ru) | 2003-02-11 | 2003-02-11 | Способ получения гидроксидов или оксидов алюминия и водорода |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2223221C1 true RU2223221C1 (ru) | 2004-02-10 |
Family
ID=32173541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2003103784/15A RU2223221C1 (ru) | 2003-02-11 | 2003-02-11 | Способ получения гидроксидов или оксидов алюминия и водорода |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2003277764A1 (ru) |
RU (1) | RU2223221C1 (ru) |
WO (1) | WO2004071950A1 (ru) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2278077C1 (ru) * | 2005-07-11 | 2006-06-20 | Александр Валентинович Берш | Способ получения гидроксидов или оксидов алюминия и водорода и устройство для его осуществления |
RU2350563C2 (ru) * | 2007-05-03 | 2009-03-27 | Игорь Николаевич Могилевский | Установка для получения гидроокиси алюминия и водорода |
RU2386587C2 (ru) * | 2005-07-12 | 2010-04-20 | Эвоник Дегусса Гмбх | Дисперсия оксида алюминия |
RU2519450C1 (ru) * | 2012-12-11 | 2014-06-10 | Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) | Способ получения корунда высокой чистоты |
RU2524391C1 (ru) * | 2012-12-27 | 2014-07-27 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" | Способ получения водорода |
RU2545290C1 (ru) * | 2013-11-15 | 2015-03-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") | Способ получения водорода за счет гидролиза твердого реагента-алюминия в реакционном сосуде |
RU2603669C2 (ru) * | 2015-04-30 | 2016-11-27 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный машиностроительный университет (МАМИ)" (Университет машиностроения) | Установка для получения водорода и гидрооксидов алюминия |
RU2603802C2 (ru) * | 2015-04-30 | 2016-11-27 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный машиностроительный университет (МАМИ)" (Университет машиностроения) | Установка для получения водорода и гидрооксидов алюминия |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2489969B (en) * | 2011-04-13 | 2018-07-18 | Collins Mark | An apparatus for generating heat by the reaction of an aqueous slurry or suspension of a metal powder with a solution of an alkali metal hydroxide |
TWI438145B (zh) * | 2011-12-08 | 2014-05-21 | 中原大學 | 連續式產氫裝置及其方法 |
CN103787395B (zh) * | 2014-01-21 | 2015-09-02 | 江苏大学 | 一种全流程调控制备微米级超高纯氧化铝粉体的方法 |
EP3931145A4 (en) * | 2019-03-29 | 2022-12-21 | The Royal Institution for the Advancement of Learning / McGill University | PROCESS FOR PRODUCTION OF HYDROGEN BY METAL-WATER REACTION |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2758011A (en) * | 1952-10-17 | 1956-08-07 | Universal Oil Prod Co | Production of alumina |
US2958583A (en) * | 1958-10-01 | 1960-11-01 | Universal Oil Prod Co | Production of alumina |
US3348919A (en) * | 1964-01-17 | 1967-10-24 | Colgate Palmolive Co | Process for producing hydrogen from finely divided metals and water at ambient temperatures |
GB1378820A (en) * | 1971-04-16 | 1974-12-27 | Suzuki M | Hydrogen gas manufacturing process |
EP0055330A1 (en) * | 1980-12-31 | 1982-07-07 | International Business Machines Corporation | A process for generating energy in the form of heat and hydrogen |
FR2658181A1 (fr) * | 1990-02-15 | 1991-08-16 | Federation Nationale Batiment | Fluide reactif regenerable de stockage d'energie, et installation de production et d'utilisation d'hydrogene mettant en óoeuvre un tel fluide. |
RU2032652C1 (ru) * | 1992-05-27 | 1995-04-10 | Акционерное общество "Органический синтез" | Способ получения фракции ароматических углеводородов c6-c9 |
US5435986A (en) * | 1994-08-30 | 1995-07-25 | Industrial Technology Research Institute | Method for preparing high purity aluminum hydroxide |
EP1262457A2 (en) * | 2001-05-21 | 2002-12-04 | Sumitomo Chemical Company, Limited | Alpha-alumina fine powder and a method of producing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1231219B (de) * | 1959-08-28 | 1966-12-29 | Universal Oil Prod Co | Kontinuierliches Kreislaufverfahren zur Herstellung von Wasserstoff |
SU1623946A1 (ru) * | 1986-05-13 | 1991-01-30 | С А Юрченко А С Можин и Р Ф.Прозпрова | Установка дл получени водорода |
US6506360B1 (en) * | 1999-07-28 | 2003-01-14 | Erling Reidar Andersen | Method for producing hydrogen |
-
2003
- 2003-02-11 RU RU2003103784/15A patent/RU2223221C1/ru not_active IP Right Cessation
- 2003-10-21 WO PCT/RU2003/000445 patent/WO2004071950A1/ru not_active Application Discontinuation
- 2003-10-21 AU AU2003277764A patent/AU2003277764A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2758011A (en) * | 1952-10-17 | 1956-08-07 | Universal Oil Prod Co | Production of alumina |
US2958583A (en) * | 1958-10-01 | 1960-11-01 | Universal Oil Prod Co | Production of alumina |
US3348919A (en) * | 1964-01-17 | 1967-10-24 | Colgate Palmolive Co | Process for producing hydrogen from finely divided metals and water at ambient temperatures |
GB1378820A (en) * | 1971-04-16 | 1974-12-27 | Suzuki M | Hydrogen gas manufacturing process |
EP0055330A1 (en) * | 1980-12-31 | 1982-07-07 | International Business Machines Corporation | A process for generating energy in the form of heat and hydrogen |
FR2658181A1 (fr) * | 1990-02-15 | 1991-08-16 | Federation Nationale Batiment | Fluide reactif regenerable de stockage d'energie, et installation de production et d'utilisation d'hydrogene mettant en óoeuvre un tel fluide. |
RU2032652C1 (ru) * | 1992-05-27 | 1995-04-10 | Акционерное общество "Органический синтез" | Способ получения фракции ароматических углеводородов c6-c9 |
US5435986A (en) * | 1994-08-30 | 1995-07-25 | Industrial Technology Research Institute | Method for preparing high purity aluminum hydroxide |
EP1262457A2 (en) * | 2001-05-21 | 2002-12-04 | Sumitomo Chemical Company, Limited | Alpha-alumina fine powder and a method of producing the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2278077C1 (ru) * | 2005-07-11 | 2006-06-20 | Александр Валентинович Берш | Способ получения гидроксидов или оксидов алюминия и водорода и устройство для его осуществления |
WO2007008115A1 (fr) * | 2005-07-11 | 2007-01-18 | Aleksandr Valentinovich Bersh | Procede et dispositif de fabrication d'hydroxydes ou d'oxydes d'aluminium et d'hydrogene |
RU2386587C2 (ru) * | 2005-07-12 | 2010-04-20 | Эвоник Дегусса Гмбх | Дисперсия оксида алюминия |
RU2350563C2 (ru) * | 2007-05-03 | 2009-03-27 | Игорь Николаевич Могилевский | Установка для получения гидроокиси алюминия и водорода |
RU2519450C1 (ru) * | 2012-12-11 | 2014-06-10 | Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) | Способ получения корунда высокой чистоты |
WO2014092599A1 (ru) * | 2012-12-11 | 2014-06-19 | Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) | Способ получения корунда высокой чистоты |
RU2524391C1 (ru) * | 2012-12-27 | 2014-07-27 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" | Способ получения водорода |
RU2545290C1 (ru) * | 2013-11-15 | 2015-03-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") | Способ получения водорода за счет гидролиза твердого реагента-алюминия в реакционном сосуде |
RU2603669C2 (ru) * | 2015-04-30 | 2016-11-27 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный машиностроительный университет (МАМИ)" (Университет машиностроения) | Установка для получения водорода и гидрооксидов алюминия |
RU2603802C2 (ru) * | 2015-04-30 | 2016-11-27 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный машиностроительный университет (МАМИ)" (Университет машиностроения) | Установка для получения водорода и гидрооксидов алюминия |
Also Published As
Publication number | Publication date |
---|---|
WO2004071950A1 (fr) | 2004-08-26 |
AU2003277764A1 (en) | 2004-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2223221C1 (ru) | Способ получения гидроксидов или оксидов алюминия и водорода | |
JP7141627B2 (ja) | プロピレンと過酸化水素との気相エポキシ化によるプロピレンオキシド合成の流動化反応方法 | |
CA1237870A (en) | Spray-dried inorganic oxides from non-aqueous gels or solutions | |
CA1187861A (fr) | Procede de fabrication de billes d'alumine mises en forme par coagulation en gouttes | |
US4713233A (en) | Spray-dried inorganic oxides from non-aqueous gels or solutions | |
CA1298955C (en) | Continuous process for production of fine particulate ceramics | |
CA2744601C (en) | Method for continuously preparing metal oxides catalyst and apparatus thereof | |
RU2078043C1 (ru) | ЧАСТИЧНО КРИСТАЛЛИЧЕСКИЙ ПЕРЕХОДНОЙ ОКСИД АЛЮМИНИЯ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ФОРМОВАННОГО γ -ОКСИДА АЛЮМИНИЯ ИЗ НЕГО | |
US10875014B2 (en) | Surface-modified calcium carbonate as carrier for transition metal-based catalysts | |
CN107117635A (zh) | 一种球形氧化铝粉体的制备方法 | |
KR20060101315A (ko) | 미세 α-알루미나 입자의 제조 방법 | |
JP7671750B2 (ja) | 担体及びft合成触媒、並びにその調製方法、及びその応用 | |
CN107640780B (zh) | 一种高纯度氢氧化铝的制备方法 | |
CN102491396B (zh) | 一种纳米碳酸钙的制备方法 | |
CN109305882A (zh) | 一种葡萄糖连续加氢制备山梨醇的方法及装置 | |
US7448561B2 (en) | Process for conversion and size reduction of solid particles | |
EP2630079B1 (en) | Continuous process for nanomaterial synthesis from simultaneous emulsification and detonation of an emulsion | |
FR2527196A1 (fr) | Procede de production d'une poudre d'aluminosilicate | |
RU2350563C2 (ru) | Установка для получения гидроокиси алюминия и водорода | |
JP6574059B2 (ja) | 芳香族炭化水素含有化合物の製造方法 | |
CN112744851B (zh) | 树莓型氧化物微球及其制备方法和应用 | |
JP2002248333A (ja) | 金属または金属化合物微粒子の製造装置およびその方法 | |
CN114314620B (zh) | 高纯大孔拟薄水铝石的制备方法及制得的拟薄水铝石 | |
CN116368123A (zh) | 使用经表面反应碳酸钙催化剂进行缩合反应的方法 | |
Kaiser et al. | Phase transformations and control of habit in lyothermal synthesis of α-Al2O3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC4A | Invention patent assignment |
Effective date: 20050916 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20100212 |