RU2221739C1 - Способ получения фтора - Google Patents

Способ получения фтора Download PDF

Info

Publication number
RU2221739C1
RU2221739C1 RU2002134329/15A RU2002134329A RU2221739C1 RU 2221739 C1 RU2221739 C1 RU 2221739C1 RU 2002134329/15 A RU2002134329/15 A RU 2002134329/15A RU 2002134329 A RU2002134329 A RU 2002134329A RU 2221739 C1 RU2221739 C1 RU 2221739C1
Authority
RU
Russia
Prior art keywords
fluorine
salts
heating
temperature
nif
Prior art date
Application number
RU2002134329/15A
Other languages
English (en)
Other versions
RU2002134329A (ru
Inventor
В.А. Львов
В.С. Меньшов
Р.Л. Рабинович
М.В. Сапожников
А.С. Кузнецов
Ю.А. Петров
Original Assignee
Закрытое акционерное общество "АСТОР ЭЛЕКТРОНИКС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2002134329/15A priority Critical patent/RU2221739C1/ru
Application filed by Закрытое акционерное общество "АСТОР ЭЛЕКТРОНИКС" filed Critical Закрытое акционерное общество "АСТОР ЭЛЕКТРОНИКС"
Priority to CNA038256681A priority patent/CN1745033A/zh
Priority to MXPA05006789A priority patent/MXPA05006789A/es
Priority to KR1020057011581A priority patent/KR20050096098A/ko
Priority to CA002511233A priority patent/CA2511233A1/en
Priority to EP03813731A priority patent/EP1580163A1/en
Priority to AU2003254983A priority patent/AU2003254983A1/en
Priority to PCT/RU2003/000359 priority patent/WO2004056700A1/ru
Application granted granted Critical
Publication of RU2221739C1 publication Critical patent/RU2221739C1/ru
Publication of RU2002134329A publication Critical patent/RU2002134329A/ru
Priority to US11/152,397 priority patent/US20060099137A1/en
Priority to ZA200504995A priority patent/ZA200504995B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/20Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00203Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00407Controlling the temperature using electric heating or cooling elements outside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00672Particle size selection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Ceramic Products (AREA)

Abstract

Изобретение относится к области получения фтора, а именно к способам получения фтора из твердофазных фторидов металлов или их комплексных солей путем их термического разложения. Способ получения фтора проводят, нагревая до температуры 150-400oС твердые или комплексные фториды металлов в высокой степени окисления, которые используют в гранулированном или таблетированном виде, размер гранул (таблеток) составляет от 1,0 до 3,0 мм. При этом обеспечивают их прогрев с температурным перепадом в слое, не превышающем 15oС. В качестве исходных соединений используют, например, соли марганца с высокой степенью содержания фтора - тетрафторид марганца MnF4, и другие соли, например К3NiF7, K2NiF6, K2CuF6, и аналогичные им соединения. В результате применения способа достигается выход фтора не менее 99,0%. Способ безопасен и прост в эксплуатации. 1 ил., 1 табл.

Description

Изобретение относится к области получения фтора, а именно к способам получения фтора из твердофазных фторидов металлов или их комплексных солей путем их термического разложения.
Газообразный фтор используется во многих областях, таких как получение фторсоединений прямым фторированием, при сварке металлов, для образования защитных пленок на металлах или при обработке поверхностей металлов и сплавов и т.п., а также в качестве травильного реагента в микроэлектронике.
Способ, описанный в данном изобретении, может использоваться во многих, в том числе в описанных выше областях, где требуется применение чистого фтора.
Обычно фтор и другие фторсодержащие газообразные соединения, такие как NF3 или фтор, хранят в газообразном виде в цилиндрах под высоким давлением или в виде криогенных жидкостей при низких температурах.
Хранение фтора или фторсодержащих газообразных соединений в газообразном виде требует объемов в десятки раз больших, чем хранение жидкостей.
Очень удобно иметь возможность простого и безопасного получения фтора в нужном объеме и в нужном месте из соединений, транспортировка которых не представляет особых сложностей. Аналогично и хранение фтора или фторсоединений при температуре окружающей среды и давлении, внедренными в твердую матрицу или связанными в иную твердую форму, имеет преимущество по безопасности и эффективности хранения.
Известен [4711680, НКИ США 149/109.4, oпублик. 8.12. 1987 г.] генератор чистого фтора, в котором фтор получают из гранулированного твердого состава, представляющего собой термодинамически нестабильный фторид переходного металла и стабильный анион. Фтор образуется в результате реакции замещения сильной кислотой Льюиса, сопровождаемой быстрым необратимым разложением нестабильного фторида переходного металла до стабильного низшего фторида и элементного фтора при высоком давлении. Генератор фтора с твердыми гранулами включает стабильную соль, содержащую анион, относящийся к происходящий из термодинамически нестабильного фторида переходного металла в высокой степени окисления, и кислоту Льюиса, которая сильнее, чем этот фторид переходного металла. Эта кислота является твердым веществом при температуре окружающей среды, однако плавится или сублимируется при повышенной температуре. Катион указанной стабильной соли содержит анион, происходит из термодинамически нестабильного фторида переходного металла в высокой степени окисления, выбранного из группы, состоящей из щелочных или щелочно-земельных металлов. Взаимодействие проходит следующим образом:
А2MF6+2Y-->2AYF+[MF4]
Поскольку свободный фторид металла MF4 термодинамически нестабилен, он спонтанно разлагается до MF2 и F2 по необратимой реакции, которая позволяет генерировать фтор под высоким давлением без побочных реакций:
[MF4]-->MF2+F2
В качестве соединений A2MF6 следующие составы: K2NiF6, K2CuF6, Cs2CuF6. В способе используются фториды щелочных металлов, например никеля, адсорбирующие фтор с образованием комплексных солей никеля и щелочных металлов - Cs2MnF6, K2NiF6; а в качестве соединения Y используют BiF5, ТiF4 и т.п.
Наиболее близким решением является способ получения и хранения чистого фтора [патент США 3989808, НКИ США 423/503; 423/500; 423/504, МКИ С 01 В 007/20, oпублик. 2.11. 1976]. В способе используются фториды щелочных металлов и никеля, адсорбирующие фтор с образованием комплексных солей никеля. После заполнения емкости генератора твердым веществом газообразные примеси откачивают. Затем нагревают комплексное соединение фторида никеля и при этом выделяется газообразный фтор высокой степени чистоты.
Однако способ не позволяет получать фтор с постоянной скоростью выделения газа.
Задачей, стоящей перед разработчиками изобретения, было создание способа получения газообразного фтора с полным извлечением из фторидов металлов в высокой степени окисления, с возможностью постоянного регулируемого выделяющегося объема газа. Способ должен быть простым, безопасным в эксплуатации. Степень извлечения фтора должна составлять не менее 99%.
Сущность изобретения состоит в том, что способ получения фтора проводят, нагревая до температуры 150-350oС твердые бинарные или комплексные фториды металлов в высокой степени окисления, которые используют в гранулированном или таблетированном виде, размер гранул (таблеток) составляет от 1,0 до 3,0 мм. При этом обеспечивают их прогрев с температурным перепадом в слое, не превышающем 15oС, при температуре ниже температуры плавления исходных веществ.
В качестве исходных соединений используют, например, соли марганца с высокой степенью содержания фтора - гексафторид калия KF6, тетрафторид марганца MnF4, и другие соли, например K3NiF7, K2NiF6, K2CuF6, и аналогичные им соединения. Размер гранул подбирают таким образом, чтобы обеспечивать наличие некоторого свободного пространства для оптимального прогрева и отвода выделяющегося газообразного фтора. Установлено, что размер гранул должен быть в пределах 1,0-3,0 мм, и этого достигают, просеивая исходные соединения на ситах с определенным размером отверстий. Ограничения температурного перепада в слое исходных веществ в пределах не более 15oС необходимы для того, чтобы обеспечить равномерный прогрев и равномерное регулируемое выделение фтора, при этом чем меньше этот интервал, тем благоприятнее условия получения газа. Обычными способами практически невозможно осуществить мгновенный нагрев слоя без различия температуры в разных его точках. Достижение минимального различия возможно как снижением толщины слоя, так и выбором способа подачи тепла.
Реакторную емкость, представляющую собой изолированный объем (цилиндрическую емкость), обеспеченный возможностью равномерного прогрева и средством для отвода образующегося газообразного фтора с регулятором температуры, заполняют гранулированным веществом и начинают нагрев до температуры ниже температуры плавления исходного вещества, осуществляя контроль с помощью термопар. При нагреве происходит выделение чистого фтора, который выводится из генерирующего устройства и направляется на использование. Реакторная емкость и детали, контактирующие с газообразным фтором, выполнены из материала, стойкого к воздействию фтора при данных условиях, например из никеля или специальных сплавов.
Общая схема аппарата для проведения способа представлена на чертеже. В одном из его исполнений он имеет параметры: высота h=500 мм, внутренний диаметр D1= 90 мм; диаметр нагревательного устройства D2=20 мм; ширина щели, которая в данном случае равна толщине слоя S=35 мм.
Аппарат снабжен электронагревателем 2 (наружный и внутренний), устройствами для измерения температуры (T1 и Т2) и давления (Р); фтор выводится по трубе, обозначенной на схеме как F2.
ПРИМЕРЫ ПРОВЕДЕНИЯ СПОСОБА
Пример 1. В кольцевое пространство аппарата, представленного на чертеже, загружают 3600 г (G1) соли K2NiF6 в виде гранул размером 3,0 мм (которые предварительно выделяют фракционированием на ситах).
Устройство закрывают, и содержимое подвергают вакуумированию до остаточного давления 0,1 мм рт.ст., после чего с помощью нагревателей поз. 2 нагревают ниже температуры плавления соли, а именно до температуры T1, равной 400oС. При достижении давления фтора на измерителе давления Р, равном 0,1 МПа, начинают отбор газообразного фтора. При этом наблюдают за температурой слоя, которую измеряют как Т2 и которая отличается от T1 не более чем на 15oС, т.е.
Т2≤T1-15oC.
Процесс считается завершенным, когда давление Р=0,1 МПа ниже заданной величины на 25%. Обогрев отключают, устройство охлаждают, выгружают отработанный материал и взвешивают его. Вес отработанного материала составляет (G2) 3160 г. Массу полученного фтора определяют по разнице масс:
GF=(МF2 GT1): MK2NiF6=545 г
Пример 2. В кольцевое пространство аппарата, представленного на чертеже, загружают 3770 г (G1) соли K2NiF6 в виде гранул размером 1,0 мм (которые предварительно выделяют фракционированием на ситах). Устройство закрывают и подвергают вакуумированию до остаточного давления 0,1 мм рт.ст., после чего нагревают с помощью нагревателей поз. 2 до температуры T1, равной 290oС. При достижении давления фтора на измерителе давления Р, равном 0,005 МПа, начинают отбор газообразного фтора. При этом наблюдают за температурой слоя, которую измеряют как Т2 и которая составляет 3oС, т.е. Т2=T1-3oС. После достижения снижения давления до 0,005 МПа нагрев отключают, аппарат охлаждают и выгруженный материал взвешивают. Согласно расчетам его вес составил 567 г, т.е. степень извлечения фтора составила 99,1%.
Примеры 3-7 проводят в том же аппарате при том же порядке проведения, используя в качестве исходных следующие соединения разной дисперсности. Результаты представлены в таблице.
Таким образом, отличительными признаками данного изобретения являются:
- меньший интервал температуры проведения способа;
- использование исходных веществ с определенным размером гранул, что позволяет максимально использовать поверхность веществ, выделяющих целевой продукт;
- получение фтора при постоянном давлении;
- поддержание определенного температурного перепада в слое, что позволяет избежать пристеночного перегрева продукта и вследствие этого - его спекания, что привело бы к снижению выхода.

Claims (1)

  1. Способ получения фтора из фторидов металлов в высокой степени окисления, включающий нагрев до температуры ниже температуры плавления, отличающийся тем, что нагревают гранулированные или таблетированные фториды переходных металлов или их комплексных соединений до 150-400°С, причем размер гранул составляет 1,0-3,0 мм, и поддерживают перепад температуры в слое исходных веществ не более 15°С.
RU2002134329/15A 2002-12-20 2002-12-20 Способ получения фтора RU2221739C1 (ru)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2002134329/15A RU2221739C1 (ru) 2002-12-20 2002-12-20 Способ получения фтора
MXPA05006789A MXPA05006789A (es) 2002-12-20 2003-08-08 Metodo para la produccion de fluor.
KR1020057011581A KR20050096098A (ko) 2002-12-20 2003-08-08 불소 제조 방법
CA002511233A CA2511233A1 (en) 2002-12-20 2003-08-08 Fluorine production method
CNA038256681A CN1745033A (zh) 2002-12-20 2003-08-08 氟的生产方法
EP03813731A EP1580163A1 (en) 2002-12-20 2003-08-08 Fluorine production method
AU2003254983A AU2003254983A1 (en) 2002-12-20 2003-08-08 Fluorine production method
PCT/RU2003/000359 WO2004056700A1 (fr) 2002-12-20 2003-08-08 Procede de production de fluor
US11/152,397 US20060099137A1 (en) 2002-12-20 2005-06-13 Fluorine production systems and methods
ZA200504995A ZA200504995B (en) 2002-12-20 2005-06-20 Fluorine production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002134329/15A RU2221739C1 (ru) 2002-12-20 2002-12-20 Способ получения фтора

Publications (2)

Publication Number Publication Date
RU2221739C1 true RU2221739C1 (ru) 2004-01-20
RU2002134329A RU2002134329A (ru) 2004-06-27

Family

ID=32091865

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002134329/15A RU2221739C1 (ru) 2002-12-20 2002-12-20 Способ получения фтора

Country Status (10)

Country Link
US (1) US20060099137A1 (ru)
EP (1) EP1580163A1 (ru)
KR (1) KR20050096098A (ru)
CN (1) CN1745033A (ru)
AU (1) AU2003254983A1 (ru)
CA (1) CA2511233A1 (ru)
MX (1) MXPA05006789A (ru)
RU (1) RU2221739C1 (ru)
WO (1) WO2004056700A1 (ru)
ZA (1) ZA200504995B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004224A1 (en) * 2004-07-07 2006-01-12 Showa Denko K.K. Plasma treatment method and plasma etching method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1807354B1 (en) * 2004-09-10 2008-11-12 Showa Denko Kabushiki Kaisha Process for producing manganese fluoride
JP4828185B2 (ja) 2004-09-24 2011-11-30 昭和電工株式会社 フッ素ガスの製造方法
JP2007176768A (ja) * 2005-12-28 2007-07-12 Showa Denko Kk フッ素ガスの製造方法
JP2007176770A (ja) * 2005-12-28 2007-07-12 Showa Denko Kk 高純度フッ素ガスの製造方法および高純度フッ素ガス製造装置
TW200934729A (en) * 2007-12-11 2009-08-16 Solvay Fluor Gmbh Process for the purification of elemental fluorine
TW200932340A (en) * 2007-12-11 2009-08-01 Solvay Fluor Gmbh Method for recovery of fluorine
TW200932681A (en) * 2007-12-11 2009-08-01 Solvay Fluor Gmbh Method for preparing manganese tetrafluoride
CN113336194B (zh) * 2021-05-14 2022-07-05 浙江凯圣氟化学有限公司 一种络合剂分离无水氟化氢中金属离子的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT290463B (de) * 1968-02-01 1971-06-11 Elektrokemisk As Verfahren zur Rückgewinnung von Fluor aus kohlenstoffhaltigen Abfallstoffen
US3989808A (en) * 1975-07-28 1976-11-02 The United States Of America As Represented By The United States Energy Research And Development Administration Method of preparing pure fluorine gas
SU1432001A1 (ru) * 1986-11-12 1988-10-23 Московский химико-технологический институт им.Д.И.Менделеева Способ получени чистого газообразного фтора

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ИСИКАВА Н. и др. Фтор. Химия и применение. - М.: Мир, 1982, с. 37-39. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004224A1 (en) * 2004-07-07 2006-01-12 Showa Denko K.K. Plasma treatment method and plasma etching method

Also Published As

Publication number Publication date
US20060099137A1 (en) 2006-05-11
CA2511233A1 (en) 2004-07-08
WO2004056700A1 (fr) 2004-07-08
MXPA05006789A (es) 2006-03-09
AU2003254983A1 (en) 2004-07-14
CN1745033A (zh) 2006-03-08
ZA200504995B (en) 2006-05-31
KR20050096098A (ko) 2005-10-05
EP1580163A1 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
ZA200504995B (en) Fluorine production method
TWI389847B (zh) Production method of manganese fluoride
NL8320390A (nl) Werkwijze en inrichting voor het verkrijgen van silicium uit kiezelfluorwaterstofzuur.
JP5764832B2 (ja) 水素ガス発生方法及び装置
IL198900A (en) High purity powders produced by thermo-metallic redox of durable metal oxides and capacitors made therefrom
EP0543009A1 (en) Process for purifying nitrogen trifluoride gas
JP4842272B2 (ja) マンガン化合物のフッ素化方法
US4948571A (en) Process for purifying nitrogen trifluoride gas
RU2397143C2 (ru) Способ получения газообразного фтора
US20060096418A1 (en) Process for the production of niobium and/or tantalum powder with large surface area
JP4197783B2 (ja) フッ素化ハロゲン化合物の製造方法
CN113905979B (zh) 五氟化溴的制造方法
US9567232B1 (en) Method for preparing sodium chloro-aluminate
JP2010194495A (ja) オゾン混合物の排出方法および排出装置
JPH01234301A (ja) ガス状金属弗化物の製造方法
KR20050098832A (ko) 금속 불화물 재료의 제조방법
JPS582210A (ja) アルミニウムまたはマグネシウムのリン化物の製造方法
RU2384525C1 (ru) Способ получения фторзамещенных додекагидро-клозо-додекаборатов цезия
JPH01234304A (ja) ガス状金属弗化物の製造方法
JPH04275909A (ja) 三弗化窒素ガスの精製方法
RU2116246C1 (ru) Способ получения фторированных алмазов
RU2588219C2 (ru) Способ и устройство для обработки потока газа
Davis et al. The reactions of xenon and fluorine to form xenon fluorides
JPS59164613A (ja) 高純度微粉末シリコンの製造方法
JPH01234303A (ja) ガス状金属弗化物の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081221