RU2199423C2 - Проволочный электрод - Google Patents

Проволочный электрод Download PDF

Info

Publication number
RU2199423C2
RU2199423C2 RU2000107192/02A RU2000107192A RU2199423C2 RU 2199423 C2 RU2199423 C2 RU 2199423C2 RU 2000107192/02 A RU2000107192/02 A RU 2000107192/02A RU 2000107192 A RU2000107192 A RU 2000107192A RU 2199423 C2 RU2199423 C2 RU 2199423C2
Authority
RU
Russia
Prior art keywords
electrode
coating layer
layer
thickness
zinc
Prior art date
Application number
RU2000107192/02A
Other languages
English (en)
Other versions
RU2000107192A (ru
Inventor
Бернд БАРТЕЛЬ
Бернд НОЙЗЕР
Original Assignee
Беркенхофф Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Беркенхофф Гмбх filed Critical Беркенхофф Гмбх
Publication of RU2000107192A publication Critical patent/RU2000107192A/ru
Application granted granted Critical
Publication of RU2199423C2 publication Critical patent/RU2199423C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Magnetic Heads (AREA)
  • Electronic Switches (AREA)

Abstract

Изобретение относится к проволочным электродам для электроэрозионной резки. Проволочный электрод для электроэрозионной резки содержит электропроводный и воспринимающий растягивающие усилия сердечник и покрытие, изнашивающееся при электроэрозионной обработке и состоящее из внутреннего слоя из однородного сплава, предназначенного для скоростного резания, и наружного слоя, предназначенного для чистовой обработки резанием с содержанием цинка более 80%, при этом толщина наружного слоя покрытия составляет до одной пятой толщины слоя остальной части покрытия. Содержание цинка в наружном слое может составлять 100%, а содержание цинка во внутреннем слое от 37 до 60 мас.%. Раскрывается также способ изготовления электрода. Техническим результатом изобретения является возможность осуществления резания заготовок на высоких скоростях при получении поверхностей с тонкой чистовой обработкой. 2 с. и 15 з.п. ф-лы.

Description

Изобретение относится к проволочному электроду для электроэрозионной резки с электропроводным сердечником, по-существу воспринимающим растягивающие усилия, и с покрытием, содержащим по меньшей мере два слоя.
С помощью такого проволочного электрода заготовка может быть подвергнута электроэрозионной обработке или ее можно вырезать проволочным электродом такого типа. При этом резка почти всегда производится за счет одного основного прохода (скоростной проход) и одного или нескольких дополнительных проходов режущего инструмента (чистовой проход). Задача скоростного прохода заключается в том, чтобы вырезать контур из всего материала заготовки. Этот этап из-за массы подлежащего электроэрозионной обработке материала представляет собой самый затратный, с точки зрения затрат рабочего времени, этап резки. Для того, чтобы максимально сократить время обработки заготовки процесс резки осуществляют с очень высокой энергией разряда. Для этой цели наиболее всего пригодны проволоки с слоем в виде оболочки, изготовленной из материала с высоким содержанием цинка (Zn), которые сами по себе расходуются в относительно малой степени при электроэрозионной обработке. Одновременно электродная проволока для электроэрозионной обработки должна протягиваться через щель прохождения разряда с достаточно высокой скоростью, при которой слой покрытия не будет полностью расходоваться в щели прохождения разряда.
Тем самым достигается скоростное резание, однако резание в таком режиме имеет свой недостаток, заключающийся в том, что поверхности разрезанных или электроэрозионно обработанных заготовок не имеют достаточно высокого качества, необходимого для многих дальнейших применений. Кроме этого, разрядные процессы, обусловленные большой энергией, оставляют неровности на поверхностях резки. А так же за счет расхода электрода щель прохождения разряда получает коническую форму. Все это требует одного или нескольких дополнительных проходов обрабатывающего инструмента.
Во время дополнительных или чистовых проходов поверхность заготовки дополнительно подвергается обработке. При этом поверхность сглаживается, а погрешности необходимой формы контура удаляются. Все это достигается с минимальной энергией разряда, за счет чего достигается необходимое качество заготовки (параллельность, качество обработки поверхности, выдерживание заданных размеров). При этом число дополнительных проходов зависит прежде всего от того, к какому качеству обработки поверхности заготовки стремятся.
Разряды для электроэрозионной обработки заготовки возникают между проволокой электроэрозионного электрода и заготовкой в деионной камере. Так как в этой деионной камере между проволочным электродом и заготовкой может вообще возникнуть пробой, то для этого должен быть сконструирован проводящий канал, чтобы запустить собственный импульс. В качестве конструкционного материала особенно предпочтительным оказался цинк. Он обеспечивает быстрое и надежное образование первых токопроводящих мостиков (перемычек) при очень незначительных энергиях разряда и соответственно электрических токах. А это как раз имеет большое значение при чистовых проходах. Благодаря этому покрытые цинком проволочные электроды нашли широкое применение. Материалом изготовления сердечника такого рода проволочных электродов могут быть традиционные материалы, предпочтительно это медь, латунь, сталь или биметаллические проволоки (сталь-медь). С этими покрытыми цинком электродами у прежних электроэрозионных (вырезных) станков (WEDM) с маломощными генераторами стало возможным увеличение производительности резания по сравнению с электродами без покрытия. Следующее преимущество заключается, в частности, в том, что уже при очень незначительных мощностях обеспечивается стабильность электроэрозионного процесса за счет очень легкой испаряемости цинка. А это, как уже было изложено выше, является предпосылкой для электроэрозионной обработки поверхностей с высокой степенью точности.
Дальнейшее усовершенствование генераторов сегодня сделало возможным получение всегда высокоэнергетического искрового разряда (искры). Таким образом, преимущество, заключающееся в легкой испаряемости цинка, превратилось в недостаток, так как цинк в процессе резки очень быстро стирается, и тем самым как раз при скоростном резании его уже нет в наличии для осуществления процесса электроэрозии.
Увеличение толщины цинкового покрытия электродной проволоки для выравнивания этого эрозионного износа оказалось неэффективным.
Для устранения этого недостатка можно было создать покрытый латунью проволочный электрод. Для такого типа проволочных электродов с латунным покрытием в качестве покрытия сердечника проволоки служил латунный сплав с высоким содержанием цинка. Этим усовершенствованием цинковое покрытие с его очень низкой температурой испарения и недостатком вследствие большого эрозионного износа было заменено покрытием из сплава с высоким содержанием цинка. Преимуществом этой замены стало то, что наружный слой покрытия имел повышенное сопротивление эрозионному износу по сравнению с покрытием из чистого цинка. Кроме того, толщина слоя этого латунного покрытия с высоким содержанием цинка может быть существенно больше, чем у слоя из чистого цинка. Благодаря такого рода электродам стала также возможной эксплуатация новых электроэрозионных (вырезных) станков с мощными генераторами для скоростного резания.
Однако у этих электродов по сравнению с электродами с цинковым покрытием имеется недостаток, состоящий в том, что качество поверхности заготовки, обработанной электроэрозионным способом, не имеет такого же высокого качества как поверхность заготовки, обработанной электроэрозионным способом электродами с цинковым покрытием. Собственно говоря, при многократном дополнительном резании проволоками с дифундированными слоями покрытия не достигается такое качество обработки поверхности, которое получалось бы при обработке электродами с цинковым покрытием.
Поэтому в основу изобретения положена задача создать такой способ, а также проволочный электрод, которые позволили бы получать поверхности с тонкой чистовой обработкой на заготовках, т.е., с одной стороны, осуществлять чистовые проходы, а, с другой стороны, производить резание заготовки с высокой скоростью, другими словами по скоростному методу резания.
Поставленная задача решается признаками пунктов 1 или 13 формулы изобретения.
Заявляемый проволочный электрод, согласно изобретению, предназначен как для скоростного резания, так и для чистовой обработки при резании. При скоростном резании между заготовкой и проволочным электродом при искровом переходе течет ток высокого значения. При этом наружный слой покрытия изнашивается, так что этот слой оказывает только незначительное содействие скоростному проходу при резании. А вот стойкий внутренний слой принимает на себя основную нагрузку скоростного прохода резания. Если следует чистовой проход, то течет небольшой ток и расходуется только наружный слой, то есть слой с высоким содержанием цинка. Таким образом, проволочный электрод, согласно изобретению, является универсальным электродом, который пригоден как для скоростного прохода резания, так и для чистового прохода, и при обработке которым получают чисто обработанную поверхность заготовки. Таким образом, во время процесса обработки нет необходимости в смене электрода, т.к. одним и тем же электродом, изготовленным согласно изобретению, производятся как скоростные, так и чистовые проходы при обработке заготовки. Это, в свою очередь, дает экономию на времени простоя и переналадки, и нет необходимости каждый раз передвигать и снова юстировать заготовку.
Было бы предпочтительно, если бы наружный слой покрытия на 100% состоял бы из цинка (Zn).
Внутренний слой покрытия преимущественно содержал бы от 37 до 60 вес.% цинка.
Было бы предпочтительно, если бы цинк внутреннего слоя мог бы быть представлен в качестве латунного сплава, содержание цинка в котором находилось бы в пределах от 40 до 48 вес.%.
Разумно, чтобы внутренний слой имел бы преимущественно однородную β- и/или γ-структуру. В такой кубической объемно центрированной кристаллической решетке атомы цинка связаны таким образом, что они достаточно легко могут быть высвобождены из проволочного электрода для зажигания электрической дуги между заготовкой и проволочным электродом, но,с другой стороны, достаточно прочно удерживается в решетке, чтобы ограничить его расход.
Далее, также предпочтительно, если бы толщина внутреннего слоя покрытия составляла бы по меньшей мере 2,5 мкм (μm).
Наружный слой проволочного электрода имел бы преимущественно толщину от 0,5 до 5 мкм.
Согласно первому, особенно предпочтительному, примеру выполнения проволочного электрода его сердечник состоит из сплава CrZn 20 диаметром 0,25 мм, содержание цинка во внутреннем слое составляет 45 вес.% и толщина этого слоя 15-20 мкм, в то время как наружный слой имеет толщину 2-3 мкм. Проволочный электрод имеет предпочтительно предел прочности на растяжение по меньшей мере 800 Н/мм2.
Согласно второму, также предпочтительному, примеру выполнения проволочного электрода его сердечник состоит из сплава CuZn 35, внутренний слой покрытия имеет содержание цинка 45 вес.% и толщину 10-15 мкм, а наружный слой имеет толщину 1-2 мкм. Согласно этому второму примеру выполнения проволочный электрод имеет преимущественно предел прочности на растяжение по меньшей мере 900 Н/мм2. Проволочный электрод как в первом исполнении, так и во втором может иметь, согласно изобретению, удельную электрическую проводимость от 12-50 МОм/м.
Способ изготовления одного из вышеназванных проволочных электродов согласно изобретению может быть разделен согласно изобретению на следующие стадии:
на первой стадии на сердечник наносят внутренний слой покрытия. Это может быть (предпочтительно) осуществлено плакированием, гальванизацией, нанесением порошка или горячей металлизацией. Затем при необходимости в качестве второго этапа осуществляют диффузионный отжиг проволочного электрода. На следующем этапе после предыдущего этапа на внутренний слой покрытия наносят наружный слой. После чего осуществляют заключительное пластическое деформирование до заданного диаметра так, чтобы состав и структура покрытия оставались теми же самыми, причем нагрев проволочного электрода, следствием которого была бы значительная диффузия, не имеет место, т.е. отсутствует.
Диффузионный отжиг может предпочтительно проводиться непрерывным пропусканием проволочного электрода через печь кипящего слоя при нарастающей температуре от 350 до 600oС при времени отжига в течение около 2-х мин.
После диффузионного отжига проводят быстрое охлаждение с целью фиксации состояния, полученного при диффузионном отжиге.
Два предпочтительных примера выполнения описаны ниже более подробно.
Согласно изобретению в первом примере выполнения проволочный электрод имеет диаметр 0,25 мм, причем толщина наружного слоя покрытия составляет 2-3 мкм, а толщина внутреннего слоя составляет 15-20 мкм. Наружный слой представляет собой слой из чистого цинка, в то время как внутренний слой состоит из латуни с содержанием цинка 45 вес.%. Проволока этого электрода имеет предел прочности на растяжение примерно 800 Н/мм2, а ее удельная электрическая проводимость составляет 17 МОм/м.
Во втором примере выполнения проволочный электрод, согласно изобретению, имеет полный диаметр также 0,25 мм, причем толщина наружного слоя составляет 1-3 мкм, а толщина внутреннего слоя 10-15 мкм. Наружный слой также представляет собой слой чистого цинка, в то время как внутренний слой также, как и в первом примере выполнения, представляет собой латунный слой, содержание цинка в котором составляет 45 вес.%. Предел прочности на растяжение такой проволоки для проволочного электрода составляет примерно 900 Н/мм2, при этом удельная электрическая проводимость составляет около 15 Ом/м.

Claims (17)

1. Проволочный электрод для электроэрозионной резки, содержащий электропроводный и воспринимающий растягивающие усилия сердечник и покрытие, изнашивающееся при электроэрозионной обработке и состоящее из двух слоев, отличающийся тем, что внутренний слой покрытия, предназначенный для скоростного резания, выполнен из однородного сплава, а наружный слой этого покрытия имеет состав, предназначенный для чистовой обработки резанием, с содержанием цинка более 80%, при этом толщина наружного слоя покрытия составляет до одной пятой толщины слоя остальной части покрытия.
2. Электрод по п.1, отличающийся тем, что содержание цинка в наружном слое составляет 100%.
3. Электрод по п.1 или 2, отличающийся тем, что содержание цинка во внутреннем слое составляет от 37 до 60 мас.% цинка.
4. Электрод по любому из пп.1-3, отличающийся тем, что внутренний слой покрытия выполнен из латуни с содержанием цинка 40 - 48 мас.%.
5. Электрод по любому из пп.1-4, отличающийся тем, что внутренний слой покрытия имеет однородную β и/или γ-структуру.
6. Электрод по любому из пп.1-5, отличающийся тем, что внутренний слой покрытия имеет толщину по меньшей мере 2,5 мкм.
7. Электрод по любому из пп.1-6, отличающийся тем, что наружный слой покрытия имеет толщину от 0,5 до 5 мкм.
8. Электрод по любому из пп.1-7, отличающийся тем, что сердечник выполнен из сплава CuZn 20, внутренний слой покрытия содержит 45 мас.% цинка и имеет толщину слоя от 15 до 20 мкм, а наружный слой покрытия имеет толщину от 2 до 3 мкм.
9. Электрод по п.8, отличающийся тем, что имеет предел прочности на растяжение по меньшей мере 800 Н/мм2.
10. Электрод по любому из пп.1-7, отличающийся тем, что сердечник выполнен из сплава CuZn с содержанием цинка от 35 до 37 мас.%, внутренний слой покрытия содержит 45 мас.% цинка и имеет толщину от 10 до 15 мкм, а толщина наружного слоя покрытия составляет от 1 до 2 мкм.
11. Электрод по п.10, отличающийся тем, что имеет предел прочности на растяжение по меньшей мере 900 Н/мм2.
12. Электрод по одному из пп. 8-11, отличающийся тем, что он имеет удельную электрическую проводимость от 12 до 50 МОм/м.
13. Способ изготовления проволочного электрода с сердечником и покрытием, состоящим из одного внутреннего и одного наружного слоев, отличающийся тем, что изготавливают электрод по любому из пп.1-12, при этом на первой стадии на сердечник проволочного электрода наносят внутренний слой покрытия, преимущественно плакированием, гальванизацией, нанесением порошка или горячей металлизацией, на последующей стадии наносят наружный слой на внутренний слой покрытия и в заключение проводят пластическую деформацию проволочного электрода до заданного диаметра без нагрева проволочного электрода, вызывающего значительную диффузию с сохранением по существу того же состава покрытия.
14. Способ по п.13, отличающийся тем, что после первой стадии проводят диффузионный отжиг.
15. Способ по п.14, отличающийся тем, что диффузионный отжиг проводят путем пропускания проволочного электрода непрерывно через печь кипящего слоя при нарастающей температуре от 350 до 600oС при выдерживании времени отжига около 2 мин.
16. Способ по любому из пп.14-15, отличающийся тем, что после диффузионного отжига осуществляют быстрое охлаждение электрода для фиксации полученной структуры.
17. Способ по п.16, отличающийся тем, что структура внутреннего слоя покрытия представляет собой структуру из фаз α+β, или из фазы β, или из фазы γ, или из фаз β+γ.л
RU2000107192/02A 1999-03-25 2000-03-24 Проволочный электрод RU2199423C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19913694A DE19913694A1 (de) 1999-03-25 1999-03-25 Drahtelektrode
DE19913694.7 1999-03-25
DE19913694 1999-03-25

Publications (2)

Publication Number Publication Date
RU2000107192A RU2000107192A (ru) 2001-12-10
RU2199423C2 true RU2199423C2 (ru) 2003-02-27

Family

ID=7902462

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000107192/02A RU2199423C2 (ru) 1999-03-25 2000-03-24 Проволочный электрод

Country Status (13)

Country Link
US (1) US6566622B1 (ru)
EP (1) EP1038625B1 (ru)
JP (2) JP3602402B2 (ru)
KR (1) KR100376755B1 (ru)
CN (1) CN1121291C (ru)
AT (1) ATE359144T1 (ru)
BR (1) BR0001417B1 (ru)
CA (1) CA2300675C (ru)
DE (2) DE19913694A1 (ru)
ES (1) ES2284431T3 (ru)
HK (1) HK1034054A1 (ru)
RU (1) RU2199423C2 (ru)
TW (1) TW469199B (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449865C2 (ru) * 2007-12-10 2012-05-10 ОКИ ЭЛЕКТРИК КЕЙБЛ Ко., ЛТД. Электродная проволока для электроэрозионной обработки проволокой, способ ее изготовления и система для изготовления базовой проволоки для нее
RU2466835C2 (ru) * 2009-11-23 2012-11-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ эрозионно-термической обработки
RU2489237C2 (ru) * 2008-10-01 2013-08-10 Беркенхофф Гмбх Проволочный электрод для электроискрового резания
RU2516125C2 (ru) * 2008-12-03 2014-05-20 Беркенхофф Гмбх Проволочный электрод для электроэрозионной резки
RU2593252C2 (ru) * 2014-12-29 2016-08-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ диффузионного цинкования металлических деталей
RU2810276C2 (ru) * 2019-05-10 2023-12-25 Беркенхофф Гмбх Проволочный электрод для электроэрозионной резки и способ получения такого проволочного электрода

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2303517T3 (es) * 2001-09-21 2008-08-16 Berkenhoff Gmbh Electrodo de hilo para corte por electroerosion.
KR100485645B1 (ko) * 2002-11-06 2005-04-27 홍덕스틸코드주식회사 와이어 방전가공용 전극선과 그 제조 방법
WO2007064646A2 (en) 2005-12-01 2007-06-07 Composite Concepts Company Et Al. Edm wire
JP5042229B2 (ja) 2007-12-10 2012-10-03 沖電線株式会社 ワイヤ放電加工用電極線、その製造方法及びその母線製造装置
CN105102180A (zh) * 2012-09-17 2015-11-25 复合概念公司 用于电火花加工的金属丝电极
DE102013009767A1 (de) * 2013-06-11 2014-12-11 Heinrich Stamm Gmbh Drahtelektrode zum funkenerosiven Schneiden von Gegenständen
TW201545828A (zh) * 2014-06-10 2015-12-16 Ya-Yang Yan 一種放電加工切割線及該放電加工切割線之製造方法
CN104191056B (zh) * 2014-08-13 2016-06-29 宁波博威麦特莱科技有限公司 一种高精度锌基合金电极丝及其制备方法
CN105033377B (zh) * 2015-07-30 2017-05-10 宁波博威麦特莱科技有限公司 一种高效低损耗电火花腐蚀加工用电极丝及其制备方法
CA3042510A1 (en) * 2016-11-04 2018-05-11 Global Innovative Products, Llc Edm milling electrode
CN107671379A (zh) * 2017-09-26 2018-02-09 宁波康强微电子技术有限公司 织构化镀层电极丝的制备方法
JP6829179B2 (ja) * 2017-11-15 2021-02-10 Jx金属株式会社 耐食性CuZn合金
TWI681827B (zh) * 2019-04-03 2020-01-11 薩摩亞商正錦和金屬股份有限公司 金屬線之製造方法及其結構
CN113823435B (zh) * 2021-09-08 2024-04-23 湖州金钛导体技术有限公司 一种复合电极丝、复合电极丝的制备方法及应用

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL10710C (ru) 1914-03-02
SE444278B (sv) * 1979-10-11 1986-04-07 Charmilles Sa Ateliers Tradformig elektrod samt sett att tillverka sadan elektrod
JPS59129624A (ja) * 1983-01-11 1984-07-26 Sumitomo Electric Ind Ltd ワイヤカツト放電加工用電極線およびその製造法
JPS59134624A (ja) 1983-01-19 1984-08-02 Sumitomo Electric Ind Ltd ワイヤカツト放電加工用複合電極線およびその製造法
JPS60249529A (ja) 1984-05-23 1985-12-10 Hitachi Cable Ltd ワイヤ−カツト放電加工用複合電極線
JPS61109623A (ja) * 1984-10-29 1986-05-28 Fujikura Ltd ワイヤ放電加工用電極線およびその製造方法
JPS61117021A (ja) * 1984-11-09 1986-06-04 Fujikura Ltd ワイヤ放電加工用電極線およびその製造方法
JPS63162118A (ja) 1986-12-22 1988-07-05 Sumitomo Electric Ind Ltd 放電加工用カツトワイヤ
JPS6478724A (en) 1987-09-17 1989-03-24 Fanuc Ltd Electric discharge machining wire
DE3781278D1 (de) * 1987-10-23 1992-09-24 Berkenhoff Gmbh Erodierelektrode, insbesondere drahtelektrode fuer die funkenerosive bearbeitung.
KR920010862B1 (ko) * 1988-06-30 1992-12-19 미쯔비시 덴끼 가부시기가이샤 와이어컷방전 가공용 와이어전극
JP3303296B2 (ja) 1989-05-31 2002-07-15 住友電気工業株式会社 ワイヤ放電加工用電極線
US5206480A (en) * 1989-05-31 1993-04-27 Sumitomo Electric Industries, Ltd. Wire electrode for electro-discharge machining
US5762726A (en) * 1995-03-24 1998-06-09 Berkenhoff Gmbh Wire electrode and process for producing a wire electrode, particular for a spark erosion process
US5808262A (en) * 1995-06-07 1998-09-15 Swil Limited Wire electrode for electro-discharge machining and method of manufacturing same
JPH0911048A (ja) 1995-06-28 1997-01-14 Hitachi Cable Ltd ワイヤ放電加工用電極線
DE19635775A1 (de) * 1996-09-04 1998-03-05 Berkenhoff Gmbh Hochfeste Erodierelektrode
US5945010A (en) * 1997-09-02 1999-08-31 Composite Concepts Company, Inc. Electrode wire for use in electric discharge machining and process for preparing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449865C2 (ru) * 2007-12-10 2012-05-10 ОКИ ЭЛЕКТРИК КЕЙБЛ Ко., ЛТД. Электродная проволока для электроэрозионной обработки проволокой, способ ее изготовления и система для изготовления базовой проволоки для нее
RU2489237C2 (ru) * 2008-10-01 2013-08-10 Беркенхофф Гмбх Проволочный электрод для электроискрового резания
RU2516125C2 (ru) * 2008-12-03 2014-05-20 Беркенхофф Гмбх Проволочный электрод для электроэрозионной резки
RU2466835C2 (ru) * 2009-11-23 2012-11-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ эрозионно-термической обработки
RU2593252C2 (ru) * 2014-12-29 2016-08-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ диффузионного цинкования металлических деталей
RU2810276C2 (ru) * 2019-05-10 2023-12-25 Беркенхофф Гмбх Проволочный электрод для электроэрозионной резки и способ получения такого проволочного электрода

Also Published As

Publication number Publication date
KR20010020671A (ko) 2001-03-15
US6566622B1 (en) 2003-05-20
ES2284431T3 (es) 2007-11-16
CA2300675C (en) 2003-12-16
BR0001417B1 (pt) 2011-03-22
DE50014229D1 (de) 2007-05-24
EP1038625A2 (de) 2000-09-27
TW469199B (en) 2001-12-21
JP3602402B2 (ja) 2004-12-15
CA2300675A1 (en) 2000-09-25
EP1038625A3 (de) 2004-01-21
BR0001417A (pt) 2001-07-24
DE19913694A1 (de) 2000-11-02
KR100376755B1 (ko) 2003-03-19
JP2005097728A (ja) 2005-04-14
ATE359144T1 (de) 2007-05-15
EP1038625B1 (de) 2007-04-11
CN1121291C (zh) 2003-09-17
HK1034054A1 (en) 2001-10-12
JP2000308924A (ja) 2000-11-07
CN1269274A (zh) 2000-10-11

Similar Documents

Publication Publication Date Title
RU2199423C2 (ru) Проволочный электрод
JP2541638B2 (ja) 放電加工電極の製造法
US6781081B2 (en) Wire electrode for spark erosion cutting
RU2516125C2 (ru) Проволочный электрод для электроэрозионной резки
Kapoor et al. Recent developments in wire electrodes for high performance WEDM
CN105834533B (zh) 用于慢走丝电火花切割用的电极丝
EP1009574A1 (en) Electrode wire for use in electric discharge machining and process for preparing same
US6447930B2 (en) Wire electrode and process for producing a wire electrode, particular for a spark erosion process
Singh et al. Review on effects of process parameters in wire cut EDM and wire electrode development
US20110226743A1 (en) Wire electrode for spark-erosion cutting
Pramanik et al. Effect of reinforced particle size on wire EDM of MMCs
KR100194245B1 (ko) 와이어전극
Tehrani et al. Overcut in pulsed electrochemical grinding
Singh et al. Wear behavior of AISI D3 die steel using cryogenic treated copper and brass electrode in electric discharge machining
Nowicki et al. New possibilities of machining and electrodischarge alloying of free-form surfaces
Behera et al. Effect of pulse-on-time on machining performance during WEDM of nano-TiO2 dispersed austenite steel
US5030818A (en) Composite wire electrode
JPS6366892B2 (ru)
Kumar et al. A state of art in development of wire electrodes for high performance wire cut EDM
Singh et al. Analysis of surface topography of AL/AL2O3 MMC machined during WEDM
JPS58197242A (ja) ワイアカツト放電加工電極線用合金線
Ramu et al. Effect of Wire Electrode Materials on Performance Characteristics for Wire Electrical Discharge Machining of Metal Matrix Composite Material
Toan et al. Effect of Process Parameter on Material Rate Removal in Die-Sinking Electrical Discharge Machining using Uncoated and Coated Electrode
Kumar An Introduction To Development in Wire Electric Discharge Machining: A Review
SU1641541A1 (ru) Способ электроэрозионного легировани

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180325