RU2186145C2 - Сталь - Google Patents

Сталь Download PDF

Info

Publication number
RU2186145C2
RU2186145C2 RU2000120689A RU2000120689A RU2186145C2 RU 2186145 C2 RU2186145 C2 RU 2186145C2 RU 2000120689 A RU2000120689 A RU 2000120689A RU 2000120689 A RU2000120689 A RU 2000120689A RU 2186145 C2 RU2186145 C2 RU 2186145C2
Authority
RU
Russia
Prior art keywords
steel
hot
sheets
aluminum
tapes
Prior art date
Application number
RU2000120689A
Other languages
English (en)
Other versions
RU2000120689A (ru
Inventor
А.М. Ламухин
Ю.В. Луканин
А.Т. Мороз
В.В. Кузнецов
В.К. Рябинкова
В.И. Абраменко
А.В. Артюшечкин
А.В. Зиборов
Б.Я. Балдаев
А.И. Трайно
А.Н. Чернышев
В.Г. Азизбекян
Original Assignee
Открытое акционерное общество "Северсталь"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Северсталь" filed Critical Открытое акционерное общество "Северсталь"
Priority to RU2000120689A priority Critical patent/RU2186145C2/ru
Application granted granted Critical
Publication of RU2186145C2 publication Critical patent/RU2186145C2/ru
Publication of RU2000120689A publication Critical patent/RU2000120689A/ru

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

Изобретение относится к металлургии, а именно к составам сталей для производства горячеалюминированных листов и лент для корпусных деталей системы выпуска газов автомобилей. Предложенная сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,02 - 0,08; кремний 0,003-0,40; марганец 0,20-1,20; хром 0,01-4,0; никель 0,01-0,60; медь 0,01-0,50; титан 0,002-0,22; алюминий 0,02-0,15; сера 0,005-0,025; фосфор 0,003-0,020; азот 0,002-0,018; кальций 0,0001-0,02; железо - остальное. Техническим результатом изобретения является повышение качества горячеалюминированных листов и лент за счет снижения толщины интерметаллидного слоя. 3 табл.

Description

Изобретение относится к области металлургии, конкретно к составам сталей для производства горячеалюминированных листов и лент, которые могут быть использованы для корпусных деталей систем выпуска газов автомобилей.
Системы выпуска газов двигателей внутреннего сгорания должны обладать высокой коррозионной стойкостью в агрессивной газовой среде и в условиях образования конденсата выхлопных газов, жаростойкостью в области температур до 600oС, иметь высокую штампуемость и сохранять прочностные свойства при циклических и ударных нагрузках, а также иметь минимально возможную массу. Поэтому для изготовления деталей выпуска газов, таких как средний патрубок, кожух коллектора, реактор, корпус и пластины глушителя, теплоизолятор и др., используют стальные горячеалюминированные листы и ленты.
В процессе производства горячеалюминированных листов и лент покрытие вступает в химическую реакцию со стальной основой с образованием хрупкого промежуточного интерметаллидного слоя. Интерметаллидный слой ухудшает качество горячеалюминированных листов и лент, снижает штампуемость, способствует отслоению покрытия.
Горячеалюминированные листы и ленты для деталей систем выпуска автомобилей должны отвечать следующему комплексу свойств (табл.1):
Известная сталь для изготовления горячеалюминированных листов, содержащая, мас.%:
Углерод - Менее 0,01
Кремний - Менее 0,1
Марганец - 0,1 - 1,5
Хром - 3 - 12
Титан - 0,03 - 0,16
Алюминий - Менее 0,08
Азот - Менее 0,004
Железо - Остальное [1]
Недостатком указанной стали является ее низкая пластичность. При горячем алюминировании сталь образует интерметаллидный слой большой толщины. Это ухудшает качество горячеалюминированных листов и лент.
Известна также сталь для изготовления горячеалюминированных листов и лент следующего состава, мас.%:
Углерод - Менее 0,05
Кремний - Менее 0,10
Марганец - Менее 1,0
Хром - - 1,80 - 3,0
Никель - 0,10 - 0,50
Медь - 0,10-0,50
Алюминий - 0,06 - 0,15
Сера - Менее 0,05
Фосфор - Менее 0,05
Азот - Менее 0,02
Титан, цирконий, ниобий, ванадий - Более С+N
Железо - Остальное [2]
Данная сталь после горячего алюминирования имеет допустимую рабочую температуру 450oС и обладает низкими прочностными и антикоррозийными свойствами при температурах более 500oС. Горячеалюминированные ленты и полосы характеризуются низкой штампуемостью, обусловленной наличием интерметаллидного слоя большой толщины.
Наиболее близкой по своему химическому составу и свойствам к предлагаемой является следующая сталь для изготовления горячеалюминированных листов и лент, мас.%:
Углерод - 0,04 - 0,08
Кремний - 0,12 - 0,40
Марганец - 0,51 - 1,20
Хром - 0,50 - 1,0
Никель - 0,20 - 0,60
Медь - 0,20 - 0,50
Титан - 0,03 - 0,15
Алюминий - 0,06 - 0,15
Сера - 0,005 - 0,04
Фосфор - 0,03 - 0,10
Азот - 0,003 - 0,008
Железо - Остальное [3] - прототип
Недостатки известной стали состоят в следующем. В процессе производства горячеалюминированных листов и лент стальная основа интенсивно взаимодействует с покрытием, образуя интерметаллидный слой, толщина которого превышает допустимую. Кроме того, взаимная диффузия стали и покрытия при повышенных температурах способствует снижению коррозионной стойкости изделий. В результате горячеалюминированные листы и ленты имеют низкое качество.
Техническая задача, решаемая изобретением, состоит в повышении качества горячеалюминированных листов и лент.
Для решения поставленной технической задачи сталь, содержащая углерод, кремний, марганец, хром, никель, медь, титан, алюминий, серу, фосфор, азот и железо, дополнительно содержит кальций при следующем соотношении содержаний компонентов, мас.%:
Углерод - 0,02 - 0,08
Кремний - 0,003 - 0,40
Марганец - 0,20 - 1,20
Хром - 0,01 - 4,0
Никель - 0,01 - 0,60
Медь - 0,01 - 0,50
Титан - 0,002 - 0,22
Алюминий - 0,02 - 0,15
Сера - 0,005 - 0,025
Фосфор - 0,003 - 0,020
Азот - 0,002 - 0,018
Кальций - 0,0001 - 0,02
Железо - Остальное
Углерод в данной стали является одним из основных упрочняющих элементов. При содержании углерода менее 0,02% прочностные свойства стали ниже допустимого уровня. Увеличение содержания углерода более 0,08% приводит к снижению пластичности стали, что недопустимо.
Кремний в стали применен как раскислитель и легирующий элемент. Если содержание кремния в стали будет менее 0,003%, то ухудшится раскисленность и жаростойкость стали; при содержании кремния более 0,40% резко снижается пластичность, имеет место охрупчивание стали.
Марганец обеспечивает получение заданных механических свойств и повышает коррозионную стойкость. При содержании марганца менее 0,20% сталь недостаточно раскислена, ее прочность ниже допустимой. Увеличение содержания марганца более 1,2% чрезмерно упрочняет сталь, ухудшает ее пластичность, приводит к росту брака при изготовлении деталей системы выпуска газов автомобилей.
Хром введен в сталь для повышения коррозионной стойкости, прочности и пластичности. Если содержание хрома в стали меньше 0,01%, то снижается прочность и коррозионная стойкость. При содержании хрома более 4% происходит рост карбидов хрома в стали, повышаются прочностные свойства, ухудшается адгезия основы и покрытия.
Никель и медь обеспечивают получение заданного комплекса механических свойств стали и повышают ее коррозионную стойкость. Кристаллизуясь в стали, в последнюю очередь, медь располагается по границам зерен, уменьшая, в присутствии титана, вероятность развития межкристаллитной коррозии. При содержании в стали никеля менее 0,01% и меди менее 0,01% прочностные свойства стали ниже допустимых. Увеличение содержания никеля более 0,60% и меди более 0,50% приводит к ухудшению пластичности стали.
Титан введен в сталь для улучшения адгезии алюминиевого покрытия к стальной основе. Снижение содержания титана менее 0,002% ухудшает коррозионную стойкость в агрессивной среде выхлопных газов. Увеличение содержания титана более 0,22% не улучшает качество горячеалюминированных листов и лент, а лишь удорожает сталь, вследствие чего является нецелесообразным.
Алюминий введен в сталь как раскислитель, повышающий к тому же взаимосвязь стальной основы с алюминиевым покрытием, жаростойкость и коррозионную стойкость стали. При содержании алюминия менее 0,02% ухудшается связь стальной основы через слой интерметаллида с алюминиевым покрытием, снижается пластичность стали, сталь становится склонной к старению. Увеличение содержания алюминия более 0,15% приводит к графитизации стали и ухудшению комплекса механических свойств.
Сера, образуя тугоплавкие сульфиды марганца, упрочняет матрицу. Поскольку рабочая температура деталей системы выпуска газов автомобиля не превышает 650oС, отрицательное влияние ее на ослабление межзеренных связей не сказывается. При снижении содержания серы менее 0,005% не улучшается качество стали, хотя такое снижение усложняет и удорожает ее производство. Увеличение содержания серы более 0,025% снижает технологическую пластичность и штампуемость горячеалюминированных листов и лент.
Фосфор в стали повышает ее прочность и антикоррозионные свойства при одновременной экономии дорогостоящих легирующих элементов. Увеличение содержания фосфора более 0,020% приводит к охрупчиванию стали. При снижении содержания фосфора менее 0,003% прочность и коррозионная стойкость снижаются, а стоимость стали резко возрастает.
Азот в стали обеспечивает ее упрочнение. Мелкодисперсные частицы карбонитридов алюминия и титана упрочняют сталь, позволяют уменьшить толщину и металлоемкость деталей при сохранении высокой прочности. При содержании азота менее 0,002% не достигается эффект карбонитридного упрочнения стали. Увеличение содержания азота более 0,018% способствует старению стали, ухудшению ее пластичности ниже допустимого уровня.
Кальций в данной стали проявляет новое свойство, заключающееся в сдерживании роста интерметаллидного слоя. При уменьшении содержания кальция менее 0,0001% наблюдается рост толщины интерметаллидного слоя более 7 мкм, что ухудшает качество горячеалюминированных листов и лент. Повышение содержания кальция более 0,02% приводит к увеличению в ней количества неметаллических включений, ухудшению пластических свойств.
Сталь выплавляют в кислородном конвертере. Расплав легируют силикокальцием, ферромарганцем, феррохромом, феррофосфором, ферротитаном. Раскисление осуществляют алюминием, затем в расплав вводят металлическую медь и никель. В ковше расплав продувают газообразным азотом.
Разливку стали производят в слябы толщиной 250 мм. Слябы нагревают до 1250oС и прокатывают на непрерывном широкополосном стане 2000 в полосы толщиной 2,5 мм. Горячекатаные полосы после сернокислотного травления окалины прокатывают на 5-клетевом стане 1700 холодной прокатки до толщины 0,6 мм.
Холоднокатаные полосы отжигают в проходной печи и подвергают алюминированию методом погружения в расплав, содержащий 92% алюминия и 8% кремния. Толщина покрытия с каждой стороны полосы составляет 25 мкм. Затем горячеалюминированные полосы дрессируют с обжатием 2,8%, режут на листы и ленты.
За счет введения в сталь, из которой изготовлена основа, кальция в количестве 0,0001-0,02% и регламентированного соотношения содержаний остальных компонентов, достигается торможение роста толщины интерметаллидного слоя, что повышает пластичность и штампуемость листов и лент при сохранении высоких показателей прочности.
В табл. 2 приведен химический состав сталей для горячего алюминирования, а в табл. 3 - свойства алюминированных листов и лент.
Из табл. 3 следует, что сталь предложенного состава (составы 2-4) обеспечивает наилучшее качество горячеалюминированных листов и лент: толщина интерметаллидного слоя h составляет 3-6 мкм, потеря веса Q=1-2 мг/см2. В случаях запредельных значений концентрации компонентов (варианты 1 и 5) качество горячеалюминированных листов и лент ухудшается, так как возрастает толщина интерметаллидного слоя h, ухудшаются пластические свойства, снижается коррозионная стойкость покрытия. Также низкое качество горячеалюминированных листов и лент имеет место при использовании стали - прототип (вариант 6).
Технико-экономические преимущества предложенной стали состоят в том, что за счет введения в ее состав кальция и оптимизации концентрации химических элементов удалось обеспечить заданный комплекс механических свойств, уменьшить толщину интерметаллидного слоя и потерю веса при испытании горячеалюминированных листов на коррозионную стойкость.
В качестве базового объекта принята сталь-прототип. Использование стали предложенного состава повышение рентабельности производства горячеалюминированных листов и лент на 20-25%.
Источники информации
1. Заявка Японии 60-245727, МПК С 22 С 38/28, 1985 г.
2. Заявка Японии 63-18043, МПК С 22 С 38/00, 1988 г.
3. Авторское свидетельство СССР 1752823, МПК С 22 С 38/50, 1992 г. - прототип.

Claims (1)

  1. Сталь, содержащая углерод, кремний, марганец, хром, никель, медь, титан, алюминий, серу, фосфор, азот и железо, отличающаяся тем, что она дополнительно содержит кальций при следующем соотношении содержаний компонентов, мас. %:
    Углерод - 0,02-0,08
    Кремний - 0,003-0,40
    Марганец - 0,20-1,20
    Хром - 0,01-4,0
    Никель - 0,01-0,60
    Медь - 0,01-0,50
    Титан - 0,002-0,22
    Алюминий - 0,02-0,15
    Сера - 0,005-0,025
    Фосфор - 0,003-0,020
    Азот - 0,002-0,018
    Кальций - 0,0001-0,02
    Железо - Остальное
RU2000120689A 2000-08-01 2000-08-01 Сталь RU2186145C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000120689A RU2186145C2 (ru) 2000-08-01 2000-08-01 Сталь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000120689A RU2186145C2 (ru) 2000-08-01 2000-08-01 Сталь

Publications (2)

Publication Number Publication Date
RU2186145C2 true RU2186145C2 (ru) 2002-07-27
RU2000120689A RU2000120689A (ru) 2002-08-27

Family

ID=20238765

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000120689A RU2186145C2 (ru) 2000-08-01 2000-08-01 Сталь

Country Status (1)

Country Link
RU (1) RU2186145C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968210B2 (en) 2005-02-10 2011-06-28 Nippon Steel Corporation Aluminum type plated steel sheet and heat shrink band using the same
US10352342B2 (en) 2006-04-19 2019-07-16 Arcelormittl France Steel part
CN113265596A (zh) * 2021-04-14 2021-08-17 马鞍山钢铁股份有限公司 一种耐大气腐蚀的700MPa级高强耐候钢板及其生产方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968210B2 (en) 2005-02-10 2011-06-28 Nippon Steel Corporation Aluminum type plated steel sheet and heat shrink band using the same
US10352342B2 (en) 2006-04-19 2019-07-16 Arcelormittl France Steel part
US10473130B2 (en) 2006-04-19 2019-11-12 Arcelormittal France Steel part
US10480554B2 (en) 2006-04-19 2019-11-19 Arcelormittal France Steel part
US10626903B2 (en) 2006-04-19 2020-04-21 Arceloemittal France Steel part
US10626902B2 (en) 2006-04-19 2020-04-21 Arcelormittal France Steel part
US11154950B2 (en) 2006-04-19 2021-10-26 Arcelormittal France Method for creating a welded steel part with uniform microstructure
CN113265596A (zh) * 2021-04-14 2021-08-17 马鞍山钢铁股份有限公司 一种耐大气腐蚀的700MPa级高强耐候钢板及其生产方法

Similar Documents

Publication Publication Date Title
JP6763023B2 (ja) 表面品質及びスポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
TWI399443B (zh) Heat-resistant fat iron-based stainless steel
JP5297630B2 (ja) 耐熱性に優れたフェライト系ステンレス鋼板
EP2692889B1 (en) Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
WO2012008597A1 (ja) 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
EP4063526A1 (en) Ferritic stainless steel sheet
JP5025671B2 (ja) 高温強度に優れたフェライト系ステンレス鋼板およびその製造方法
JPWO2003004714A1 (ja) 排ガス流路部材用フェライト系ステンレス鋼
WO2012063613A1 (ja) 耐酸化性に優れたフェライト系ステンレス鋼
WO2007075006A1 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
WO2007029515A1 (ja) 使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法
WO2012036313A1 (ja) 耐酸化性に優れた耐熱フェライト系ステンレス鋼板
CN116694988A (zh) 薄钢板和镀覆钢板、以及薄钢板的制造方法和镀覆钢板的制造方法
RU2531216C2 (ru) Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа
JP4185425B2 (ja) 成形性と高温強度・耐高温酸化性・低温靱性とを同時改善したフェライト系鋼板
JP5937861B2 (ja) 溶接性に優れた耐熱フェライト系ステンレス鋼板
JP7166082B2 (ja) オーステナイト系ステンレス鋼板およびその製造方法
JP2000336462A (ja) 高温強度に優れた高純度フェライト系ステンレス鋼
JP2951480B2 (ja) 化成処理性ならびに成形性に優れる高張力冷延鋼板及びその製造方法
KR20020037698A (ko) 연질의 Cr함유강
KR100258128B1 (ko) 자동차 배기계 기기용 페라이트계 스테인레스강
WO2008004506A1 (fr) Acier au chrome présentant une excellente résistance à la fatigue thermique
RU2186145C2 (ru) Сталь
JP7278079B2 (ja) ステンレス冷延鋼板、ステンレス熱延鋼板及びステンレス熱延鋼板の製造方法
JP2020164949A (ja) 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品