RU2172792C1 - Способ извлечения урана из руд - Google Patents

Способ извлечения урана из руд Download PDF

Info

Publication number
RU2172792C1
RU2172792C1 RU2000106961/02A RU2000106961A RU2172792C1 RU 2172792 C1 RU2172792 C1 RU 2172792C1 RU 2000106961/02 A RU2000106961/02 A RU 2000106961/02A RU 2000106961 A RU2000106961 A RU 2000106961A RU 2172792 C1 RU2172792 C1 RU 2172792C1
Authority
RU
Russia
Prior art keywords
leaching
uranium
solutions
solution
ore
Prior art date
Application number
RU2000106961/02A
Other languages
English (en)
Inventor
А.П. Филиппов
Ю.В. Нестеров
В.В. Шаталов
В.В. Кротков
А.В. Мимонов
Original Assignee
Всероссийский научно-исследовательский институт химической технологии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Всероссийский научно-исследовательский институт химической технологии filed Critical Всероссийский научно-исследовательский институт химической технологии
Priority to RU2000106961/02A priority Critical patent/RU2172792C1/ru
Application granted granted Critical
Publication of RU2172792C1 publication Critical patent/RU2172792C1/ru

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к извлечению урана из руд методом кучного или подземного выщелачивания. Способ включает фильтрацию через руду выщелачивающих растворов, содержащих серную кислоту и нитрат-ионы с переводом шестивалентного урана, двухвалентного железа в продукционные растворы, извлечение из них урана с получением маточных растворов. При приготовлении выщелачивающих растворов серную и азотную кислоту вводят в часть маточных растворов, равную 0,05-0,15 от их исходного объема, взятую из условия обеспечения окислительно-восстановительного потенциала 750-850 мВ, затем полученный раствор контактируют с другой частью маточных растворов с обеспечением окислительно-восстановительного потенциала 600-700 мВ. Полученный раствор смешивают с оставшимся объемом с обеспечением окислительно-восстановительного потенциала 420-500 мВ. Этот окисленный раствор подают на выщелачивание урана из руды. Способ позволяет интенсифицировать процесс. 4 ил., 3 табл.

Description

Изобретение относится к гидрометаллургическим способом переработки руд и может быть использовано, в частности в гидрометаллургии урана для выщелачивания его из руд методами кучного (КВ) и подземного (ПВ) выщелачивания.
Известен способ выщелачивания урана из руд методом КВ и ПВ с применением серной кислоты, сущность которого сводится к просачиванию разбавленных ее растворов через слой рудной массы, уложенной в кучи, либо непосредственно через рудоносный пласт; азотная кислота при этом вводится в раствор для пассивации оборудования. Недостатком такого способа выщелачивания, выбранного нами в качестве прототипа, является малая интенсивность процесса, большая его продолжительность /Л.И. Лунев. Шахтные системы разработки месторождений урана подземным выщелачиванием. М., 1982 г., стр. 8,13,17/.
Известно также что соли трехвалентного железа способствуют интенсификации процессов выщелачивания вследствие окисления U (IV) в более растворимый U (VI) /Там же/. В качестве такого ускорителя процесса могут быть использованы ионы железа (II), содержащиеся в циркулирующих выщелачивающих растворах при условии их окисления до трехвалентного состояния какими-либо окислителями. Однако на практике такого процесса не существует в виду отсутствия эффективного окислителя. Из ряда опробованных нами окислителей наиболее активным оказалась азотистая кислота, отличительной особенностью которой является способность ее энергично реагировать с Fe (II) в слабокислых растворах при обычной температуре, что в условиях КВ и ПВ является определяющим фактором. При этом продукт ее восстановления - оксид азота, реагируя с кислородом воздуха, может вовлекать последний в процесс окисления по каталитической схеме. Однако соединения содержащие азотистую кислоту, выпускаются в ограниченном масштабе (нитриты), либо как товарный продукт вообще не выпускаются (нитрозилсерная кислота). Кроме того, соединения азотистой кислоты имеют достаточно высокую цену.
В свете сказанного актуальным является вопрос разработки способа окисления Fe (II) в циркулирующих растворах с использованием азотной кислоты в качестве исходного реагента для генерирования из нее азотистой кислоты.
Техническим результатом является интенсификация процесса. Он достигается способом извлечения урана из руд методом кучного или подземного выщелачивания, включающий приготовление выщелачивающих растворов, содержащих серную кислоту и нитрат-ионы, фильтрацию их через руду с переводом шестивалентного урана, двухвалентного железа и других металлов в продукционные растворы, извлечение из них урана с получением маточных растворов и рециркуляцию этих растворов на выщелачивание руды, согласно изобретению, при приготовлении выщелачивающих растворов серную и азотную кислоты вводят в часть маточных растворов, равную 0,05-0,15 от их исходного объема, взятую из условия создания в них концентрации серной кислоты, равной 100-250 г/л и окислительно-восстановительного потенциала 750-850 мВ, затем полученный раствор и образовавшиеся оксиды азота контактируют с другой частью маточных растворов, равной 0,25-0,35 от их исходного объема и взятой из условия обеспечения окисления Fe (II) в Fe (III) с достижением окислительно-восстановительного потенциала 600-700 мВ при диспергировании в раствор кислорода или воздуха, затем смешивают с оставшимся объемом с обеспечением оксилительно-восстановительного потенциала раствора, равного 420-500 мВ, причем перед введением серной и азотной кислоты в маточные растворы производят абсорбцию оксидов азота, образующихся при приготовлении выщелачивающих растворов, путем их контактирования с исходными маточными растворами.
Образующиеся в ходе взаимодействия продуктов разложения азотной кислоты с ионами Fe (II) нитрозные газы вначале контактируют с исходным циркулирующим раствором КВ или ПВ с целью их поглощения этими растворами с образованием комплекса Fe(NO)SO4 и последующего вовлечения их в окислительный процесс при поступлении в реакционный аппарат окисления.
Таким образом интенсификация процесса выщелачивания урана из руд методами КВ либо ПВ достигается путем использования циркулирующих растворов, в которых ионы Fe (II) окисляются до Fe (III), а последние уже выполняют роль непосредственного окислителя урана (IV) в уран (VI). Окисление Fe (II) в Fe (III) осуществляется в основном кислородом воздуха, барботируемого через циркулирующий раствор, при каталитическом участии азотистой кислоты и окислов азота, получаемых в результате разложения азотной кислоты, являющейся исходным азотсодержащим реагентом.
Пример 1. Окисление Fe (II) азотистой кислотой в сочетании с кислородом воздуха.
Эксперименты проводились в колонке, в нижнюю часть которой был впаян фильтр Шотта, обеспечивающий диспергирование вводимого в раствор воздуха. Содержание серной кислоты в растворах равнялось 10 г/л, концентрация Fe(II) варьировалась от 1,0 до 9,0 г/л, температура комнатная. Расход воздуха составлял 140 л/час, высота столба жидкости 150 см. Результаты опытов даны в табл. 1.
Как видно из приведенных в табл. 1 данных, благодаря высокой окислительной активности азотистой кислоты и диспергированию воздуха процесс окисления железа (II) в широком диапазоне ее концентраций протекает при комнатной температуре уже при расходе азотистой кислоты, равной 8% от стехиометрически необходимого, что обеспечивается участием O2 воздуха; при меньшем соотношении азотистой кислоты к железу (II) скорость этого процесса резко снижается.
Пример 2. Поглощение оксидов азота. Исследование поглощения сернокислым железом проводилось в U-образном цилиндрическом сосуде. Аппарат позволяет варьировать высоту поглощающего слоя раствора. В нижнюю часть аппарата подавали оксид азота, получаемый путем взаимодействия 40%-ного раствора NaNO2 с 20%-ным раствором FeSO4 в соляной кислоте, и воздух. Процесс абсорбции изучали при комнатной температуре на растворах, содержащих 5 г/л Fe (II), концентрация оксида азота в газовоздушной смеси, подаваемой в аппарат, составляла 0,3 и 0,5 об.%. Опыты проводились в режиме кратковременного контактирования газа с жидкостью (75 сек).
На фиг. 1 приведена зависимость степени поглощения от степени погружения циркулятора при /Fe+2/ = 5,0 г/л и расхода газовой смеси: 1-2,8; 2-3,2; 3-4,0 л/мин при /NO/ 0,3 об.%; 4-2,8; 5-3,2 л/мин при /NO/ 0,5 об.%.
На фиг. 2 дана зависимость степени поглощения оксидов азота от расхода газовой смеси при /Fe+2/ = 5,0 г/л и степени погружения циркулятора: 1-40; 2-50; 3-60% (концентрация оксилов азота 0,3 об.%); 4-30; 5-40% (концентрация окислов азота 0,5 об.%).
Как ясно из этих опытов, с ростом степени погружения циркулятора, расхода газа и дисперсности пузырьков газа степень поглощения оксида азота возрастает. Следовательно, на практике для более полного поглощения оксида азота из отходящих газов следует применять аппараты колонного типа, снабженные диспергирующими устройствами для газа, с вводом газов под слой жидкости.
Пример 3. Разложение комплекса Fe(NO)SO4
Комплекс Fe(NO)SO4 в кислых средах устойчив лишь при температуре ниже 25oC. С ростом температуры его стабильности резко снижается, что позволяет рассчитывать на возможность регенерации оксидов азота. С целью оценки эффективности процесса регенерации их из растворов, была проведена специальная серия опытов, результаты которой приведены в табл. 2. Разрушение комплекса Fe(NO)SO4 осуществлялось путем нагревания раствора до 50oC как без перемешивания, так и с барботированием через него воздуха.
Из приведенных в табл. 2 данных видно, что процесс разложения комплекса Fe(NO)SO4 при температуре 50oC и барботировании воздуха протекает с высокой скоростью и через 10-20 минут комплекс полностью разрушается. Это означает, что в условиях предлагаемого технологического процесса уловленные на узле газоочистки оксиды азота впоследствии в реакторе окисления будут вовлекаться в процесс каталитического окисления железа (II).
Пример 4. Разложение азотной кислоты и окисление Fe (II).
В химический стакан вводят 100 мл раствора, содержащего 1,0 г/л Fe (II); при перемешивании туда же подают рассчитанное количество концентрированной серной (уд. в. 1,83) и азотной (уд.в. 1,37) кислот. После перемешивания в течение 3-5 минут производят замер температуры и о-в.п. раствора. Затем в этот раствор дополнительно вводят раствор двухвалентного железа в количестве от 100 до 900 мл и также замеряют о-в.п. полученного раствора. Результаты этих экспериментов приведены в табл. 3.
Как видно из табл. 3, при смешении 100 мл исходного раствора Fe (II) с 15 г серной кислоты температура раствора за счет тепла гидратации поднимается до 40-42oC, о-в.п. после введения 0,3-2,0 г азотной кислоты составляет всего 415-450 мв. Однако при введении 2,25-3,0 г HNO3 этот показатель достигает 800-860 мв.
При подаче в исходный раствор 30 г купоросного масла температура раствора повышается до 56oC, а о-в.п. достигает 800-860 мв уже при подаче 1 г азотной кислоты.
При дополнительной подаче в полученный окисленный раствор 200-300 мл исходного раствора Fe (II) о-в.п. смеси составляет от 550 до 750 мв, а после введения еще 600 мл устанавливается на уровне 425-460 мв, что соответствует соотношению Fe (III)/Fe (II) в растворе приблизительно 1:1 и в условиях ПВ обеспечит окислительную обстановку. В сочетании с барботированием воздуха, как это следует из примера 2, степень окисления железа (II) превышает 70%.
Пример 5. Выщелачивание урана на руды окисленным раствором.
В колонку диаметром 35 мм загружают 300 г песчанистой руды естественной крупности с содержанием урана 0,214%. Руду замачивают водой, "закисляют" раствором серной кислоты 5 г/л. Затем со скоростью 60-100 мл в сутки подают раствор, содержащий 2-3 г/л серной кислоты и ионы Fe (III), полученные окислением Fe (II) по примеру 4.
Ежесуточно на выходе из колонки отбирают пробы продукционного раствора, определяют в нем содержание урана. Выщелачивание ведут до тех пор, пока в выходящих из колонки растворах содержание урана станет ниже 10 мг/л.
По аналогичной методике проводят опыт с раствором одной серной кислоты без добавки железа (III).
Результаты экспериментов приведены на фиг. 3.
Как следует из данных фиг. 3, присутствие в выщелачивающих растворах трехвалентного железа (о-в.п. раствора 500 мв, кривая 2) обеспечивает увеличение степени извлечения урана из руды методом ПВ при Ж:Т, равном 3-4, на 12-15%, либо сокращение продолжительности процесса выщелачивания в 3-4 раза в сравнении с результатами с применением раствора одной серной кислоты (о-в. п. 370 мв, кривая 1, фиг. 3).
Из совокупности приведенных в примерах 1-5 данных следует, что при введении в ограниченный объем раствора Fe (II) рассчитанных количеств концентрированных серной и азотной кислот создаются условия для разложения азотной кислоты с получением из нее азотистой кислоты, которая в сочетании с подаваемым диспергированным воздухом обеспечивает окисление содержащегося в общем объеме циркулирующих растворов ПВ железа (II) в Fe(III) и тем самым обеспечивает интенсификацию процесса выщелачивания урана из руды в целом.
На основании имеющихся совокупных данных предлагается принципиальная технологическая схема окисления циркулирующих растворов КВ и ПВ с использованием азотной кислоты как первоначального реагента и кислорода воздуха в сернокислой среде (фиг. 4).

Claims (1)

  1. Способ извлечения урана из руд методом кучного или подземного выщелачивания, включающий приготовление выщелачивающих растворов, содержащих серную кислоту и нитрат-ионы, фильтрацию их через руду с переводом шестивалентного урана, двухвалентного железа и других металлов в продукционные растворы, извлечение из них урана с получением маточных растворов и рециркуляцию этих растворов на выщелачивание руды, отличающийся тем, что при приготовлении выщелачивающих растворов серную и азотную кислоты вводят в часть маточных растворов, равную 0,05 - 0,15 от их исходного объема, взятую из условия создания в них концентрации серной кислоты, равной 100 - 250 г/л и окислительно-восстановительного потенциала 750 - 850 мВ, затем полученный раствор и образовавшиеся оксиды азота контактируют с другой частью маточных растворов, равной 0,25 - 0,35 от их исходного объема и взятой из условия обеспечения окисления Fe (II) в Fe (III) с достижением окислительно-восстановительного потенциала 600 - 700 мВ при диспергировании в раствор кислорода или воздуха, затем смешивают полученный раствор с оставшей частью маточных растворов с обеспечением окислительно-восстановительного потенциала раствора, равного 420 - 500 мВ, причем перед введением серной и азотной кислот в маточные растворы производят абсорбцию оксидов азота, образующихся при приготовлении выщелачивающих растворов, путем их контактирования с исходными маточными растворами.
RU2000106961/02A 2000-03-21 2000-03-21 Способ извлечения урана из руд RU2172792C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000106961/02A RU2172792C1 (ru) 2000-03-21 2000-03-21 Способ извлечения урана из руд

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000106961/02A RU2172792C1 (ru) 2000-03-21 2000-03-21 Способ извлечения урана из руд

Publications (1)

Publication Number Publication Date
RU2172792C1 true RU2172792C1 (ru) 2001-08-27

Family

ID=48239666

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000106961/02A RU2172792C1 (ru) 2000-03-21 2000-03-21 Способ извлечения урана из руд

Country Status (1)

Country Link
RU (1) RU2172792C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2485193C1 (ru) * 2012-03-20 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ извлечения урана из руд
RU2572910C2 (ru) * 2013-12-03 2016-01-20 Зао "Далур" Способ выщелачивания урана из руд
RU2653400C2 (ru) * 2016-08-04 2018-05-08 Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" Способ выщелачивания урана из пород с незначительным его содержанием
EA036364B1 (ru) * 2018-10-03 2020-10-30 Акционерное Общество "Национальная Атомная Компания "Казатомпром" Способ подземного выщелачивания урана
CN111893298A (zh) * 2020-08-20 2020-11-06 核工业北京化工冶金研究院 一种富含石膏低品位铀矿堆浸处理工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЛУНЕВ Л.И. Шахтные системы разработки месторождений урана подземным выщелачиванием. - М., 1982, с.8-17. Реферативный журнал "Металлургия". - М.: ВИНИТИ, 1985, реферат 4Г343П. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2485193C1 (ru) * 2012-03-20 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ извлечения урана из руд
RU2572910C2 (ru) * 2013-12-03 2016-01-20 Зао "Далур" Способ выщелачивания урана из руд
RU2653400C2 (ru) * 2016-08-04 2018-05-08 Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" Способ выщелачивания урана из пород с незначительным его содержанием
EA036364B1 (ru) * 2018-10-03 2020-10-30 Акционерное Общество "Национальная Атомная Компания "Казатомпром" Способ подземного выщелачивания урана
CN111893298A (zh) * 2020-08-20 2020-11-06 核工业北京化工冶金研究院 一种富含石膏低品位铀矿堆浸处理工艺

Similar Documents

Publication Publication Date Title
Bishop et al. Hydrogen peroxide catalytic oxidation of refractory organics in municipal waste waters
CN102070264B (zh) 一种去除废液中氰化物、硫氰酸盐、cod和砷的方法
Olomu et al. Effect of flooding on the Eh, pH, and concentrations of Fe and Mn in several Manitoba soils
CN110304757A (zh) 一种用于处理含砷废水的工艺
US3669651A (en) Reduction of ferric ions in cyclic process of leaching and precipitation of copper
Hoffmann Trace metal catalysis in aquatic environments
RU2172792C1 (ru) Способ извлечения урана из руд
CN104445750A (zh) 一种含氰废水回收治理方法
Chen et al. Leaching of a carbonaceous gold concentrate in copper-tartrate-thiosulfate solutions
Ma et al. Novel technology for hydrogen sulfide purification via the slurry prepared from roasted vanadium steel slag
RU2234550C2 (ru) Способ извлечения урана из руд
TW200300131A (en) Process for treating hydrogen ion-containing waste liquid
Yan et al. Experimental study on FeIICit enhanced absorption of NO in (NH4) 2SO3 solution
JP2017057293A (ja) 硫化水素含有ガスからの湿式脱硫方法
Johnstone Metallic ions as catalysts for the removal of sulfur dioxide from boiler furnace gases
US2304178A (en) Sulphating process and apparatus therefor
Muzadi et al. A new development in the oxidative precipitation of Fe and Mn by SO2/air
JPS6034502B2 (ja) プルトニウムの還元方法
JP3586566B2 (ja) 高純度ポリ硫酸第2鉄を効率的に製造する方法
CN111825201A (zh) 一种用于工业废水处理的自适应液体芬顿反应催化剂的制备方法和应用
JP2017113686A (ja) 硫化水素含有ガスからの湿式脱硫方法
RU2626764C1 (ru) Способ растворения волоксидированного облученного ядерного топлива
Hsu et al. Treatment of aqueous nitrate by zero valent iron powder in the presence of CO2 bubbling
CN110921807A (zh) 一种过渡金属纳米氧化酶、制备方法及水处理装置和应用
CN110642348A (zh) 一种络合-离子浮选法处理含氰废水的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060322