RU2172296C2 - Способ получения сульфида марганца - Google Patents

Способ получения сульфида марганца

Info

Publication number
RU2172296C2
RU2172296C2 RU98107315A RU98107315A RU2172296C2 RU 2172296 C2 RU2172296 C2 RU 2172296C2 RU 98107315 A RU98107315 A RU 98107315A RU 98107315 A RU98107315 A RU 98107315A RU 2172296 C2 RU2172296 C2 RU 2172296C2
Authority
RU
Russia
Prior art keywords
carried out
manganese sulfate
reducing agent
mns
manganese
Prior art date
Application number
RU98107315A
Other languages
English (en)
Other versions
RU98107315A (ru
Inventor
Ульф ЭНГСТРЕМ
Йохан АРВИДССОН
Original Assignee
Хеганес Аб
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хеганес Аб filed Critical Хеганес Аб
Publication of RU98107315A publication Critical patent/RU98107315A/ru
Application granted granted Critical
Publication of RU2172296C2 publication Critical patent/RU2172296C2/ru

Links

Abstract

Изобретение относится к металлургии и может быть использовано при получении добавок для механической обработки спеченных деталей. Сульфат марганца в виде частиц или агломерата смешивают с восстановителем - каменным углем, древесным углем, лигнитом. Нагревают до температуры не менее 700oС. В качестве восстановителя можно использовать газообразный водород и/или моноокись углерода. Восстановление проводят в шахтной печи сухим способом. В смесь сульфата марганца и восстановителя можно вводить воду. Полученную суспензию нагревают в течение времени, достаточного для полного восстановления сульфата марганца. Восстановление осуществляют в туннельной печи при 1100 - 1180oC в атмосфере моноокиси углерода и водорода. Сульфид марганца, полученный в соответствии с данным способом, может содержать до 25 мас.% MnO, до 2 мас. % С и других примесей. Показатели обрабатываемости MnS не ниже, чем у MnS, полученного известным способом. 9 з.п.ф-лы.

Description

Изобретение относится к способу получения сульфида марганца. Более конкретно, настоящее изобретение относится к восстановительному процессу получения сульфида марганца из сульфата марганца в высокотемпературных условиях.
В такой области промышленности, как порошковая металлургия, сульфид марганца (MnS) находит все большее применение в качестве добавки для улучшения механической обработки спеченных деталей. В связи с расширением рынка продуктов порошковой металлургии весьма очевидна потребность в промышленно применимых, рентабельных и экологически приемлемых способах получения этих продуктов.
Патент США 4676970 раскрывает способ получения MnS плавлением марганца и серы. Более конкретно этот патент раскрывает способ, по которому водный раствор сульфата марганца подвергают электролизу для получения металлического марганца, который в форме частиц смешивают с микрочастицами серы. В полученной смеси химическую реакцию инициируют добавлением, например, пероксида алюминия и бария. При использовании исходных материалов высокой чистоты получают очень чистый продукт MnS. Кроме того, патент указывает на невозможность получения MnS в больших количествах для коммерческих целей из-за серного загрязнения и низкой чистоты.
Патентная заявка Японии 62-288116 раскрывает способ получения MnS, по которому соединение марганца, например MnSO4, нагревают до температуры в пределах от 350 до 700oC в атмосфере H2S. Другой способ получения MnS, раскрываемый в этой заявке, включает сжигание окиси марганца или металлического марганца в атмосфере дисульфида углерода. Японская патентная заявка также раскрывает способ, по которому избыточное количество водного раствора аммиака при кипении добавляют к водному раствору марганца (II), содержащему оксалат калия и газообразный сероводород.
В соответствии с настоящим изобретением в отличие от вышеприведенной заявки неожиданно было обнаружено, что продукт MnS, обладающий требуемыми характеристиками улучшенной механической обрабатываемости, можно получать путем термического восстановления сульфата марганца способом, подходящим для крупномасштабного коммерческого производства. С промышленной точки зрения этот способ предлагает важные преимущества, включающие возможность использования недорогих исходных материалов и имеющегося оборудования. Кроме того, стадия электролиза, являющаяся необходимой в известных способах, исключается. Чистота получаемого продукта является достаточной для промышленных целей и можно получать очень чистый продукт даже без высокочистых исходных материалов, как того требуют известные способы.
Глубокое и тщательное изучение способа показало, что термическое восстановление можно осуществлять как способом сухого, так и мокрого восстановления, и удовлетворительные результаты можно получить различными путями. Так, восстановитель можно выбирать из широкого ряда известных восстановителей. Предпочтительно восстановитель выбирают из группы, включающей каменный уголь, древесный уголь, лигнит, газообразный водород, окись углерода, поскольку впоследствии в качестве побочных продуктов получают экологически приемлемые продукты: двуокись углерода и воду. Когда в качестве восстановителя используют твердое углеродистое соединение, восстановление предпочтительно осуществляют в восстановительной атмосфере. Путем оптимизации реакционных параметров получают небольшое и экологически приемлемое количество побочных продуктов, содержащих загрязняющие серные соединения.
Раскрывается способ получения сульфида марганца, включающий нагревание сульфата марганца, отличающийся тем, что используют сульфат марганца в виде частиц или агломерата и нагревание ведут до температуры по меньшей мере 700oC, предпочтительно по меньшей мере 750oC, в присутствии по меньшей мере одного восстановителя. Предпочтительно восстановителем является газообразный водород и/или моноокись углерода. Этот способ предпочтительно осуществляют в псевдоожиженном слое, в котором сульфат марганца находится в форме агломерированных частиц с размером менее 10 мм. Если это коммерческий процесс, его предпочтительно осуществлять в шахтной печи, и в целях повышения выхода сульфида марганца можно добавлять двуокись серы. Другой сухой способ включает смешивание частиц сульфата марганца с частицами углерода, который может быть, например, в форме каменного или древесного угля, при температуре по меньшей мере 700oC, предпочтительно по меньшей мере 750oC, и более предпочтительно по меньшей мере 800oC, при этом размер частиц сульфата марганца должен предпочтительно быть меньше 1 мм и размер углеродных частиц должен предпочтительно быть меньше около 5 мм.
Мокрое восстановление осуществляют смешиванием частиц сульфата марганца, частиц каменного угля со средним размером частиц менее около 5 мм и воды, нагреванием полученной суспензии до температуры по меньшей мере 700oC в течение времени, достаточного в основном для полного восстановления сульфата марганца до сульфида марганца. Предпочтительно восстановитель является твердым, имеющим форму частиц углеродистым соединением, которое смешивают с имеющим форму частиц сульфатом марганца и водой, и полученную суспензию нагревают в течение времени, достаточного для полного восстановления сульфата. Предпочтительно этот способ также осуществляют в восстановительной атмосфере, такой как атмосфера, содержащая окись углерода.
Способ по изобретению обеспечивает привлекательную с промышленной точки зрения возможность, поскольку исходные материалы являются недорогими и легкодоступными. Сульфат марганца широко используют в качестве удобрения, а восстановители являются также широко используемыми и недорогими материалами, что способствует низкой стоимости способа. Дополнительным преимуществом является то, что способ можно осуществлять на обычном оборудовании, например, используя печи, такие как конвейерные печи и туннельные печи, необязательно одновременно с другими процессами, которые обычно осуществляют в таком оборудовании.
Продукт MnS, который получают по способу настоящего изобретения, может включать до 25мас.% MnO. Совершенно неожиданно было обнаружено, и это достаточно документировано, что такой относительно высокий процент MnO не оказывает негативного влияния на характеристики улучшенной механической обрабатываемости. В действительности было обнаружено, что в некоторых случаях содержание MnO может улучшить способность продукта к механической обработке в сравнении с чистым MnS продуктом, например продукт, содержащий 1мас.% или менее примесей/побочных продуктов. Кроме MnO, продукт по изобретению может включать до 2мас. % C, и предпочтительно от 0,5 до 1,5мас.% C. С использованием стехиометрического избыточного количества восстановителя можно снизить количество MnO и, как видно из нижеследующих примеров, можно получить высокочистый (98%) продукт MnS даже без высокоочищенных исходных материалов.
Изобретение далее поясняется следующими примерами.
Пример 1
Сульфат марганца (MnSO4 1 H2O), полученный от SVERA АВ, Sweden, смешивали с 15% древесного угля в форме частиц (размер частиц около 1 мм) и запаковывали в цилиндрические SiC-капсулы с коксом в середине, а вокруг помещали смесь. Каждая капсула вмещала 26 кг смеси, и 9 капсул одновременно помещали в туннельную печь. Капсулы нагревали в течение 36 минут при максимальной температуре 1150-1180oC. Полученные пористые лепешки дробили, измельчали и просеивали через сито с размером пор 45 мкм (325 меш), в результате оставался материал, состоящий из MnS с чистотой 98%. Возможна дальнейшая очистка путем измельчения и сушки.
Пример 2
Следующие эксперименты выполняли сухим способом с температурой восстановления между 700 и 900oC.
a. MnSO4 + 2S ---> MnS + 2SO2
b. MnSO4 + 2C ---> MnS + 2CO2.
c. MnSO4 + 4H2 ---> MnS + 4H2O
Углерод добавляли в различных формах, таких как древесный уголь, кокс или каменный уголь. Получаемое соотношение MnS/MnO находилось в строгой зависимости от выбранного типа углеродного материала. Эксперименты, проводимые при 850oC, показали, что древесный уголь дает самое высокое содержание MnS.
Восстановитель - Отношение MnS/MnO
Древесный уголь - - 90/10
Каменный уголь - 72/28
Кокс - 32/68
Эксперименты проводили без избыточного количества восстановителя.
Все эксперименты проводили с предварительным нагревом в течение 5 минут нагреванием до температуры восстановления в течение 15 минут, поддерживая температуру восстановления в течение 60 минут.
Пример 3
Смешиванием 340 кг сульфата марганца в форме частиц, 80 кг углеродных частиц в форме лигнита и 80 кг воды получали суспензию. Суспензию нагнетали в капсулы, как указано в примере 1, и капсулы помещали в туннельную печь с атмосферой, в основном состоящей из окиси углерода и двуокиси углерода. Температура печи составляла 1150 - 1180oC.
Все продукты, полученные по вышеприведенным примерам, имели показатель механической обрабатываемости такой же величины, что и MnS продукт, полученный по способу патента США 4676970.

Claims (10)

1. Способ получения сульфида марганца, включающий нагревание сульфата марганца, отличающийся тем, что используют сульфат марганца в виде частиц или агломерата и нагревание ведут до температуры, по меньшей мере, 700oC, предпочтительно, по меньшей мере, до 750oC в присутствии, по меньшей мере, одного восстановителя.
2. Способ по п.1, отличающийся тем, что восстановление осуществляют в присутствии восстановителя, выбранного из группы, состоящей из каменного угля, древесного угля, лигнита, газообразного водорода и моноокиси углерода.
3. Способ по п.1 или 2, отличающийся тем, что восстановление осуществляют сухим способом.
4. Способ по п.3, отличающийся тем, что восстановителем является газообразный водород и/или моноокись углерода.
5. Способ по п.4, отличающийся тем, что восстановление осуществляют в шахтной печи.
6. Способ по п.1 или 2, отличающийся тем, что восстановление осуществляют мокрым способом.
7. Способ по п.6, отличающийся тем, что восстановитель является твердым, имеющим форму частиц углеродистым соединением, которое смешивают с имеющим форму частиц сульфатом марганца и водой, и полученную суспензию нагревают в течение времени, достаточного для полного восстановления сульфата марганца.
8. Способ по п.7, отличающийся тем, что восстановление осуществляют при температуре, по меньшей мере, 1100oC в восстановительной атмосфере.
9. Способ по п.8, отличающийся тем, что восстановление осуществляют при температуре от 1100 до 1180oC в атмосфере, в основном состоящей из моноокиси углерода и двуокиси углерода.
10. Способ по любому из пп.6 - 9, отличающийся тем, что способ осуществляют в туннельной печи.
RU98107315A 1995-09-22 1996-09-20 Способ получения сульфида марганца RU2172296C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE9503322-1 1995-09-22

Publications (2)

Publication Number Publication Date
RU98107315A RU98107315A (ru) 2000-02-27
RU2172296C2 true RU2172296C2 (ru) 2001-08-20

Family

ID=

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP 62-288116 А, Pat. Abstr. of Japan, 1988, v.12, № 181, С-499, р.83. *
Химическая энциклопедия./Под ред. Кнунянца И.Л. - М.: Советская энциклопедия, 1990, т.2, с.650. БРАУЭР Г. Руководство по препаративной неорганической химии, - М.: Иностранная литература, 1956, с.670. *

Similar Documents

Publication Publication Date Title
JPH0582324B2 (ru)
RU2001117482A (ru) Способ производства гранул железа
US4818505A (en) Process for removing or separating pollutants from waste gases
AU2015320315B9 (en) Phosphorous pentoxide producing methods and systems with increased agglomerate compression strength
NO129801B (ru)
RU2006122536A (ru) Железный порошок, его применение в качестве добавки в пищу, пищевая добавка и способ получения железного порошка
RU2172296C2 (ru) Способ получения сульфида марганца
JP3929071B2 (ja) 硫化マンガンの製造方法
JPS6341962B2 (ru)
JP3092477B2 (ja) 粒状活性炭及びその製造方法
US6045768A (en) Removal of carbon from particulate mixtures
JPS5910933B2 (ja) 塩化アルミニウムの製法
CA2075466C (en) Method of producing silicon and an electric-arc low-shaft furnace and briquette for carrying out the process
JPS5935005A (ja) セレン含有原料の焙焼方法
US3996340A (en) Method of producing aluminum fluoride
SU1130522A1 (ru) Способ переработки фосфогипса на серосодержащие продукты и известь
RU1819850C (ru) Способ агломерации фосфатного сырь
JPS62284007A (ja) 転炉ダストの利用法
JPS645095B2 (ru)
GB1564663A (en) Process for thermal decomposition of phosphogypsum
CN1089572A (zh) 硅合金高能复合炭及其制备工艺
JPS63128127A (ja) 焼結鉱製造方法
SU1731846A1 (ru) Шихта дл производства железорудных окатышей
JPH01180222A (ja) 排ガス浄化用成形体の製造方法
JPS63274722A (ja) 還元鉄組成物及びその製造方法