RU2168558C2 - Изделие с металлическим основным телом и способ его изготовления - Google Patents

Изделие с металлическим основным телом и способ его изготовления Download PDF

Info

Publication number
RU2168558C2
RU2168558C2 RU98103268/02A RU98103268A RU2168558C2 RU 2168558 C2 RU2168558 C2 RU 2168558C2 RU 98103268/02 A RU98103268/02 A RU 98103268/02A RU 98103268 A RU98103268 A RU 98103268A RU 2168558 C2 RU2168558 C2 RU 2168558C2
Authority
RU
Russia
Prior art keywords
layer
coating layer
main body
enriched
alloy
Prior art date
Application number
RU98103268/02A
Other languages
English (en)
Other versions
RU98103268A (ru
Inventor
ЧЕХ Норберт (DE)
Чех Норберт
ХАЛЬБЕРШТАДТ Кнут (DE)
Хальберштадт Кнут
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU98103268A publication Critical patent/RU98103268A/ru
Application granted granted Critical
Publication of RU2168558C2 publication Critical patent/RU2168558C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/06Cooling passages of turbine components, e.g. unblocking or preventing blocking of cooling passages of turbine components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)
  • Building Environments (AREA)

Abstract

Изобретение относится к изделию с металлическим основным телом, выполненному в виде компоненты газовой турбины, в частности в виде лопатки. Изделие содержит металлическое основное тело по меньшей мере с одним проложенным внутри продольным каналом и множеством ответвляющихся от него поперечных каналов. На основном теле лежит снаружи покровный слой. Он служит в качестве защитного или адгезионного слоя. Обогащенный слой покрывает соответственно стенки продольного канала и соответственно поперечных каналов и части покровного слоя. Снаружи еще может быть предусмотрен керамический теплоизоляционный слой. Изобретение обеспечивает снижение расходов на изготовление, а также получение покрытия на внутренней поверхности поперечных каналов без неконтролируемого сужения поперечного сечения. 3 с. и 16 з.п. ф-лы, 4 ил.

Description

Изобретение относится к изделию с металлическим основным телом из сплава по меньшей мере с одним расположенным внутри основного тела продольным каналом и множеством ответвляющихся от него, имеющих соответственно выходное отверстие в основном теле поперечных каналов.
При этом изобретение относится к такому изделию, которое выполнено в виде компоненты газовой турбины, в частности в виде лопатки.
Для стационарных газовых турбин (с ранее обычными температурами материала порядка 950oC) и для газовых турбин в авиационных двигателях (с ранее обычными входными температурами порядка 1100oC) повышение входной температуры было достигнуто путем использования специально разработанных сплавов в качестве основных материалов для деталей, подвергаемых высокой термической нагрузке, как направляющие лопатки, рабочие лопатки, элементы теплозащитного экрана и тому подобное. В частности, путем использования монокристаллических суперсплавов могут применяться температуры металла значительно выше 1000oC. За счет этого может быть повышен коэффициент полезного действия газовой турбины.
Наряду с термомеханическими нагрузками компоненты газовых турбин подвержены также химическим воздействиям, например, дымовых газов с температурами выше 1300oC. Для достаточной стойкости относительно таких воздействий такая компонента покрыта металлическим защитным слоем. Защитный слой должен также обладать достаточно хорошими механическими характеристиками. В частности, с учетом механического взаимодействия между защитным слоем и основным материалом детали защитный слой должен быть достаточно пластичным, чтобы иметь возможность следовать вероятным деформациям основного материала; он должен также, по возможности, быть не подверженным образованию трещин, чтобы предотвратить обнажение основного материала с последующей коррозией и окислением.
Металлические защитные слои для металлических компонентов, в частности для компонентов газовых турбин, для повышения стойкости к коррозии и/или окислению известны в уровне технике в большом разнообразии. Класс сплавов для защитных слоев известен под общим понятием "MCrAlY-сплавы", причем M означает по меньшей мере один элемент из группы, содержащей железо (Fe), кобальт (Co) и никель (Ni), и причем другими существенными составляющими являются хром (Cr), алюминий (Al) и иттрий (Y).
Защитный слой из MCrAIY-сплава, который улучшает коррозионные и окислительные характеристики изделия в области температур поверхности от 600 до 1150oC, описан в EP-0412397 A1. Защитный слой содержит наряду с 22-60% хрома 0-15% алюминия, 0,3-2% иттрия или 0,3-2% другого элемента из группы редкоземельных металлов составляющую 1-20% рения. Основой сплава является никель; при необходимости могут быть добавлены другие элементы, в частности кобальт. Вследствие хорошей теплопроводности металлического защитного слоя покрытая защитным слоем деталь подвержена почти тем же самым термическим нагрузкам, что и сам защитный слой.
Другое коррозионностойкое защитное покрытие для компонентов газовых турбин и других компонентов из сплавов на основе никеля или на основе кобальта известно из EP 0486489 B1. Это защитное покрытие содержит следующие элементы (указанные в весовых долях): 25-40% никеля, 28-32% хрома, 7-9% алюминия, 1-2% кремния, по меньшей мере 5% кобальта, 0,3-1% редкоземельного металла, например иттрия. Характеристики отдельных составляющих явно указаны в этой публикации.
В EP 0397731 B1 описан двухслойный защитный слой из двух различных сплавов. Внешний сплав является MCrAlY-сплавом и содержит (указанные в весовых долях): 15-40% хрома, 3-15% алюминия, а также 0,2-3% по меньшей мере одного элемента из группы иттрий, тантал, гафний, скандий, цирконий, ниобий и кремний. Этот внешний сплав со своей стороны покрыт, при необходимости, в частности при охлаждаемых изнутри металлических деталях, для защиты от особенно высоких температур термобаррьерным слоем. Термобарьерный слой может быть выполнен из оксида циркония с добавкой оксида иттрия. Чтобы предотвратить возможное отслаивание термобарьерного слоя от внешнего сплава, предусмотрено окисление внешнего сплава перед нанесением термобаррьерного слоя.
В уровне техники также известно, в случае турбинной лопатки производить внутреннее покрытие относительно узких каналов охлаждения металлом, например алюминием (J. Е. Restall et al.: "A Process for Protecting Gas Turbine Blade Cooling Passages Against Degradation", Super alloys, 1980, стр. 405-410). Другой способ для осаждения алюминия на соединение никеля, который также является применимым для внутренних поверхностей и каналов охлаждения, также описан в литературе (R.S. Parzuchowski: "Gas Phase Deposition of Aluminium on Nickel Alloys", Thin Solid Films 45, 1977, стр. 349-355). Возможным является также применение хрома или комбинации алюминия и хрома. В дополнение к этому следует сослаться на DE 4119967 C1. Следует отметить, что внутренние покрытия для каналов охлаждения в уровне техники известны в принципе только вместе с подобными внешними покрытиями.
Лопатки для высокоразвитых газовых турбин, например для авиационных двигателей и в увеличивающейся степени также для стационарных газовых турбин, в настоящее время конструируют комплексно. При этом можно различать следующие признаки: Металлическое основное тело, то есть собственно лопатка, отлита из высокотермостойкого материала и тонкостенной. За счет этого должно быть возможным эффективное охлаждение с внутренней стороны лопатки охлаждающей средой, в частности таким газом, как воздух. Основное тело содержит для этого по меньшей мере один продольный канал охлаждения и множество ответвляющихся от него поперечных каналов охлаждения.
На стороне горячего газа лопатки предусмотрено покрытие, которое защищает металлическое основное тело от окисления и высокотемпературной коррозии. Во многих случаях поверх него существует еще другое покрытие на стороне горячего газа из керамического материала для уменьшения теплового потока в лопатке. Желательным является также внутреннее покрытие для защиты от обусловленного окислением ослабления толщины стенки и появления растрескивания на стороне средства охлаждения. Поперечные каналы охлаждения могут при этом рассматриваться как перфорации в рабочей стороне лопатки и/или платформе/платформах, через которые выходит охлаждающая среда. За счет этого может достигаться особенно хорошее распределение и при необходимости также образование завесы охлаждающей среды на стороне горячего газа. Она приводит к пленочному охлаждению.
Задача изобретения состоит в том, чтобы указать изделие, содержащее основное металлическое тело с выполненным в нем по меньшей мере одним продольным каналом, нанесенный снаружи на основное тело покровный слой из сплава, отличающегося от сплава основного тела, и нанесенный поверх покровного слоя керамический слой, которое может изготавливаться экономично с точки зрения расходов. Кроме того, должен быть указан выгодный с точки зрения стоимости способ изготовления для такого изделия, за счет которого, в частности, все поперечные каналы снабжают покрытием без неконтролированного сужения их поперечного сечения.
Первая поставленная задача решается тем, что в изделии выполнены поперечные каналы и на поверхность как продольных, так и поперечных каналов, нанесен металлический покровный слой, содержащий сплав, отличающийся от сплава основного тела, и затем металлический обогащенный слой с образованием каналов охлаждения с защитным покрытием, причем обогащенный слой в каждом выходном отверстии нанесен на небольшую часть покровного слоя.
Покровный слой состоит предпочтительно из сплава MCrAlY и имеет предпочтительно толщину от 180 мкм до 300 мкм. В качестве сплава MCrAlY могут использоваться сплавы, в частности, известные из EP 0412397 A1 и из EP 0486489 B1.
Обогащенный слой на изделии имеет предпочтительно толщину от 30 мкм до 100 мкм.
Обогащенный слой выполнен, в частности, в виде диффузионного слоя, то есть слоя, который образован диффундированием специально нанесенного металла в основное тело. В качестве такого металла могут в частности использоваться алюминий, хром, а также хром-алюминиевые сплавы, причем особенно предпочтительным является алюминий без хрома.
Особенно предпочтительным является также, что изделие содержит керамический теплоизоляционный слой, который покрывает снаружи покровный слой и на каждом выходном отверстии также обогащенный слой на небольших частях покровного слоя, где обогащенный слой покрывает покровный слой. Этот теплоизоляционный слой имеет, кроме того, предпочтительно толщину от 100 мкм до 500 мкм, в частности от 200 мкм до 300 мкм.
Изделие, в частности, с одной или несколькими описанными выше формами выполнения выполнено, в частности, как компонента газовой турбины, например как лопатка или элемент теплозащитного экрана. Его конструктивные признаки делают его особенно пригодным для расчета в том смысле, чтобы оно могло противостоять механическим, термическим и химическим нагрузкам, с которыми следует считаться при работе в газовой турбине, причем изделие обтекается горячим дымовым газом.
Направленная на способ изготовления изделия задача в качестве первого соответствующего изобретению выполнения решается тем, что на поверхность основного тела по меньшей мере с одним расположенным внутри продольным каналом наносят металлический покровный слой, а через основное тело и покровный слой просверливают к продольному каналу поперечные каналы и на поверхности продольного канала, поперечных каналов и выходных отверстий поперечных каналов, на поверхности соответствующих малых частей покровного слоя наносят обогащенный слой и основное тело с покровным слоем и обогащенным слоем подвергают термообработке и покровный слой выглаживают.
Направленная на способ изготовления изделия задача в качестве второго соответствующего изобретению выполнения решается тем, что на поверхность основного тела по меньшей мере с одним расположенным внутри продольным каналом наносят металлический покровный слой, а через основное тело и покровный слой просверливают к продольному каналу поперечные каналы и на поверхности продольного канала, поперечных каналов и выходных отверстий поперечных каналов на поверхности покровного слоя, на соответствующие малые части покровного слоя наносят обогащенный слой, а покровный слой выглаживают и покровный слой снабжают керамическим теплоизоляционным слоем и основное тело с покровным слоем, обогащенным слоем и керамическим теплоизоляционным слоем подвергают термообработке.
Относительно первой формы выполнения способа следует заметить, что выглаживание покровного слоя служит, в частности, для того, чтобы удалить возникший при нанесении обогащенного слоя на нежелательных местах, обогащенный использованным для образования обогащенного слоя материалом поверхностный слой.
Относительно второй формы выполнения способа следует отметить, что операция выглаживания покровного слоя производится в соответствии с требованиями подлежащего нанесению керамического теплоизоляционного слоя, причем опять-таки удаляют возможно появившийся, нежелательный поверхностный слой на покровном слое.
В рамках первой формы выполнения способа покровный слой представляет собой, в частности защитный слой, который должен защищать основное тело от коррозии и/или окисления. В рамках второй формы выполнения способа покровный слой служит, в частности, в качестве адгезионного слоя, чтобы связать керамический теплоизоляционный слой с основным телом. Это связывание происходит возможно через возникающую на покровном слое тонкую окисную пленку. Эта пленка может возникать за счет окисления покровного слоя или может наноситься также за счет отдельной операции. При необходимости образованная окислением покровного слоя пленка может перед нанесением керамического теплоизоляционного слоя также еще модифицироваться, в частности, за счет введения другого химического элемента, как, например, азота.
Покровный слой в рамках любой формы выполнения способа может наноситься за счет способа плазменного напыления при низком давлении (LPPS) или способом плазменного напыления в вакууме (VPS). В частности, способ плазменного напыления в вакууме предпочитают для нанесения покровного слоя из сплава MCrAlY.
Для нанесения обогащенного слоя на основное тело осаждают из паровой фазы и диффундируют предпочтительно по меньшей мере один из элементов - алюминий и хром, предпочтительно алюминий, так что образуется обогащенный слой за счет присадки легирующего элемента алюминия или хрома к материалу основного тела или покровного слоя.
Сверление поперечных каналов в основном теле производят предпочтительно лазерным способом сверления, электрохимическим способом зенкования (ECM) или способом электроискровой эрозии (EDM).
Если в рамках способа должен наноситься теплоизоляционный слой, то это предпочтительно производят способом плазменного напыления в атмосфере (APS) или способом физического напыления (PVD). Способ плазменного напыления при этом особенно выгодным с точки зрения расходов образом дает в основном неструктурированный керамический теплоизоляционный слой, в то время как способ осаждения из паровой фазы, который как правило дороже, чем способ напыления, может давать керамический теплоизоляционный слой, который состоит из отдельных, выращенных на покровном слое столбчатых кристаллитов. Такой теплоизоляционный слой из столбчатых кристаллитов имеет по сравнению с неструктурированным теплоизоляционным слоем значительные преимущества, за которые, правда, должны платиться значительно более высокие производственные расходы. Выбор между неструктурированным теплоизоляционным слоем и теплоизоляционным слоем из столбчатых кристаллитов должен поэтому решаться отдельно для каждого частного случая.
Предусмотренная в рамках каждой формы выполнения способа термообработка служит предпочтительно для диффузионного отжига и/или термического упрочнения снабженного покрытием основного тела.
Особенное преимущество изобретения заключается в том, что при нанесении внутреннего покрытия внешняя поверхность не должна закрываться. Кроме того, за счет последовательности при изготовлении и за счет следующих после нанесения покрытия рабочих операций, в частности путем выглаживания, обеспечивается то, что ни между поверхностью детали и покровным слоем, ни на покровном слое не возникают или не остаются фазы с повышенным содержанием материала обогащенного слоя, в частности алюминия. Дело в том, что о таких фазах известно, что они склонны к образованию трещин. Таким образом, образование трещин может в значительной степени избегаться.
Способ согласно изобретению, кроме того, обеспечивает то, что все поперечные каналы охлаждения, то есть все выходные отверстия охлаждающего воздуха снабжаются покрытием.
Предпочтительно обогащенный слой наносят способом химического напыления (CDV = Chemical Vapour Deposition), в частности диффузионным процессом. Путем этого выбора способа нанесения для внутреннего покрытия удерживается малым загрязнение наружной поверхности. Так как она состоит из еще шершавого после напыления покровного слоя, который предпочтительно изготовлен по способу напыления в вакууме (VPC = Vacuum Pressure Spraying) или по способу плазменного напыления при низком давлении (LPPS = Low Pressure Plasma Spraying), в последующем процессе выглаживания, который при необходимости может быть абразивным способом (процессом шлифования), достигается безостаточное удаление всех нежелательных остатков. Кроме того, количество термообработок может оставаться относительно малым.
Если деталь должна снабжаться теплоизоляционным слоем, то он предпочтительно может наноситься способом физического напыления (PVD = Physical Vapour Deposition).
Описанные выше изделия имеют в качестве компонентов турбины относительно высокий срок службы.
Способ изготовления, исходя из последовательности изготовления, дает преимущество, что поперечные каналы, то есть отверстия для охлаждающего воздуха не закрываются, а только сужаются с хорошей воспроизводимостью. Это может быть показано на конструкции компоненты в масштабе чертежа.
Примеры выполнения изобретения поясняются в последующем более подробно с помощью чертежей, на которых показано:
Фиг. 1 - вырез лопатки газовой турбины без внешнего теплоизолирующего слоя;
Фиг. 2 - вырез лопатки газовой турбины с внешним теплоизолирующим слоем;
Фиг. 3 - блок-схема способа для изготовления лопатки газовой турбины согласно фигуре 1; и
Фиг. 4 - блок-схема способа для изготовления лопатки газовой турбины согласно фигуре 2.
Согласно фигуры 1 лопатка 2 для газовой турбины содержит металлическое основное тело 4. В случае этого основного тела 4 может идти речь, в частности, о таковом из суперсплава на основе никеля или кобальта. Примерно центрально внутри основного тела 4 находится продольный канал 6. От этого продольного канала 6 ответвляется множество поперечных каналов 8. Продольный канал 6 и поперечные каналы 8, как будет понятно позднее, после снабжения внутренним покрытием служат для пропускания охлаждающей среды A, в частности охлаждающего газа, как воздух.
Снаружи на каждой стороне основного тела 4 непосредственно нанесен покровный слой 10. Этот покровный слой 10 состоит из сплава MCrAlY. Он имеет предпочтительно толщину от 180 мкм до 300 мкм. Выпускные отверстия 14 при этом оставлены свободными. Покровный слой 10 предпочтительно нанесен способом плазменного напыления при низком давлении или способом плазменного напыления в вакууме. Он выполняет функцию (внешнего) защитного слоя.
Для внутреннего покрытия предусмотрен обогащенный слой 12. Он покрывает только стенки продольного канала 6 и стенки поперечных каналов 8. Кроме того, он находится также во внешней области поперечных каналов 8 с оставлением свободными выходных отверстий 14 и покрывает при этом сбоку небольшую часть покровного слоя 10. Эта часть покрытия обозначена позицией 16. Обогащенный слой 12 имеет предпочтительно толщину от 30 мкм до 100 мкм. Он нанесен предпочтительно диффузионным способом, причем хром и/или алюминий осаждают из паровой фазы и вводят диффузией.
Можно видеть, что лопатка 2 имеет таким образом снабженный покрытием продольный канал охлаждения 6а и множество ответвляющихся от него снабженных покрытием поперечных каналов охлаждения 8а для прохождения через них охлаждающей среды A.
Лопатка 2 с фигуры 2 в основном соответствует таковой с фигуры 1. Однако здесь снаружи, то есть на покровном слое 10, еще предусмотрен керамический теплоизоляционный слой 20. Покровный слой 10, который предпочтительно опять-таки выполнен из сплава MCrAlY, имеет здесь функцию адгезионного слоя. Теплоизоляционный слой 20 имеет толщину от 100 мкм до 500 мкм, предпочтительно толщину от 200 мкм до 300 мкм. Он может состоять из обычных известных материалов. Достойно упоминания лишь то, что теплоизоляционный слой 20 покрывает снаружи покровный слой 10 и во внешней области поперечных каналов 8 с оставлением свободными выпускных отверстий 14 также небольшую часть или область перекрытия 22 обогащенного слоя 12. Теплоизоляционный слой 20 может быть изготовлен способом плазменного напыления при атмосферном давлении (APS = Atmospheric Plasma Spraying) или способом физического напыления (PVD = Physical Vapour Deposition).
На фигуре 3 показан принципиальный путь для изготовления лопатки 2 согласно фигуре 1. Согласно фигуре 3 вначале в первой операции 30 производят литье, то есть изготовление сформованного основного тела 4, включая продольный канал 6. Могут быть также предусмотрены несколько продольных каналов 6. Во второй операции 32 производят механическую обработку. При этом производят фрезерование хвостовика лопатки, фрезерование уплотнительных поверхностей лопатки 4 и/или другую операцию обработки так, что получается заготовка. В последующей операции 34 производят нанесение покровного слоя 10 на основное тело 4. Этот покровный слой 10 может состоять, в частности, из сплава MCrAlY. Нанесение производят посредством способа плазменного напыления при низком давлении или в вакууме (LPPS = Low Pressure Plasma Spraying или VPS = Vacuum Plasma Spraying). При этом заготовку при необходимости подвергают связывающей термообработке. Покровный слой 10 служит при работе лопатки 2 в качестве защитного слоя.
В последующую операцию 36 производят сверление поперечных каналов 8. При этом можно пользоваться различными технологиями. Если речь идет о каналах 8 круглого поперечного сечения, в также о подводах к сформированным выходным отверстиям, то можно использовать лазерную обработку. Если же в противоположность этому речь идет об отверстиях для пленочного охлаждения, например, трапециевидной или другой формы поперечного сечения, то можно использовать электрохимический способ зенкования (EMC = Elektro Chemical Milling) или способ электроразрядного зенкования (EDM = Electrical Discharge Milling).
После этого следует операция 38, а именно нанесение внутреннего покрытия. Здесь речь идет о нанесении обогащенного слоя 12. Это нанесение может производиться, например, с помощью реакционного газа за счет диффузионного процесса (CVD = Chemical Vapour Deposition) или способом укладки порошка с последующим диффузионным процессом. Вначале уже было указано на то, что такие способы являются сами по себе известными.
Итак, после того как основное тело 4 получило свое внешнее металлическое покрытие 10, 12, его подводят в операции 40 к термообработке. Эта операция 40 требуется, чтобы материал основного тела 4 получил свои оптимальные характеристики материала. В этой операции 40 речь идет, в частности, о диффузионном отжиге и последующем упрочнении. В последующей операции 42 устраняют шероховатость изготовленной теперь лопатки 4. Это происходит за счет механического процесса выглаживания. При этом удаляются также остатки на поверхности покровного слоя 10, за счет чего избегается, например, появление трещин за счет хрупких, богатых алюминием фаз.
На фигуре 4 операции 30-38 соответствуют операциям 30-38 на фигуре 3. Поэтому от повторного описания их отказываются.
К операции 38 на фигуре 4 примыкает операция 44 механического выглаживания. При этом поверхность подготавливают для последующего нанесения теплоизоляционного слоя 20 в операции 46.
В операции 46 происходит нанесение теплоизоляционного слоя 20, а именно путем осаждения из паровой фазы. При этом является предпочтительным процесс электронно-лучевого напыления (EB-PVD = Electron Beam Physical Vapour Deposition). В то время как при изготовлении согласно фигуре 3 лопатка 2 имеет снаружи металлическую поверхность, лопатка 2 согласно фигуре 4 теперь имеет снаружи керамическую поверхность.
К операции 46 примыкает операция 48 для термообработки (соответствует операции 40 с фигуры 3). Также здесь речь идет о диффузионном отжиге и термическом упрочнении основного материала лопатки 2. После этой операции 48 в распоряжении имеется для использования лопатка 2 согласно фигуре 2.

Claims (19)

1. Изделие, содержащее основное металлическое тело с выполненным в нем, по меньшей мере, одним продольным каналом, нанесенный снаружи на основное тело покровный слой из сплава, отличающегося от сплава основного тела, и нанесенный поверх покровного слоя керамический слой, отличающееся тем, что в нем выполнены поперечные каналы и на поверхность как продольных, так и поперечных каналов нанесен металлический покровный слой, содержащий сплав, отличающийся от сплава основного тела, и затем металлический обогащенный слой с образованием каналов охлаждения с защитным покрытием, причем обогащенный слой в каждом выходном отверстии поперечных каналов нанесен на небольшую часть покровного слоя.
2. Изделие по п.1, отличающееся тем, что покровный слой 10 выполнен из сплава McrAlY и имеет предпочтительно толщину от 180 до 300 мкм.
3. Изделие по п.1 или 2, отличающееся тем, что обогащенный слой 12 имеет толщину от 30 до 100 мкм.
4. Изделие по любому из пп.1 - 3, отличающееся тем, что обогащенный слой 12 является диффузионным слоем.
5. Изделие по любому из пп.1 - 4, отличающееся тем, что обогащенный слой 12 содержит в качестве существенной составляющей алюминий и/или хром, предпочтительно только алюминий.
6. Изделие по любому из пп.1 - 5, отличающееся тем, что оно снабжено керамическим теплоизоляционным слоем 20, который покрывает снаружи покровный слой 10 и на каждом выходном отверстии 14 поперечных каналов также обогащенный слой 12 на каждой небольшой части 16 покровного слоя 10.
7. Изделие по п.6, отличающееся тем, что теплоизоляционный слой 20 имеет толщину от 100 до 500 мкм, предпочтительно от 200 до 300 мкм.
8. Изделие по любому из пп.1 - 7, отличающееся тем, что оно выполнено в виде компоненты газовой турбины, в частности в виде лопатки.
9. Способ изготовления изделия, содержащего основное металлическое тело с выполненным в нем, по меньшей мере, одним продольным каналом, нанесенным снаружи на основное тело покровным слоем из сплава, отличающегося от сплава основного тела, и нанесенным поверх покровного слоя керамическим слоем, отличающийся тем, что на поверхности основного тела 4 с, по меньшей мере, одним расположенным внутри продольным каналом 6 наносят металлический покровный слой 10, а через основное тело 4 и покровный слой 10 просверливают к продольному каналу 6 поперечные каналы 8 и на поверхности продольного канала 6, поперечных каналов 8 и выходных отверстий 14 поперечных каналов 8, на поверхности соответствующих малых частей 16 покровного слоя 10 наносят обогащенный слой 12, основное тело 4 с покровным слоем 10 и обогащенным слоем 12 подвергают термообработке и покровный слой 10 выглаживают.
10. Способ по п.9, отличающийся тем, что покровный слой 10 наносят способом плазменного напыления при низком давлении или способом плазменного напыления в вакууме.
11. Способ по п.9 или 10, отличающийся тем, что для нанесения обогащенного слоя 12 напыляют и диффундируют по меньшей мере один из элементов: алюминий и хром, предпочтительно алюминий.
12. Способ по любому из пп.9 - 11, отличающийся тем, что поперечные каналы 8 сверлят лазерным способом сверления, электрохимическим способом зенкования или способом электроискровой эрозии.
13. Способ по любому из пп.9 - 12, отличающийся тем, что термообработку производят для диффузионного отжига и/или упрочнения.
14. Способ изготовления изделия, содержащего основное металлическое тело с выполненным в нем, по меньшей мере, одним продольным каналом, нанесенным снаружи на основное тело покровным слоем из сплава, отличающегося от сплава основного тела, и нанесенным поверх покровного слоя керамическим слоем, отличающийся тем, что на поверхность основного тела 4 с, по меньшей мере, одним расположенным внутри продольным каналом 6 наносят металлический покровный слой 10, а через основное тело 4 и покровный слой 10 просверливают к продольному каналу 6 поперечные каналы 8 и на поверхности продольного канала 6, поперечных каналов 8 и выходных отверстий 14 поперечных каналов 8, на поверхности покровного слоя 10 на соответствующие малые части 16 покровного слоя 10 наносят обогащенный слой 12, а покровный слой 10 выглаживают и снабжают керамическим теплоизоляционным слоем 20 и основное тело 4 с покровным слоем 10, обогащенным слоем 12 и керамическим теплоизоляционным слоем 20, подвергают термообработке.
15. Способ по п.14, отличающийся тем, что теплоизоляционный слой 20 наносят способом плазменного напыления в атмосфере или способом физического напыления.
16. Способ по п.14 или 15, отличающийся тем, что покровный слой 10 наносят способом плазменного напыления при низком давлении или способом плазменного напыления в вакууме.
17. Способ по любому из пп.14 - 16, отличающийся тем, что для нанесения обогащенного слоя 12 напыляют и диффундируют, по меньшей мере, один из элементов: алюминий и хром, предпочтительно алюминий.
18. Способ по любому из пп.14 - 17, отличающийся тем, что поперечные каналы 8 сверлят лазерным способом сверления, электрохимическим способом зенкования или способом электроискровой эрозии.
19. Способ по любому из пп.14 - 18, отличающийся тем, что термообработку производят для диффузионного отжига и/или упрочнения.
RU98103268/02A 1995-07-25 1996-07-05 Изделие с металлическим основным телом и способ его изготовления RU2168558C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19527149.1 1995-07-25
DE19527149 1995-07-25

Publications (2)

Publication Number Publication Date
RU98103268A RU98103268A (ru) 2000-02-20
RU2168558C2 true RU2168558C2 (ru) 2001-06-10

Family

ID=7767740

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98103268/02A RU2168558C2 (ru) 1995-07-25 1996-07-05 Изделие с металлическим основным телом и способ его изготовления

Country Status (8)

Country Link
US (2) US5967755A (ru)
EP (1) EP0840809B1 (ru)
JP (1) JP3571052B2 (ru)
DE (1) DE59601728D1 (ru)
ES (1) ES2132927T3 (ru)
IN (1) IN187769B (ru)
RU (1) RU2168558C2 (ru)
WO (1) WO1997005299A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2520237C2 (ru) * 2012-02-28 2014-06-20 Публичное акционерное общество " ФЭД" Способ нанесения двухкомпонентных хром-алюминиевых покрытий на внутренние полости охлаждаемых рабочих лопаток газовых турбин и устройство для осуществления способа
RU2680169C1 (ru) * 2015-04-01 2019-02-18 Сименс Акциенгезелльшафт Двухсплавная лопатка

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2991991B2 (ja) * 1997-03-24 1999-12-20 トーカロ株式会社 耐高温環境用溶射被覆部材およびその製造方法
DE19737845C2 (de) * 1997-08-29 1999-12-02 Siemens Ag Verfahren zum Herstellen einer Gasturbinenschaufel, sowie nach dem Verfahren hergestellte Gasturbinenschaufel
DE59802893D1 (de) * 1998-03-23 2002-03-14 Alstom Nichtkreisförmige Kühlbohrung und Verfahren zur Herstellung derselben
EP1115906B1 (de) 1998-09-21 2003-02-05 Siemens Aktiengesellschaft Verfahren zur innenbearbeitung eines hohlen bauteils
US6296447B1 (en) 1999-08-11 2001-10-02 General Electric Company Gas turbine component having location-dependent protective coatings thereon
US6332926B1 (en) * 1999-08-11 2001-12-25 General Electric Company Apparatus and method for selectively coating internal and external surfaces of an airfoil
US6283714B1 (en) 1999-08-11 2001-09-04 General Electric Company Protection of internal and external surfaces of gas turbine airfoils
US6670046B1 (en) 2000-08-31 2003-12-30 Siemens Westinghouse Power Corporation Thermal barrier coating system for turbine components
US6375425B1 (en) 2000-11-06 2002-04-23 General Electric Company Transpiration cooling in thermal barrier coating
DE102005060243A1 (de) * 2005-12-14 2007-06-21 Man Turbo Ag Verfahren zum Beschichten einer Schaufel und Schaufel einer Gasturbine
US8257600B2 (en) * 2010-03-01 2012-09-04 United Technologies Corporation Printed masking process
US20120148769A1 (en) * 2010-12-13 2012-06-14 General Electric Company Method of fabricating a component using a two-layer structural coating
US20120243995A1 (en) * 2011-03-21 2012-09-27 General Electric Company Components with cooling channels formed in coating and methods of manufacture
DE102011103731A1 (de) * 2011-05-31 2012-12-06 Man Diesel & Turbo Se Verfahren zum Aufbringen einer Schutzschicht, mit einer Schutzschicht beschichtetes Bauteil und Gasturbine mit einem solchen Bauteil
US20130101761A1 (en) * 2011-10-21 2013-04-25 General Electric Company Components with laser cladding and methods of manufacture
US10472972B2 (en) * 2015-12-01 2019-11-12 General Electric Company Thermal management of CMC articles having film holes
US11821337B1 (en) * 2022-08-05 2023-11-21 Rtx Corporation Internal aluminide coating for vanes and blades and method of manufacture

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208453A (en) * 1969-06-30 1980-06-17 Alloy Surfaces Company, Inc. Modified diffusion coating of the interior of a steam boiler tube
US3849865A (en) * 1972-10-16 1974-11-26 Nasa Method of protecting the surface of a substrate
US4031274A (en) * 1975-10-14 1977-06-21 General Electric Company Method for coating cavities with metal
US4132816A (en) * 1976-02-25 1979-01-02 United Technologies Corporation Gas phase deposition of aluminum using a complex aluminum halide of an alkali metal or an alkaline earth metal as an activator
US4218007A (en) * 1979-02-22 1980-08-19 General Electric Company Method of diffusion bonding duplex sheet cladding to superalloy substrates
US4405660A (en) * 1980-01-07 1983-09-20 United Technologies Corporation Method for producing metallic articles having durable ceramic thermal barrier coatings
US4526814A (en) * 1982-11-19 1985-07-02 Turbine Components Corporation Methods of forming a protective diffusion layer on nickel, cobalt, and iron base alloys
US4576874A (en) * 1984-10-03 1986-03-18 Westinghouse Electric Corp. Spalling and corrosion resistant ceramic coating for land and marine combustion turbines
US4743462A (en) * 1986-07-14 1988-05-10 United Technologies Corporation Method for preventing closure of cooling holes in hollow, air cooled turbine engine components during application of a plasma spray coating
EP0397731B1 (de) * 1988-02-05 1993-04-14 Siemens Aktiengesellschaft Metallgegenstand, insbesondere gasturbinenschaufel mit schutzbeschichtung
US4880614A (en) * 1988-11-03 1989-11-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
DE3907625C1 (ru) * 1989-03-09 1990-02-15 Mtu Muenchen Gmbh
DE3926479A1 (de) * 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
DE58908611D1 (de) * 1989-08-10 1994-12-08 Siemens Ag Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile.
US5238752A (en) * 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
US5197852A (en) * 1990-05-31 1993-03-30 General Electric Company Nozzle band overhang cooling
US5180285A (en) * 1991-01-07 1993-01-19 Westinghouse Electric Corp. Corrosion resistant magnesium titanate coatings for gas turbines
DE4103994A1 (de) * 1991-02-11 1992-08-13 Inst Elektroswarki Patona Schutzueberzug vom typ metall-keramik fuer einzelteile aus hitzebestaendigen legierungen
DE4119967C1 (ru) * 1991-06-18 1992-09-17 Mtu Muenchen Gmbh
US5236745A (en) * 1991-09-13 1993-08-17 General Electric Company Method for increasing the cyclic spallation life of a thermal barrier coating
EP0572150A3 (en) * 1992-05-26 1993-12-29 General Electric Company Chemical vapour-deposition of aluminide coatings
DE4226272C1 (de) * 1992-08-08 1994-02-10 Mtu Muenchen Gmbh Verfahren zur Behandlung von MCrAlZ-Schichten und mit dem Verfahren hergestellte Bauteile
GB9218858D0 (en) * 1992-09-05 1992-10-21 Rolls Royce Plc High temperature corrosion resistant composite coatings
DE4310896C1 (de) * 1993-04-02 1994-03-24 Thyssen Industrie Verfahren zum Herstellen von verschleißfesten Kanten an Turbinenschaufeln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.E.Restall et al. A Process for Protecting Gas Turbine Blade Cooling Passages Against Degradation, Superalloys, 1980, p. 405-410. R.S.Parzuchowski. Gas Phase Deposition of Aluminium on Nickel Alloys, Thin Solid Films US, 1977, p. 349-355. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2520237C2 (ru) * 2012-02-28 2014-06-20 Публичное акционерное общество " ФЭД" Способ нанесения двухкомпонентных хром-алюминиевых покрытий на внутренние полости охлаждаемых рабочих лопаток газовых турбин и устройство для осуществления способа
RU2680169C1 (ru) * 2015-04-01 2019-02-18 Сименс Акциенгезелльшафт Двухсплавная лопатка
US10513782B2 (en) 2015-04-01 2019-12-24 Siemens Aktiengesellschaft Dual alloy blade

Also Published As

Publication number Publication date
EP0840809A1 (de) 1998-05-13
IN187769B (ru) 2002-06-22
EP0840809B1 (de) 1999-04-21
DE59601728D1 (de) 1999-05-27
JPH11509893A (ja) 1999-08-31
ES2132927T3 (es) 1999-08-16
WO1997005299A1 (de) 1997-02-13
US6156133A (en) 2000-12-05
US5967755A (en) 1999-10-19
JP3571052B2 (ja) 2004-09-29

Similar Documents

Publication Publication Date Title
RU2168558C2 (ru) Изделие с металлическим основным телом и способ его изготовления
CA2517298C (en) Process for applying a protective layer
US6096381A (en) Process for densifying and promoting inter-particle bonding of a bond coat for a thermal barrier coating
US6440496B1 (en) Method of forming a diffusion aluminide coating
EP1335040B1 (en) Method of forming a coating resistant to deposits
US6255001B1 (en) Bond coat for a thermal barrier coating system and method therefor
US5514482A (en) Thermal barrier coating system for superalloy components
EP0987347B1 (en) Thermal barrier coating system and method therefor
US5780110A (en) Method for manufacturing thermal barrier coated articles
US5562998A (en) Durable thermal barrier coating
EP1791989B1 (en) Chromium and active elements modified platinum aluminide coatings
US9511436B2 (en) Composite composition for turbine blade tips, related articles, and methods
US20070264126A1 (en) Method of Protecting a Component Against Hot Corrosion
US7306859B2 (en) Thermal barrier coating system and process therefor
US20090252985A1 (en) Thermal barrier coating system and coating methods for gas turbine engine shroud
CZ300909B6 (cs) Vícevrstvový vazební povlak pro povlakový systém tepelné ochranné bariéry a zpusob jeho vytvorení
JPH11124691A (ja) サーマルバリアコーティング用の傾斜ボンディングコート
JPH10507230A (ja) 腐食・酸化及び熱的過負荷に対して部材を保護するための保護層並びにその製造方法
CA2633206A1 (en) Method for coating a blade and blade of a gas turbine
CA2629066A1 (en) Heat-insulating protective layer for a component located within the hot gas zone of a gas turbine
EP1391533B1 (en) Method for protecting articles, and related compositions
US6482470B1 (en) Diffusion aluminide coated metallic substrate including a thin diffusion portion of controlled thickness
GB2285632A (en) Thermal barrier coating system for superalloy components
US20070207339A1 (en) Bond coat process for thermal barrier coating
Chen et al. Development of evaluation method for damage of oxidation CoNiCrAlY coating

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040706