RU2167714C2 - Способ изготовления катализатора, а также катализатор, изготовленный этим способом - Google Patents

Способ изготовления катализатора, а также катализатор, изготовленный этим способом Download PDF

Info

Publication number
RU2167714C2
RU2167714C2 RU99101085/04A RU99101085A RU2167714C2 RU 2167714 C2 RU2167714 C2 RU 2167714C2 RU 99101085/04 A RU99101085/04 A RU 99101085/04A RU 99101085 A RU99101085 A RU 99101085A RU 2167714 C2 RU2167714 C2 RU 2167714C2
Authority
RU
Russia
Prior art keywords
catalytically active
reactive precursor
catalyst
active mass
metal
Prior art date
Application number
RU99101085/04A
Other languages
English (en)
Other versions
RU99101085A (ru
Inventor
Эрих Хумс
Александр Хинский
Original Assignee
Сименс Акциенгезелльшафт
Кластер Корпорейшн Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт, Кластер Корпорейшн Лтд. filed Critical Сименс Акциенгезелльшафт
Publication of RU99101085A publication Critical patent/RU99101085A/ru
Application granted granted Critical
Publication of RU2167714C2 publication Critical patent/RU2167714C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к способу изготовления катализатора с каталитически активной массой на теле носителя путем термического напыления, а также к катализатору, изготовленному этим способом. При этом предусмотрено термически напылять напыляемый материал, содержащий реактивный предшественник по меньшей мере одной компоненты каталитически активной массы на тело носителя и подвергать реактивный предшественник преобразованию для формирования компоненты. Таким образом может быть изготовлен катализатор с высокой определяемой методом БЭТ удельной поверхностью. Одновременно можно избежать инактивации термически чувствительной компоненты во время процесса напыления. 2 с. и 17 з.п., 1 ил., 2 табл.

Description

Изобретение относится к способу изготовления катализатора с каталитической активной массой на теле носителя путем термического напыления, а также к катализатору, изготовленному этим способом.
Из US 3271326 известен в основном никельсодержащий катализатор, в котором каталитически активную поверхность наносят газопламенным напылением. При этом в первую рабочую операцию на предварительно выполненную механически шероховатой стальную несущую структуру для дальнейшего придания шероховатости наносят алюминий газопламенным напылением. После этого во вторую рабочую операцию на таким образом предварительно обработанную несущую структуру наносят газопламенным напылением каталитически активные компоненты. Особенностью этого сложного способа изготовления является то, что напыленные каталитически активные компоненты нагревают до их температуры плавления.
Из DE 3813312 A1 известно нанесение модифицированного каталитически активными компонентами в качестве добавок диоксида титана на металлическую структуру путем термического напыления. При этом каталитически активные компоненты кратковременно расплавляются и сплавляются друг с другом при охлаждении в местах соприкосновения. Таким образом, получается удерживаемая силами адгезии каталитически активная поверхность.
Однако известно, что каталитическая активность диоксида титана очень сильно зависит от доли диоксида титана, который присутствует в анатазной модификации. Анатазная модификация диоксида титана имеет при этом свойство, благоприятствующее за счет повышенных температур необратимо превращаться в менее активную рутиловую модификацию. Зародыши диоксида титана в рутиловой модификации растут далее при подводе тепла в кристаллической структуре за счет анатазной модификации.
Из DE 3916398 A1, кроме того, известно, добавлять к напыляемому материалу, который содержит термически чувствительную компоненту, как диоксид титана в анатазной модификации, самую низкоплавкую компоненту. Температура плавления самой низкоплавкой компоненты лежит при этом ниже температуры инактивации, выше которой необратимо уменьшается за счет, например, химического изменения доля термически чувствительной компоненты. Во время термического напыления напыляемый материал нагревают только до температуры плавления самой низкоплавкой компоненты, за счет чего инактивация термически чувствительной компоненты исключается. Адгезия компонентов напыляемого материала между собой происходит во время термического напыления за счет обтекания и расплавления самой низкоплавкой компоненты, Тем самым также при наличии термически чувствительной компоненты путем термического напыления может быть получена поверхность с высокой каталитической активностью.
Обтекание каталитически активной компоненты самой низкоплавкой компонентой уменьшает, однако, удельную поверхность или удельную поверхность, определяемую методом БЭТ (Брунауэра, Эммета и Теллера) нанесенной массы. Для высокой каталитической активности должна соответственно увеличиваться толщина слоя нанесенной каталитически активной массы. Получающаяся отсюда в результате более длительная продолжительность напыления может тогда легко приводить к термическому короблению тела носителя или соответственно структуры носителя. Способ поэтому является пригодным только для толщин структур носителя больше, чем порядка 3 мм.
В основе изобретения лежит задача указания пути, как методом термического напыления может быть изготовлен катализатор с каталитически активной массой на теле носителя без инактивации термически чувствительных компонентов, причем каталитически активная масса по сравнению с уровнем техники имеет значительно более высокую удельную поверхность, определяемую методом БЭТ. Кроме того, задачей изобретения является указание катализатора, изготовленного этим способом.
Относительно способа изготовления для катализатора с каталитически активной массой на теле носителя задача решается согласно изобретению за счет того, что на тело носителя термически напыляют реактивный предшественник по меньшей мере одной компоненты каталитически активной массы и реактивный предшественник преобразуют для формирования компоненты.
Изобретение при этом исходит из рассуждения, как раз противоположного соответствующему мнению специалиста, выбирать для напыляемого материала не тот же самый состав, как для каталитически активной массы, подлежащей нанесению на тело носителя. Кроме того, для по меньшей мере одной компоненты каталитически активной массы в напыляемом материале выбирают реактивный предшественник, который преобразуют для формирования компоненты. Таким образом, например, для термически чувствительной компоненты, как диоксид титана, можно избежать инактивации, благоприятствующей повышению температуры во время процесса напыления. Дело в том, что компонента преобразуется из реактивного предшественника только во время или после процесса напыления, и вследствие этого за счет повышения температуры, происходящего до преобразования, инактивироваться не может.
Оказалось, что изготовленная способом согласно изобретению каталитически активная масса имеет высокую определяемую методом БЭТ удельную поверхность, от 50 до 70 м2/г. Обширные исследования позволяют предположить, что при преобразовании реактивного предшественника завязываются химические связи, которые приводят к образованию связанных друг с другом микрокристаллитов. Подобное скопление связанных микрокристаллитов имеет высокую удельную поверхность. Вследствие высокой определяемой методом БЭТ удельной поверхности может быть заметно уменьшена толщина слоя каталитически активной массы по сравнению с уровнем техники при одинаково высокой каталитической активности. Вследствие связанной с этим более короткой длительности напыления для нанесения каталитически активной массы является подходящим тело носителя с толщиной термического коробления. С такой экономией материала могут быть соответственно снижены расходы на изготовление. В качестве тела носителя является пригодным металлическое или керамическое тело любой формы, например, в форме пластины, ленты, штанги или трубки. Можно также представить себе использование для тела носителя другого материала, чем металл или керамика, если он может не повреждаться за счет повышенной температуры во время процесса напыления.
Особенно предпочтительным является, если преобразование или химическая реакция реактивного предшественника происходит путем термической активации во время напыления. Напыляемый материал при этом во время термического напыления нагревают до температуры сверх соответствующей температуры активации, выше которой начинается химическая реакция предшественника.
Термическая активация реактивного предшественника может, однако, производиться также после произведенного напыления за счет термообработки нанесенной каталитически активной массы или тела носителя выше температуры активации. Подобная термообработка может также охватывать процесс кальцинирования.
В качестве реактивного предшественника, преобразуемого за счет термической активации, особенно пригодной является, в частности, термически легко разложимая соль металла или несущее гидроксильную группу соединение (гидроксисоединение) металла. Соль металла или ионное соединение соответствующего металла могут быть ионизированы за счет соответствующего внесения тепла в катион и анион. Подобная ионизация имеет место, например, в каждом пламени свечи. Если температура во время термического напыления, под которым здесь должно пониматься как плазменное напыление, так и газопламенное напыление выбирается соответственно высокой, то свободный ион металла может реагировать с газовой молекулой окружающей атмосферы и, например, образовывать с кислородом оксид металла в качестве желаемой компоненты. Под гидроксисоединением металла здесь должно пониматься еще не полностью обезвоженное, то есть еще содержащее OH-группы оксидное соединение металла. Подобные соединения могут быть легко термически переведены, при необходимости также при многократном отщеплении воды, в соответствующий оксид. Таким образом, гидроксисоединение металла может быть преобразовано путем соответственно выбранной температуры во время процесса напыления в оксид металла.
Особенно предпочтительным является, если в качестве соли металла используют оксалат, нитрат или карбонат. Подобная соль металла может быть ионизирована особенно легко, то есть при температуре ниже 500oC.
В качестве реактивного предшественника особенно пригодным является гидроксид алюминия, предпочтительно гиббсит (моноклинный γ-Al(OH)3) или бемит (ромбически кристаллический метагидроксид γ-AlO(OH), или гидроксид титана, предпочтительно также метагидроксид титана TiO(OH)2, называемый метатитановой кислотой. Как гидроксид алюминия, так также и метагидроксид титана может легко, чему способствуют высокие температуры, переводиться в соответствующую оксидную форму. Преобразованный путем термической активации метагидроксида титана TiO(OH)2 диоксид титана TiO2 является главной составной частью многих катализаторов. Содержащий диоксид титана катализатор является особенно пригодным для удаления оксидов азота с помощью известного DeNOx-способа.
Нанесенная путем термического напыления каталитически активная масса имеет особенно высокую определяемую методом БЭТ удельную поверхность, если используют напыляемый материал, содержащий множество реактивных предшественников. Например, для каталитически активной компоненты диоксид титана TiO2 в качестве реактивного предшественника может использоваться метагидроксид титана TiO(OH)2, для оксида алюминия Al2O3 бемит и/или гиббсит, а для других каталитически активных компонентов в качестве соответствующего реактивного предшественника может использоваться оксалат. Соответствующий нагрев напыляемого материала во время термического напыления приводит к возрастающему отщеплению воды из гидроксисоединений. За счет отщепления OH-группы метатитановой кислоты и протона из гидроксида алюминия может легко возникать третичный оксид или смешанный оксид алюминия и титана. Остальные реактивные предшественники ионизируют и, например, в содержащей кислород атмосфере переводят в их оксиды. Таким образом, может быть изготовлена каталитически высокоактивная масса путем термического напыления на теле носителя.
Как уже упомянуто, диоксид титана может существовать как в рутиловой, так и в анатазной модификации. По сравнению с рутиловой модификацией анатазная модификация проявляет значительно более высокую каталитическую активность. Кристаллизация выгодной модификации благоприятствуется, если к напыляемому материалу примешивают соосажденный продукт. Под соосажденным продуктом понимают осадок химического элемента или химического соединения в присутствии веществ, которые являются растворимыми. Соосажденный продукт согласно этому является соответственно смешанным с другим веществом осадком химического элемента или химического соединения. Например, из раствора, который содержит титанилсульфат и паравольфрамат, может быть получен диоксид титана, смешанный с вольфрамом. При этом атомы вольфрама встроены в междоузлия решетки диоксида титана. Путем сушки и кальцинирования отсюда может быть получен диоксид титана, кристаллизованный в анатазной модификации, причем встроенные атомы вольфрама служат в качестве блокады для фазовой трансформации в рутиловую модификацию. Другим соосажденным продуктом является, например, кристаллическая смесь из метатитановой кислоты и вольфрамовой кислоты (Ti(OH)2/WO(OH)2). За счет соответствующего соосажденного продукта можно воспрепятствовать, чтобы при преобразовании реактивного предшественника в каталитически активную компоненту вообще появлялась фазовая трансформация в невыгодную кристаллическую модификацию.
Для изготовления катализатора, содержащего оксиды металла, является выгодным, если термическое напыление производят в атмосфере, содержащей кислород. В этом случае свободный ион металла (образующийся за счет ионизации соли) соединяется с кислородом в оксид металла.
Особенно предпочтительным является, если параллельно к напыляемому материалу напыляют металл или металлический сплав, причем металл или металлический сплав и напыляемый материал во время напыления тщательно смешивают перед попаданием на тело носителя. Металл или металлический сплав действует при этом, как было описано во вводной части при оценке уровня техники, в качестве связывающего материала. Размягченный металл или размягченный металлический сплав обтекает во время процесса напыления другие компоненты и способствует их адгезии друг с другом и с телом носителя. В качестве металла или металлического сплава особенно пригодными являются алюминий и сплавы алюминия.
Особенно удобным в работе для термического напыления является напыляемый материал в виде порошковой смеси из отдельных порошков с соответствующим средним размером зерен меньше, чем 50 мкм, предпочтительно меньше, чем 10 мкм. Перед процессом напыления отдельные порошки интенсивно смешивают. Металл или металлический сплав можно также хорошо напылять отдельно. За счет примененного малого размера зерен может достигаться хорошее преобразование реактивного предшественника и повышение определенной методом БЭТ удельной поверхности нанесенной каталитически активной массы.
Относительно катализатора задача решается согласно изобретению за счет катализатора с каталитически активной массой на теле носителя, причем каталитически активная масса изготовлена путем термического напыления напыляемого материала на тело носителя, причем напыляемый материал содержит реактивный предшественник по меньшей мере одной компоненты каталитически активной массы, и реактивный предшественник для формирования компоненты был преобразован до или после напыления.
Особенно предпочтительное выполнение катализатора получается, если каталитически активная масса содержит мультинарные соединения. Под мультинарным соединением здесь должно пониматься комплексное или смешанное соединение многих компонентов каталитически активной массы. Подобное соединение существенно способствует лучшей адгезии отдельных компонентов между собой. Если в качестве первого реактивного предшественника применяют, например, оксалат ванадия, а в качестве второго реактивного предшественника применяют метатитановую кислоту, то во время термического напыления в содержащей кислород атмосфере может возникать мультинарное соединение в виде смешанного оксида металла, который наряду с кислородом содержит ванадий и титан.
Особенно предпочтительным для катализатора является, если каталитически активная масса имеет определенную методом БЭТ удельную поверхность от 40 до 100 м2/г, предпочтительно от 50 до 70 м2/г. За счет такой высокой определенной методом БЭТ удельной поверхности высокая каталитическая активность катализатора может достигаться также с меньшей толщиной слоя каталитически активной массы. Так как уменьшенная толщина слоя каталитически активной массы связана с более короткой длительностью напыления, можно использовать также тело носителя с меньшей толщиной без опасности коробления тела носителя при термическом напылении. Тело носителя выгодным образом имеет толщину меньше, чем 1 мм, предпочтительно меньше, чем 100 мкм.
Само тело носителя может быть выполнено из металла или из керамики. Тело носителя при этом может иметь любую структуру, например в форме пластины, ленты, штанги или трубки. Тело носителя может также быть выполненным в виде сот. Особенно предпочтительным в качестве материала для тела носителя является хром-алюминиевая сталь. С подобным телом носителя может быть достигнут высокий срок службы катализатора.
Для лучшей адгезии каталитически активной массы может быть предусмотрено, что телу носителя перед нанесением каталитически активной массы придают шероховатость механическим или химическим путем.
Примеры выполнения изобретения поясняются более подробно с помощью чертежа, а также табл. 1,2. При этом, в частности, они показывают:
чертеж - поперечное сечение через тело носителя соответствующего изобретению катализатора и компоненты каталитически активной массы, нанесенные на него путем термического напыления;
табл. 1 - выбираемые для напыляемого материала для изготовления DeNOx-катализатора компоненты с указанием процентного массового содержания, а также соответствующей средней величины частиц;
табл. 2 - четыре альтернативных состава напыляемого материала для изготовления DeNOx-катализатора, причем приведенные компоненты взяты из табл. 1.
Для примеров выполнения, которые относятся к катализаторам с оксидными каталитически активными компонентами, термическое напыление происходит в атмосфере, содержащей кислород. Температуру во время термического напыления выбирают таким образом, чтобы термическая активация реактивного предшественника произошла уже до попадания на тело носителя. В качестве заключительной операции производят кальцинирование нанесенной массы. Таким образом, получается полное обезвоживание и достигается окончательная оксидная структура каталитически активной массы. В качестве напыляемого материала всегда используют порошковую смесь из отдельных порошков соответствующих компонентов. Средние размеры зерен отдельных компонентов напыляемого материала могут быть взяты из табл. 1.
Табл. 1 показывает для напыляемого материала в форме порошковой смеси подходящие компоненты для изготовления DeNOx-катализатора для снижения содержания окислов азота в отработавшем газе установки для сжигания с применением восстановителя, например аммиака.
В табл. 1 представлены соответствующие процентные массовые составляющие (столбец 2) и соответствующие средние размеры частиц (столбец 3). Производят раздельное параллельное напыление алюминия или сплава алюминия, в этом случае из алюминия и марганца. Смешивание с остальными компонентами происходит до попадания на тело носителя. Остальные компоненты смешивают в напыляемый материал до термического напыления. В качестве реактивного предшественника для диоксида титана, каталитически активного в DeNOx-катализаторе, можно применять по выбору метатитановую кислоту или смесь вольфрамовой кислоты с метатитановой кислотой в виде соосажденного продукта. В качестве такого соосажденного продукта может применяться также высушенный и кальцинированный совместный осадок титана и вольфрама, полученный из содержащего титанилсульфат и паравольфрамат раствора. Этот соосажденный продукт содержит диоксид титана преобладающе в каталитически активной модификации анатаз, при которой вольфрам отложен в междоузлия решетки диоксида титана. Примешивание или отложение вольфрама препятствует превращению диоксида титана из анатазной модификации в нежелательную рутиловую модификацию.
Табл. 2 показывает четыре альтернативные возможности для состава напыляемого материала для изготовления DeNOx-катализатора. Соответствующее процентное массовое содержание должно браться при этом из табл. 1. Напыляют соответственно алюминий (примеры 1-3) или соответственно алюминиевый сплав из алюминия и марганца, обычно обозначаемый как AlMn3 (пример 4) параллельно к смеси остальных компонентов. Термическая активация реактивного предшественника (в этом случае это бемит, гиббсит, оксалат ванадия, оксалат вольфрама, метатитановая кислота и соосажденный продукт, состоящий из смеси вольфрамовой кислоты и метатитановой кислоты) происходит во время термического напыления. Нанесенную массу подвергают процессу кальцинирования, чтобы достигнуть окончательного обезвоживания и получить каталитически активную оксидную структуру нанесенной массы. Все изготовленные согласно примерам 1-4 каталитически активные массы имеют определенную методом БЭТ удельную поверхность от 60 до 70 м2/г.
За счет рентгеноструктурного анализа доказывается преимущество способа согласно изобретению. Если для каталитически активной компоненты диоксид титана используют реактивный предшественник в виде метатитановой кислоты или соответственно содержащего метатитановую кислоту соосажденного продукта, то диоксид титана в каталитически активной массе находится преобладающе в анатазной модификации. Термическая инактивация анатазной модификации за счет превращения в рутиловую модификацию может быть исключена, так как реактивный предшественник первично преобразуется в диоксид титана анатазной модификации. Фазового преобразования в рутиловую модификацию не происходит. Это, впрочем, иначе, если для напыляемого материала используют диоксид титана с вольфрамом, встроенным в междоузлия решетки. Подобный соосажденный продукт не является реактивным предшественником в смысле способа, соответствующего изобретению. Здесь не происходит никакого преобразования.
Чертеж показывает поперечное сечение через изготовленный согласно примеру 1 катализатор для снижения содержания окислов азота по DeNOx-способу. Тело носителя 1 является хром-алюминиевой сталью в форме пластины с толщиной 40 мкм. Каталитически активная масса 10 нанесена с обеих сторон путем термического напыления. Поверхность тела носителя 1 на чертеже не представлена более подробно, однако она может быть выполнена шероховатой за счет механической или химической обработки. За счет деформации при соударении оксид алюминия 2 удерживается на теле носителя 1 за счет сил адгезии. Параллельно напыленный алюминий 3 действует в качестве связующего материала и связывает как отдельные каталитически активные компоненты друг с другом, так и каталитически активную массу 10 на теле носителя 1. Вокруг каждого микрокристаллита оксида алюминия расположены каталитически активные компоненты: диоксид титана (TiO2) 4, а также пентоксид ванадия (V2O5) 5 и триоксид вольфрама (WO3) 6. Соответствующие каталитически активные компоненты 4, 5, 6, а также оксид алюминия 2 дополнительно к силам адгезии удерживаются друг с другом за счет химических соединений вследствие возникших третичных оксидов. Подобные смешанные оксиды приводят к высокой стойкости к истиранию каталитически активной массы 10. С этим связан высокий срок службы подобного катализатора.

Claims (19)

1. Способ изготовления катализатора с каталитически активной массой на теле носителя путем термического напыления напыляемого материала на тело носителя, отличающийся тем, что напыляемый материал содержит реактивный предшественник, по меньшей мере, одной компоненты каталитически активной массы, причем в качестве реактивного предшественника используют гидроксид титана, который подвергают преобразованию для формирования компоненты.
2. Способ по п. 1, отличающийся тем, что в качестве гидроксида титана используют метагидроксид титана.
3. Способ по пп.1 и 2, отличающийся тем, что преобразование реактивного предшественника производят путем термической активации во время напыления и/или после напыления.
4. Способ по пп.1 - 3, отличающийся тем, что используют напыляемый материал, содержащий последующий реактивный предшественник.
5. Способ по пп.1 - 4, отличающийся тем, что в качестве последующего реактивного предшественника используют соль металла или гидроксисоединение металла.
6. Способ по пп.1 - 5, отличающийся тем, что в качестве последующего реактивного предшественника используют оксалат, нитрат или карбонат.
7. Способ по пп.1 - 6, отличающийся тем, что в качестве последующего реактивного предшественника используют гидроксид алюминия, предпочтительно гиббсит или бемит.
8. Способ по пп.1 - 7, отличающийся тем, что используют напыляемый материал, содержащий соосажденный продукт.
9. Способ по пп. 1 - 8, отличающийся тем, что используют соосажденный продукт, содержащий вольфрам или титан.
10. Способ по пп.1 - 9, отличающийся тем, что реактивный предшественник преобразуют в атмосфере, содержащей кислород.
11. Способ по пп.1 - 10, отличающийся тем, что одновременно и раздельно с напыляемым материалом термически напыляют металл или металлический сплав, причем металл или металлический сплав и напыляемый материал тщательно смешивают во время напыления до попадания на тело носителя.
12. Способ по пп.1 - 11, отличающийся тем, что одновременно и раздельно напыляют в качестве металла алюминий или соответственно в качестве металлического сплава алюминиевый сплав.
13. Способ по пп.1 - 12, отличающийся тем, что в качестве напыляемого материала напыляют порошковую смесь из отдельных порошков с соответствующим средним размером зерен меньше, чем 50 мкм, предпочтительно меньше, чем 10 мкм.
14. Катализатор с каталитически активной массой на теле носителя, полученной путем термического напыления напыляемого материала на тело носителя, отличающийся тем, что напыляемый материал содержит реактивный предшественник, по меньшей мере, одной компоненты каталитически активной массы, причем реактивный предшественник для формирования компоненты подвергают преобразованию во время и/или после напыления, и в качестве реактивного предшественника используют гидроксид титана.
15. Катализатор по п.14, отличающийся тем, что каталитически активная масса содержит мультинарные соединения.
16. Катализатор по пп. 14-15, отличающийся тем, что каталитически активная масса содержит третичные оксиды металла.
17. Катализатор по пп. 14-16, отличающийся тем, что каталитически активная масса имеет определяемую методом БЭТ удельную поверхность от 40 до 100 м2/г, предпочтительно от 50 до 70 м2/г.
18. Катализатор по пп.14-17, отличающийся тем, что тело носителя имеет толщину меньше, чем 1 мм, предпочтительно меньше, чем 100 мкм.
19. Катализатор по пп. 14-18, отличающийся тем, что тело носителя выполнено из хром-алюминиевой стали.
RU99101085/04A 1996-06-21 1997-06-09 Способ изготовления катализатора, а также катализатор, изготовленный этим способом RU2167714C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19624923.6 1996-06-21
DE19624923A DE19624923C1 (de) 1996-06-21 1996-06-21 Verfahren zur Herstellung eines Katalysators sowie danach hergestellter Katalysator

Publications (2)

Publication Number Publication Date
RU99101085A RU99101085A (ru) 2000-11-20
RU2167714C2 true RU2167714C2 (ru) 2001-05-27

Family

ID=7797651

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99101085/04A RU2167714C2 (ru) 1996-06-21 1997-06-09 Способ изготовления катализатора, а также катализатор, изготовленный этим способом

Country Status (11)

Country Link
US (2) US6228801B1 (ru)
EP (1) EP0906155B1 (ru)
JP (1) JP2000512542A (ru)
KR (1) KR20000022062A (ru)
CN (1) CN1227511A (ru)
AT (1) ATE252417T1 (ru)
DE (2) DE19624923C1 (ru)
IN (1) IN192033B (ru)
RU (1) RU2167714C2 (ru)
TW (1) TW353038B (ru)
WO (1) WO1997049491A1 (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860495A1 (de) * 1998-12-28 2000-07-06 Siemens Ag Verfahren zur Herstellung eines Katalysatorkörpers sowie Katalysatorkörper
DK1145763T3 (da) * 1999-10-27 2012-10-08 Idemitsu Kosan Co Hydrogeneringskatalysator til carbonhydridolie, bærestof for denne samt fremgangsmåde til hydrogenering af carbonhydridolie
US6410470B1 (en) * 2000-04-24 2002-06-25 Saint-Gobain Industrial Ceramics, Inc. Thermal spray powder process
US7005404B2 (en) * 2000-12-20 2006-02-28 Honda Motor Co., Ltd. Substrates with small particle size metal oxide and noble metal catalyst coatings and thermal spraying methods for producing the same
US6491985B2 (en) 2000-12-20 2002-12-10 Honda Giken Kogyo Kabushiki Kaisha Method for enhancing the surface of a metal substrate
US7541005B2 (en) * 2001-09-26 2009-06-02 Siemens Energy Inc. Catalytic thermal barrier coatings
US20040101617A1 (en) * 2001-11-27 2004-05-27 Devi P Sujatha Direct synthesis and deposition of luminescent films
US20070142224A1 (en) * 2005-12-16 2007-06-21 Akhtar M K DeNOx catalyst preparation method
US8242045B2 (en) * 2006-01-12 2012-08-14 Siemens Energy, Inc. Ceramic wash-coat for catalyst support
CN101143325B (zh) * 2006-09-13 2010-08-11 中国科学院大连化学物理研究所 一种制备催化剂的方法及其应用
US9382127B2 (en) * 2011-05-11 2016-07-05 Maohong Fan Catalytic CO2 desorption on the interface between NaHCO3 and multifunctional nanoporous TiO(OH)2
US11118257B2 (en) * 2013-11-15 2021-09-14 Raytheon Technologies Corporation Method of manufacturing fiber reinforced barrier coating

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271326A (en) * 1963-07-22 1966-09-06 Albert J Forney Flame spraying of catalytically active pulverized metal oxides on supports
DE2430567C2 (de) * 1974-06-26 1983-01-27 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Anthrachinon
DE2814262A1 (de) * 1978-04-03 1979-10-18 Basf Ag Schalenkatalysatoren und verfahren zu ihrer herstellung
US4545883A (en) * 1982-07-19 1985-10-08 Energy Conversion Devices, Inc. Electrolytic cell cathode
US4691071A (en) * 1986-12-11 1987-09-01 Uop Inc. Dehydrogenation of dehydrogenatable hydrocarbons
US5087600A (en) * 1987-06-05 1992-02-11 Babcock-Hitachi Kabushiki Kaisha Process for producing a catalyst for denitration by catalytic reduction using ammonia
DE3805564A1 (de) * 1988-02-23 1989-08-31 Siemens Ag Katalysator zur minderung der stickoxide und verfahren zu seiner herstellung
US5225390A (en) * 1988-02-23 1993-07-06 Siemens Aktiengesellschaft Catalyst for reducing nitrogen oxides
DE3813312A1 (de) * 1988-04-20 1989-11-02 Siemens Ag Plattenfoermiger katalysator zur verminderung der stickoxide in rauchgasen und verfahren zu seiner herstellung
DE3916398A1 (de) * 1989-05-19 1990-11-22 Siemens Ag Katalysator
US5204302A (en) * 1991-09-05 1993-04-20 Technalum Research, Inc. Catalyst composition and a method for its preparation
US5409681A (en) * 1991-11-27 1995-04-25 Babcock-Hitachi Kabushiki Kaisha Catalyst for purifying exhaust gas
US5668076A (en) * 1994-04-26 1997-09-16 Mitsui Mining Smelting Co., Ltd. Et Al. Photocatalyst and method for preparing the same

Also Published As

Publication number Publication date
US6228801B1 (en) 2001-05-08
EP0906155B1 (de) 2003-10-22
US20010014648A1 (en) 2001-08-16
TW353038B (en) 1999-02-21
JP2000512542A (ja) 2000-09-26
IN192033B (ru) 2004-02-14
DE19624923C1 (de) 1998-03-12
WO1997049491A1 (de) 1997-12-31
DE59710895D1 (de) 2003-11-27
KR20000022062A (ko) 2000-04-25
ATE252417T1 (de) 2003-11-15
EP0906155A1 (de) 1999-04-07
CN1227511A (zh) 1999-09-01

Similar Documents

Publication Publication Date Title
RU2167714C2 (ru) Способ изготовления катализатора, а также катализатор, изготовленный этим способом
US3554929A (en) High surface area alumina coatings on catalyst supports
KR101431919B1 (ko) 비다공도를 갖는, 산화세륨 및 산화지르코늄을 포함하는 조성물, 그의 제조 방법 및 촉매작용에서의 그의 용도
AU676120B2 (en) A high heat-resistant catalyst support and its production method, and a high heat-resistant catalyst and its production method
US6051529A (en) Ceric oxide washcoat
JPH02144145A (ja) アルミノシリケート基触媒担体の製造方法
DE2905292A1 (de) Katalysatorzusammensetzung
US10604459B2 (en) Catalytic body coated with metal oxide, method of manufacturing the same, and method of preparing 1,3-butadiene using the same
JP4199676B2 (ja) 水素添加反応触媒、その製造方法、およびその触媒を使用して無水マレイン酸からガンマ−ブチロラクトンを製造する方法
US5037792A (en) Catalyst for the selective reduction of nitrogen oxides and process for the preparation of the catalyst
US20150086471A1 (en) Multimetallic mixed oxides, its preparation and use for the oxidative dehydrogenation of ethane for producing ethylene
JPH03169342A (ja) 自動車の排出物制御用スリーウェイ触媒
KR0145749B1 (ko) 에틸렌 옥사이드 제조용 은촉매 및 그 제조방법
JPH01201023A (ja) 安定化された特性を有する酸化チタン
RU99101085A (ru) Способ изготовления катализатора, а также катализатор, изготовленный этим способом
NL8800251A (nl) Dragermateriaal voor een katalysator en werkwijze voor het vervaardigen van een dergelijk dragermateriaal.
JPH03169344A (ja) 自動車排出物制御用スリーウェイ触媒
US7732369B2 (en) Method and device for catalytic oxidation and reduction of gases and vapours by crystalline compounds of heavy metals and rare earths
RU2202414C1 (ru) Способ изготовления катализатора и катализатор
JPH0435219B2 (ru)
US4490479A (en) Process for preparing catalysts
JP2019202929A (ja) ゼオライトの製造方法
KR100363644B1 (ko) 무수말레인산으로부터 감마-부티로락톤을 제조하는 기상수소화 촉매, 그 촉매의 제조 방법 및 그 촉매를 사용하여감마-부티로락톤의 제조 방법
JP2007175649A (ja) 固体酸及びその製造方法、並びに固体酸触媒
JP2559718B2 (ja) 触媒燃焼反応用耐熱性触媒とその製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040610