RU2163624C2 - Способ получения высокооктановых бензиновых фракций и ароматических углеводородов - Google Patents

Способ получения высокооктановых бензиновых фракций и ароматических углеводородов Download PDF

Info

Publication number
RU2163624C2
RU2163624C2 RU98121148/04A RU98121148A RU2163624C2 RU 2163624 C2 RU2163624 C2 RU 2163624C2 RU 98121148/04 A RU98121148/04 A RU 98121148/04A RU 98121148 A RU98121148 A RU 98121148A RU 2163624 C2 RU2163624 C2 RU 2163624C2
Authority
RU
Russia
Prior art keywords
zeolite
elements
catalyst
fractions
aromatic hydrocarbons
Prior art date
Application number
RU98121148/04A
Other languages
English (en)
Other versions
RU98121148A (ru
Inventor
В.Г. Степанов
К.Г. Ионе
Original Assignee
Научно-инженерный центр "Цеосит" Объединенного института катализа СО РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-инженерный центр "Цеосит" Объединенного института катализа СО РАН filed Critical Научно-инженерный центр "Цеосит" Объединенного института катализа СО РАН
Priority to RU98121148/04A priority Critical patent/RU2163624C2/ru
Priority to EA199900341A priority patent/EA003249B1/ru
Publication of RU98121148A publication Critical patent/RU98121148A/ru
Application granted granted Critical
Publication of RU2163624C2 publication Critical patent/RU2163624C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Использование: в нефтехимии. Исходное сырье контактируют (возможно в присутствии водорода) при температурах 280 - 460oC (лучше 320 - 440oC) и давлении 0,1 - 4,0 МПа (лучше 0,5 - 2 МПа) с катализатором, содержащим цеолит ZSM-5 или ZSM-11 общей эмпирической формулы (0,02 - 0,09)Na2O · Al2O3 · (0,01 - 1,13)Fe2O3 · (27 - 212)SiO2 · kH2O, модифицированный элементами или соединениями элементов V, VI, VII групп, в количестве 0,05 - 5,0 мас.% или цеолит общей эмпирической формулы
Figure 00000001
где ΣЭnОm - один или два оксида элементов II, VI и VIII групп, а k - соответствующий влагоемкости коэффициент, или цеолит общей эмпирической формулы
Figure 00000002
где ΣЭnOm - один или два оксида элементов II, III, V и VI групп, а k - соответствующий влагоемкости коэффициент, модифицированный элементами или соединениями элементов I, II, IV, V, VI, VII и VIII групп, в количестве 0,05 - 5,0 мас.%, с последующим разделением продуктов контактирования на газообразные и жидкие фракции. Сырьем процесса могут быть углеводороды С2 - С12 и их фракции и/или кислородсодержащие органические соединения (спирты, эфиры и т.д.) и их смеси. Технический результат - снижение температуры процесса, повышение выхода и качества целевых продуктов. 1 з.п. ф-лы, 2 табл.

Description

Предлагаемое изобретение относится к способам получения неэтилированных высокооктановых бензиновых фракций и/или ароматических углеводородов из углеводородного сырья и/или кислородсодержащих органических соединений.
Сырьем процесса могут быть углеводороды C2-C12 и их фракции и/или кислородсодержащие органические соединения (спирты, эфиры и т.д.) и их смеси.
В настоящее время неэтилированные высокооктановые автобензины получают путем компаундирования прямогонных и вторичных бензинов с высокооктановыми компонентами (в т.ч. с ароматическими углеводородами), полученными разными процессами нефтепереработки [Гуреев А.А., Жоров Ю.М., Смидович Е.В. Производство высокооктановых бензинов. - М., - Химия, 1981, - 224 с.]. Поэтому, в целом, технология получения товарных неэтилированных высокооктановых бензинов довольно сложна. В связи с созданием семейства цеолитов пентасил со структурой ZSM-5, ZSM-11 (общей формулы nNa2OAl2O3/mSiO2, где n < 1 и m > 24), имеющих специфические каталитические свойства, стали возможными разработка новых процессов и катализаторов, позволяющих перерабатывать углеводородное сырье широкого фракционного состава (от углеводородов C2 до C10 и выше) и кислородсодержащие органические соединения в высокооктановые бензины или в ароматические углеводороды за одну стадию.
Известны способы переработки углеводородов C2-C10 в высокооктановые бензины и их компоненты (ароматические углеводороды) с применением катализаторов на основе цеолитов типа ZSM-5 и ZSM-11 общей формулы nNa2OAl2O3/mSiO2 (где n < 1 и m > 24), в т.ч. модифицированных элементами II, III, IV, V и VIII групп, например [Патенты США N 3953366, кл. В 01 J 29/06, 1976; N 4590323, кл. C 07 C 2/00, 1986; N 4861933, кл. C 07 C 2/52, 1989; Заявка ЕВП N 0355213, кл. B 01 J 29/00, C 07 C 15/00, 1990]. В целом, превращение сырья возможно осуществлять в интервале температур реакции 200-815oC, давлений 0,1-7 МПа и весовой скорости подачи сырья 0,05-400 ч-1.
Известны способы повышения октановых чисел вторичных бензинов различных процессов, позволяющие перерабатывать углеводородные фракции, выкипающие в пределах 24-218oС [Пат. США N 3855115, кл. C 10 G 35/06, C 07 C 5/22, 1974; Заявка ЕВП N 0235416, кл. C 10 G 35/095, 1987]. Согласно данным способам превращение углеводородного сырья, проводят на катализаторах, содержащих цеолиты типа ZSM-5,-11,-12,-23,-35,-48, в т.ч. с нанесенными элементами II, III и VIII групп, при температурах 260 - 815oC, давлении до 3,5 МПа и весовой скорости подачи сырья 0,1-20 ч-1.
Для улучшения свойств цеолитных катализаторов применяют цеолиты с модифицированным кристаллическим каркасом, полученные во время синтеза цеолита путем полного или частичного изоморфного замещения атомов алюминия в алюмокремнекислородном цеолитном каркасе на атомы других элементов. Так, на основе цеолитов с полным изоморфным замещением атомов алюминия на атомы хрома, имеющих общую эмпирическую формулу - aMen/2Cr2O3mSiO2 (где Me - щелочной металл, а m > 20), готовят катализаторы для процессов крекинга, гидрокрекинга, депарафинизации, риформинга, олигомеризации, алкилирования, изомеризации ксилолов [Пат. Франции N 2463746, кл. C 01 B 33/20; B 01 J 23/86; C 07 C 11/00; C 10 G 11/04, 35/06, 49/04, 1980; Патенты США N 4299808, кл. C 01 B 22/20, 1981; N 4354924, кл. C 10 G 11/05, 1982], проводимых как в среде водородсодержащего газа, так и в безводородной среде. Для катализаторов превращения углеводородов предложен кристаллический силикат (цеолит) общей формулы nM2OY2O3XO2, где Y - один или более элементов, выбранных среди Al, Fe, Cr, Y, Mo, As, Sb, Mn, Ga, B; X - Si или Ge; М - одновалентный катион металла; n и m - соответствующие коэффициенты [Заявка Великобритании N 2193490, кл. C 01 B 33/28, 1988].
Известен способ переработки олефинов в бензиновые и дизельные фракции с использованием изоморфнозамещенного цеолита [Пат. США, N 4861934, кл. C 07 C 2/02, 1985] . Согласно данному способу переработку олефинов C2-C8 проводят при температуре 175-375oC, давлении 1-20 МПа и скорости подачи 0,1-10 ч-1 на катализаторе, содержащем кристаллический силикат железа со структурой цеолита типа ZSM-5.
Известен способ получения высокооктановых добавок к бензинам, в т.ч. ароматических углеводородов C6-C10 [Пат. США N 4554396, кл. C 07 C 2/02, 1985] . Согласно данному способу превращение углеводородного сырья проводят при давлении до 0,5 МПа, температуре 350-650oC и объемной скорости подачи газообразного сырья 100-10000 ч-1 на катализаторе, содержащем частично изоморфнозамещенный цеолит общей формулы aMbAl2O3Ga2cSiO2, где M - щелочной или щелочноземельный металл; a, b, c - соответствующие коэффициенты. Возможно применение данного цеолита с обмененными или с нанесенными на него катионами различных металлов.
Известен способ получения бензиновых фракций [Пат. РФ N 1325892, кл. C 10 G 11/05, B 01 J 29/30, 1993]. Согласно данному способу бензиновые фракции, в т. ч. содержащие ароматические углеводороды, получают путем контактирования углеводородного сырья при температуре 360-460oC, давлении 0,2-4 МПа и объемной скорости подачи сырья с цеолитсодержащим катализатором. В качестве цеолита используют алюмосиликат, каркас которого модифицирован элементами II, III, V, VI и VIII групп периодической системы общей формулы
Figure 00000003
где ΣЭnOm - один или два оксида элементов II, III, V, VI и VIII групп, дополнительно катализатор может содержать 0,05-0,5 мас.% Pd.
Основными общими недостатками описанных способов являются:
- относительно низкие выходы бензиновых фракций;
- относительно низкие выходы ароматических углеводородов;
- относительно низкие октановые числа или в некоторых случаях незначительное повышение октанового числа получаемого бензина;
- применение высоких температур реакции:
- переработка узкого ассортимента сырья (только углеводородов).
Известны комбинированные способы получения высокооктановых бензиновых фракций из углеводородного сырья, сочетающие переработку отдельных фракций сырья или промежуточных продуктов на катализаторах, содержащих изоморфнозамещенные, в т.ч. модифицированные различными элементами, цеолиты ZSM-5 и ZSM-11, с процессами разделения (сепарацией, ректификацией) исходного сырья или промежуточных продуктов [Патенты РФ N 2024585, кл. C 10 G 51/04, 1994: N 2034902, кл. C 10 G 35/095, 1995; N 2039790, кл. C 10 G 35/095, 1995; N 2050404, кл. C 10 G 35/095, 1995]. Основными недостатками комбинированных способов являются многостадийность процесса и переработка узкого ассортимента сырья (только углеводородов).
Оптимизируя соотношение компонентов катализаторов получают последние, позволяющие перерабатывать более широкий ассортимент сырья за одну стадию. Так, известен способ получения ароматических углеводородов C6-C10 из углеводородов и/или спиртов (метанола) с применением изоморфно-замещенных цеолитов [Пат. СССР N 936803, кл. C 07 C 15/02, 1982]. Согласно данному способу сырье, содержащее углеводороды и/или метанол, подвергают контактированию при температуре 350-400oC и давлении 0,1-3 МПа с катализатором - кристаллическим силикатом (цеолитом). Применяемый цеолит со структурой цеолита ZSM-5 содержит в своем каркасе (кристаллической решетке) изоморфнозамещенные атомы Fe и/или Fe и Al и имеет общую эмпирическую формулу (0,05-0,30)Na2OFe2O3(30-45)SiO2kH2O или (0,11-0,15)Na2OAl2O3 (1,22-2,03)Fe2O3 (71,1-90,9)SiO2kH2O, где k - соответствующие влагоемкости коэффициенты. Основными недостатками данного способа являются:
- относительно низкие выходы бензиновой фракции и/или ароматических углеводородов и высокие выходы газообразных продуктов реакции - углеводородов C1-C4, что обусловлено высоким содержанием железа в катализаторе;
- относительно низкие октановые числа получаемых бензиновых фракций.
Наиболее близким по своей технической сущности и достигаемому эффекту является способ получения высокооктановых бензиновых фракций и ароматических углеводородов C8-C10 из органического сырья на основе углеводородов и/или кислородсодержащих соединений [Пат. РФ N 2069227, кл. C 10 G 35/04, 1996]. Согласно выбранному прототипу производство целевых продуктов осуществляют на специальной каталитической установке путем контактирования сырья с цеолитсодержащим катализатором при температуре 320-650oC и давлении 0,1-4,0 МПа с последующим разделением продуктов контактирования на газообразные и жидкие фракции. Применяемый катализатор содержит цеолит ZSM-11 общей эмпирической формулы 0,04Na2OAl2O3Fe2O352SiO2; или цеолит ZSM-5 общей эмпирической формулы 0,03Na2OAl2O30,3Fe2O386SiO2, модифицированный 3 мас.% La или цеолит ZSM-5 общей эмпирической формулы 0,02Na2OAl2O30,3Ga2O30,1Fe2O3 86SiO2, модифицированный 0,1% Pd.
Основными недостатками прототипа являются:
- применение относительно высоких температур реакции (320-650oC), что приводит к повышению энергозатрат на производство.
- относительно низкие выходы целевых продуктов;
- относительно низкие октановые числа получаемых бензиновых фракций.
Задачей, решаемой предлагаемым изобретением, является создание способа получения высокооктановых бензиновых фракции и/или ароматических углеводородов C6-C10 из углеводородов C2-C12 и/или кислородсодержащих органических соединений, позволяющего производить целевую продукцию с повышенными выходами и/или октановыми числами бензиновых фракций при более низких температурах реакции.
Поставленная задача достигается тем, что высокооктановые бензиновые фракции и/или ароматические углеводороды C6-C10 получают из углеводородов C2-C12 и/или кислородсодержащих органических соединений (спирты, эфиры и т. д. ) путем контактирования сырья при температуре 280 - 460oC (лучше 320-440oC) и давлении 0,1-4,0 МПа (лучше 0,5-2 МПа) с катализатором, содержащим цеолит со структурой ZSM-5 или ZSM-11 общей эмпирической формулы (0,02-0,09)Na2OAl2O3(0,01-1,13)Fe2O3 (27-212)SiO2kH2O, модифицированный элементами или соединениями элементов V, VI, VII групп в количестве 0,05-5,0 мас.% или цеолит общей эмпирической формулы
Figure 00000004
где ΣЭnОm - один или два оксида элементов II, VI и VIII групп, a k - соответствующий влагоемкости коэффициент, или цеолит общей эмпирической формулы
Figure 00000005
где ΣЭnOm - один или два оксида элементов II, III, V и VI групп, а k - соответствующий влагоемкости коэффициент, модифицированный элементами или соединениями элементов I, II, IV, V, VI, VII и VIII групп в количестве 0,05-5,0 мас.%, с последующим разделением продуктов контактирования на газообразные и жидкие фракции. Возможно осуществление стадии контактирования сырья с катализатором в присутствии водородсодержащего газа.
Катализаторы готовят известными методами, варьируя в определенном соотношении загрузочные компоненты.
Основными отличительными признаками предлагаемого способа являются:
- состав применяемого катализатора;
- возможность осуществления стадии контактирования сырья с катализатором в присутствии водородсодержащего газа.
Основными преимуществами предлагаемого способа являются:
- возможность получения целевой продукции при пониженных температурах реакции;
- возможность получения бензинов с большими выходами и/или октановыми числами бензинов и пониженным газообразованием.
Достигаемый эффект связан с оптимизацией состава активных центров цеолитсодержащего катализатора, получаемым при определенном соотношении его компонентов. Состав кристаллической решетки цеолитов обеспечивает такую концентрацию и силу кислотных центров, ведущих реакции синтеза и превращения углеводородов, в результате чего возможно осуществление глубокого превращения сырья при более низких температурах процесса. Модифицирование катализатора некоторыми элементами I, II, III, IV, V, VI, VII и VIII приводит к дополнительному образованию активных центров, в результате чего происходит повышение активности катализатора. Кроме того, модифицирование цеолита и катализатора некоторыми металлами I, II, III, IV, V, VI, VII и VIII дополнительно позволяет перерабатывать сырье в присутствии водородсодержащего газа, в результате чего возможно повышение выхода целевого продукта и/или увеличение длительности межрегенерационного периода работы катализатора и срока его службы.
Сущность предлагаемого способа и его практическая применимость иллюстрируется нижеприведенными примерами. Примеры 1-2 - прототип, примеры 3-4 аналогичны прототипу и приведены для сравнения с предлагаемым способом в сопоставимых условиях, примеры 5-19 - предлагаемый способ.
Примеры 1-2 - прототип. Прямогонную бензиновую фракцию (35-140oС) газового конденсата, и имеющую октановое число (ОЧ) - 67ММ, подвергают контактированию с цеолитсодержащим катализатором N 1 при температуре реакции - T, давлении - P и объемной скорости подачи жидкого сырья - ω. Продукты контактирования разделяют с выделением углеводородных газов, бензиновой фракции 35-205oC и фракции > 205oC. Состав катализатора приведен в табл. 1, условия процесса, выходы продуктов, составы и октановые числа полученных бензинов приведены в табл. 2.
Пример 3. Аналогичен примеру 1. В качестве сырья используют фракцию углеводородов C6-C8, содержащую, мас.%: н- гексан - 30, изооктан - 30, циклогексан - 30, толуол - 10 и имеющую расчетное октановое число (ОЧр) - 71 MM. Состав катализатора N 2 приведен в табл. 1, условия процесса, выходы продуктов, состав бензиновой фракции и ее расчетные октановые числа приведены в табл. 2.
Пример 4. Аналогичен примеру 1. В качестве сырья используют пентангексановую фракцию, содержащую 25 мас.% н-пентана и 75% н-гексана и имеющую расчетное октановое число (ОЧр) - 35 MM. Состав катализатора N 3 приведен в табл. 1, условия процесса, выходы продуктов, состав бензиновой фракции и ее расчетные октановые числа приведены в табл. 2.
Примеры 5-19 иллюстрируют сущность предлагаемого способа.
Примеры 5-6. Фракцию углеводородов C6-C8, содержащую, мас.%: н-гексан - 30, изооктан - 30, циклогексан - 30, толуол - 10 и имеющую расчетное октановое число (ОЧр) - 71 MM, подвергают контактированию при температуре реакции T, давлении P и объемной скорости подачи жидкого сырья ω с катализатором N 4. Продукты контактирования разделяют с выделением углеводородных газов, бензиновой фракции 35-205oC, содержащей ароматические углеводороды C6-C10, и фракции > 205oC. Состав катализатора приведен в табл. 1, условия процесса, выходы продуктов, составы бензиновых фракций и их расчетные октановые числа приведены в табл. 2.
Примеры 7-8. Аналогичны примеру 5. В качестве сырья используют пентан-гексановую фракцию, содержащую 25 мас.% н-пентана и 75% н-гексана и имеющую ОЧр = 35 MM. Состав катализатора N 5 приведен в табл. 1, условия процесса, выходы продуктов, составы и ОЧр бензиновых фракций приведены в табл. 2.
Пример 9-12. Аналогичны примеру 5. В качестве сырья используют фракцию углеводородов C6-C8, содержащую, мас.%: н-октан - 30, изооктан - 30, циклогексан - 30, толуол - 10 и имеющую расчетное октановое число (ОЧр) - 56 MM. Составы катализаторов (NN 6, 7, 8 и 9 соответственно) приведены в табл. 1; условия процесса, выходы продуктов, состав и ОЧр бензиновых фракций приведены в табл. 2.
Примеры 13-14. Аналогичны примеру 5. В качестве сырья используют углеводородную фракцию с ОЧ= 64 MM, имеющую следующий фракционный состав, oC: н. к. - 36; 10 об.% - 65, 50% - 107, 90% - 152, к.к. - 191 и содержащую углеводороды, мас. %: C2 - 0,1; C3 - 0,6: C4 - 1,7, C5 - 5,5; C6 - 14,3; C7 - 28,7; C8 - 28,9; C9 - 15,3; C10+ - 4,9. Составы катализаторов (N 10 и N 11 соответственно) приведены в табл. 1; условия процесса, выходы продуктов, составы и ОЧ бензиновых фракций приведены в табл. 2.
Пример 15. Углеводородную фракцию C6-C8, содержащую, мас.%: н-октан - 30, изооктан - 30, циклогексан - 30, толуол -10 и имеющую расчетное октановое число (ОЧо) - 56 MM подвергают контактированию с катализатором N 12 при температуре реакции T = 460oC, давлении P = 0,5 МПа и объемной скорости подачи жидкого сырья ω = 4,0 ч-1 в среде водорода при мольном отношении H2/CH = 6. Продукты контактирования разделяют с выделением 32 мас.% газообразных продуктов, 3% фракции > 205oC и 65% бензиновой фракции 35-205oC, содержащей 43% ароматических углеводородов C6-C10 и имеющей ОЧр = 91 MM. Выход ароматических углеводородов C6-C10 - 36,4%. Состав катализатора приведен в табл. 1.
Пример 16. Пропилен подвергают контактированию с катализатором N 13 при температуре реакции T = 350oC, давлении P = 0,1 МПа и объемной скорости подачи газообразного сырья v= 1050 ч-1 (состав катализатора приведен в табл. 1). Продукты контактирования разделяют с выделением 31 мас.% углеводородных газов, 67% бензиновой фракции 35-205oC и 2% фракции > 205oC. Бензиновая фракция содержит 4% н-парафинов, 27% изопарафинов и нафтенов, 66% ароматических и 3% олефиновых углеводородов и имеет ОЧр = 88 MM. Выход ароматических углеводородов C6-C10 - 44,2%.
Пример 17. Пропилен подвергают контактированию с катализатором N 13 при температуре реакции T = 280oC, давлении P = 0,5 МПа и весовой скорости подачи сырья g = 2,0 ч-1 (состав катализатора приведен в табл. 1). Продукты контактирования разделяют с выделением 9 мас.% углеводородных газов, 68% бензиновой фракции 35-205oC и 23% фракции > 205oC. Бензиновая фракция имеет ОЧр = 76 MM.
Пример 18. Смесь 82 мас.% н-гексана и 18% изопропанола подвергают контактированию при T = 360oC, P = 1,0 МПа и ω = 2,0 ч-1 с катализатором N 14 (состав катализатора приведен в табл. 1). Продукты контактирования разделяют с выделением 5,4 мас.% воды, 44,9% углеводородных газов, 48,2% бензиновой фракции 35-205oC (в т.ч. ароматических углеводородов C6-C10 - 21,7%) и 1,5% фракции > 205oC. Выходы углеводородных продуктов реакции на углеводородную часть составляют, мас. %: углеводородных газов - 47,5; бензиновой фракции 35-205oC - 50,9 (в т.ч. ароматических углеводородов C6-C10 - 22,9) и фракции > 205oC - 1,6. Бензиновая фракция содержит 30% н-парафинов, 22% изопарафинов и нафтенов, 45% ароматических и 3% олефиновых углеводородов и имеет ОЧр = 74 MM.
Пример 19. Смесь кислородсодержащих соединений, содержащую 70 мас.% метанола и 30% диметилового эфира, подвергают контактированию при T = 360oC, P = 0,5 МПа и ω = 2,0 ч-1 с катализатором N 14 (состав катализатора приведен в табл. 1). Продукты контактирования разделяют с выделением 39,9 мас.% воды, 20,3% углеводородных газов, 38,7% бензиновой фракции 35-205oC (в т.ч. ароматических углеводородов C6-C10 - 25,2%) и 1,1% фракции > 205oC. Выходы углеводородных продуктов реакции на углеводородную часть составляют, мас.%: углеводородных газов - 33,8; бензиновой фракции 35-205oC - 64,4 (в т.ч. ароматических углеводородов C6-C10 - 41,9) и фракции > 205oC - 1,8. Бензиновая фракция содержит 4% н-парафинов, 28% изопарафинов и нафтенов, 65% ароматических и 3% олефиновых углеводородов и имеет ОЧр= 88 MM.
Таким образом, из приведенных примеров следует, что по сравнению с прототипом предлагаемый способ позволяет из различного углеводородного сырья и/или кислородсодержащих соединений получать бензиновые фракции и ароматические углеводороды C6-C10 с аналогичными выходами и/или повышенными октановыми числами при более низких температурах реакции, а при равных температурах реакции - получать бензиновые фракции с большими октановыми числами и большими выходами ароматических углеводородов. Так, из сопоставления примеров по прототипу и по предлагаемому способу следует, что при переработки одного и того же сырья по предлагаемому способу возможно получать при более низких температурах реакции - бензиновые фракции и ароматические углеводороды C6-C10 с аналогичными выходами и/или повышенными октановыми числами (см. примеры NN 3 и 5, 4 и 7). При равных с прототипом температурах реакции по предлагаемому способу возможно получать бензиновые фракции с большими октановыми числами (см. примеры NN 3 и 6, 4 и 8), в некоторых случаях - и с большими выходами (см. примеры NN 4 и 8), а ароматические углеводороды C6-C10 - с большими выходами (см. примеры NN 3 и 6, 4 и 8).

Claims (2)

1. Способ получения высокооктановых бензиновых фракций и/или ароматических углеводородов C6-C10 из углеводородного сырья и/или кислородсодержащих соединений путем его контактирования при повышенных температурах и давлении 0,1 - 4 МПа с катализатором, содержащим цеолит со структурой ZSM-5 или ZSM-11, в кристаллическую решетку которого входят атомы алюминия и железа, с последующим разделением продуктов контактирования на газообразные и жидкие фракции, отличающийся тем, что стадию контактирования осуществляют с катализатором, содержащим цеолит общей эмпирической формулы (0,02 - 0,09)Na2O · Al2O3 · (0,01 - 1,13)Fe2O3 · (27 - 212)SiO2 · kH2O, модифицированный элементами или соединениями элементов V, VI, VII групп в количестве 0,05 - 5,0 мас.%, или цеолит общей эмпирической формулы
Figure 00000006
где ΣЭnОm - один или два оксида элементов II, VI и VIII групп, а k - соответствующий влагоемкости коэффициент, или цеолит общей эмпирической формулы
Figure 00000007
где ΣЭnOm - один или два оксида элементов II, III, V и VI групп, а k - соответствующий влагоемкости коэффициент, модифицированный элементами или соединениями элементов I, II, IV, V, VI, VII и VIII групп в количестве 0,05 - 5,0 мас. %, и контактирование сырья с катализатором осуществляют при температуре 280 - 460oC.
2. Способ по п.1, отличающийся тем, что контактирование сырья с катализатором осуществляют в присутствии водородсодержащего газа.
RU98121148/04A 1998-11-25 1998-11-25 Способ получения высокооктановых бензиновых фракций и ароматических углеводородов RU2163624C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU98121148/04A RU2163624C2 (ru) 1998-11-25 1998-11-25 Способ получения высокооктановых бензиновых фракций и ароматических углеводородов
EA199900341A EA003249B1 (ru) 1998-11-25 1999-04-15 Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98121148/04A RU2163624C2 (ru) 1998-11-25 1998-11-25 Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Publications (2)

Publication Number Publication Date
RU98121148A RU98121148A (ru) 2000-10-20
RU2163624C2 true RU2163624C2 (ru) 2001-02-27

Family

ID=20212600

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98121148/04A RU2163624C2 (ru) 1998-11-25 1998-11-25 Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Country Status (2)

Country Link
EA (1) EA003249B1 (ru)
RU (1) RU2163624C2 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091362A1 (fr) * 2002-04-25 2003-11-06 Pavel Alekseevich Makarov Procede de fabrication d'hydrocarbures aromatiques
RU2458898C1 (ru) * 2011-02-18 2012-08-20 Общество с ограниченной ответственностью Производственный научно-технический центр "ЭОН" (ООО ПНТЦ "ЭОН") Способ получения ароматических углеводородов
RU2462446C2 (ru) * 2006-12-29 2012-09-27 Юоп Ллк Совместное получение ароматических соединений в установке производства пропилена из метанола
RU2470004C1 (ru) * 2011-06-15 2012-12-20 Государственное образовательное учреждение высшего профессионального образования Российский государственный университет нефти и газа имени И.М. Губкина Способ получения ароматических углеводородов
RU2476412C2 (ru) * 2006-07-28 2013-02-27 Шеврон Филлипс Кемикал Компани Лп Способ улучшения катализатора ароматизации
US9278892B2 (en) 2013-03-06 2016-03-08 Ut-Battelle, Llc Catalytic conversion of alcohols to hydrocarbons with low benzene content
RU2597269C1 (ru) * 2015-08-18 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тверской государственный технический университет" (ТвГТУ) Способ получения гетерогенного катализатора синтеза углеводородов из метанола
US9533921B2 (en) 2011-06-15 2017-01-03 Ut-Battelle, Llc. Zeolitic catalytic conversion of alochols to hydrocarbons

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696606B2 (en) 2016-06-09 2020-06-30 Ut-Battelle, Llc Zeolitic catalytic conversion of alcohols to hydrocarbon fractions with reduced gaseous hydrocarbon content
RU2704006C1 (ru) * 2019-08-09 2019-10-23 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091362A1 (fr) * 2002-04-25 2003-11-06 Pavel Alekseevich Makarov Procede de fabrication d'hydrocarbures aromatiques
US7138556B2 (en) 2002-04-25 2006-11-21 Pavel A Makarov Method for producing aromatic hydrocarbons
RU2476412C2 (ru) * 2006-07-28 2013-02-27 Шеврон Филлипс Кемикал Компани Лп Способ улучшения катализатора ароматизации
RU2462446C2 (ru) * 2006-12-29 2012-09-27 Юоп Ллк Совместное получение ароматических соединений в установке производства пропилена из метанола
RU2458898C1 (ru) * 2011-02-18 2012-08-20 Общество с ограниченной ответственностью Производственный научно-технический центр "ЭОН" (ООО ПНТЦ "ЭОН") Способ получения ароматических углеводородов
RU2470004C1 (ru) * 2011-06-15 2012-12-20 Государственное образовательное учреждение высшего профессионального образования Российский государственный университет нефти и газа имени И.М. Губкина Способ получения ароматических углеводородов
US9533921B2 (en) 2011-06-15 2017-01-03 Ut-Battelle, Llc. Zeolitic catalytic conversion of alochols to hydrocarbons
US9938467B2 (en) 2011-06-15 2018-04-10 Ut-Battelle, Llc Zeolitic catalytic conversion of alcohols to hydrocarbons
US11773333B2 (en) 2011-06-15 2023-10-03 Ut-Battelle, Llc Zeolitic catalytic conversion of alcohols to hydrocarbons
US9278892B2 (en) 2013-03-06 2016-03-08 Ut-Battelle, Llc Catalytic conversion of alcohols to hydrocarbons with low benzene content
RU2597269C1 (ru) * 2015-08-18 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тверской государственный технический университет" (ТвГТУ) Способ получения гетерогенного катализатора синтеза углеводородов из метанола

Also Published As

Publication number Publication date
EA199900341A1 (ru) 2000-06-26
EA003249B1 (ru) 2003-02-27

Similar Documents

Publication Publication Date Title
KR102328607B1 (ko) 탄화수소를 개질시키기 위한 개조된 usy-제올라이트 촉매
CA2015209C (en) Production of olefins
US6033555A (en) Sequential catalytic and thermal cracking for enhanced ethylene yield
JP3585924B2 (ja) 高級オレフィンを用いるアルキル化によるガソリン中のベンゼンの減少
US4334114A (en) Production of aromatic hydrocarbons from a mixed feedstock of C5 -C12 olefins and C3 -C4 hydrocarbons
AU2017230031A1 (en) A method for producing high-octane motor gasolines of low-octane hydrocarbon fractions, fractions of gaseous olefins and oxygenates and a plant for the method embodiment
JPH0816228B2 (ja) 高オクタン価ガソリン基材の製造方法
US9809507B2 (en) Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
EP0127207B1 (en) Process for the preparation of middle distillates
JPS59227976A (ja) メタノ−ルまたはジメチルエ−テルまたはそれら両者のオレフイン類への転化方法
RU2163624C2 (ru) Способ получения высокооктановых бензиновых фракций и ароматических углеводородов
CN101747129B (zh) 一种催化转化生产低碳烯烃的方法
RU2284312C1 (ru) Способ получения углеводородов из оксидов углерода и водорода
CA1181436A (en) Process for the preparation of an aromatic hydrocarbon mixture
EP0988354A1 (en) Hydrocarbon cracking with positive reactor temperature gradient
US5059735A (en) Process for the production of light olefins from C5 + hydrocarbons
RU2208624C2 (ru) Способ получения высокооктановых бензиновых фракций и ароматических углеводородов (варианты)
RU98121148A (ru) Способ получения высокооктановых бензиновых фракций и ароматических углеводородов
RU2747931C1 (ru) Способ увеличения выхода жидкого углеводородного продукта
RU2186089C1 (ru) Способ получения высокооктановых бензиновых фракций и ароматических углеводородов
JPH068255B2 (ja) 低級炭化水素からの液状炭化水素の製法
JP3068347B2 (ja) 高オクタン価ガソリン基材の製造方法
RU2152977C1 (ru) Способ переработки углеводородного сырья на основе алифатических углеводородов
EP0050499B1 (en) Upgrading gasoline derived from synthesis gas
RU2747866C1 (ru) Способ получения бензинов с распределением потоков оксигената и двух олефинсодержащих фракций

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20060809

MM4A The patent is invalid due to non-payment of fees

Effective date: 20101126