RU2154650C2 - Тетрафторэтиленовые термообрабатываемые сополимеры - Google Patents

Тетрафторэтиленовые термообрабатываемые сополимеры Download PDF

Info

Publication number
RU2154650C2
RU2154650C2 RU96100244/04A RU96100244A RU2154650C2 RU 2154650 C2 RU2154650 C2 RU 2154650C2 RU 96100244/04 A RU96100244/04 A RU 96100244/04A RU 96100244 A RU96100244 A RU 96100244A RU 2154650 C2 RU2154650 C2 RU 2154650C2
Authority
RU
Russia
Prior art keywords
formula
heat
amount
monomers
tfe
Prior art date
Application number
RU96100244/04A
Other languages
English (en)
Other versions
RU96100244A (ru
Inventor
Паскуа КОЛАЙАННА
Джулио А. АБУСЛЕМЕ
Original Assignee
Аусимонт С.п.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аусимонт С.п.А. filed Critical Аусимонт С.п.А.
Publication of RU96100244A publication Critical patent/RU96100244A/ru
Application granted granted Critical
Publication of RU2154650C2 publication Critical patent/RU2154650C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Описываются новые термообрабатываемые сополимеры на основе тетрафторэтилена, полученные взаимодействием (A) фтордиоксола формулы I, где Rf является перфторалкилом, имеющим от 1 до 5 атомов углерода, Х1 и Х2, одинаковые или различные друг от друга, являются -F или CF3, Z выбран из -F, -H-, Cl в количестве 0,1 - 15 мол.%. от общего количества мономеров, (В) перфторированного мономера, выбранного из гексафторпропилена и перфторалкилвинилового эфира формулы CF2 = CF-ORf, где Rf является перфторалкилом C2-C4, или их смеси, в количестве 0 - 15 мол.% от общего количества мономеров, (C) тетрафторэтилена в оставшемся количестве до 100 мол.%, причем общее количество мономеров (A) и (B) ниже или равно 20 мол.%. Новые сополимеры имеют улучшенные механические свойства, в особенности при высоких температурах, в сочетании с превосходными оптическими свойствами. 8 з.п. ф-лы, 4 табл.

Description

Настоящее изобретение относится к тетрафторэтиленовым термообрабатываемым сополимерам. В частности, настоящее изобретение относится к тетрафторэтиленовым термообрабатываемым сополимерам с фтордиоксолом, имеющим улучшенные механические свойства, в особенности при высоких температурах, в сочетании с превосходными оптическими свойствами.
Известно, что политетрафторэтилен (ПТФЭ) показывает очень высокую вязкость расплава, за счет чего он не может быть переработан в соответствии с технологиями, обычно применяемыми для термообрабатываемых полимеров (экструзия, формование, инжекция и т.д.).
Известно устранение этого недостатка сополимеризацией тетрафторэтилена (ТФЭ) с гексафторпропеном (ГФП) (смотри, например, US Патент 2.946.763). Для того, чтобы достичь цели в сочетании приемлемых механических свойств с низкой вязкостью расплава и при этом с хорошей обрабатываемостью, необходимо вводить большое количество ГФП, обычно около 7 - 11% по молям. Однако такое большое количество ГФП вызывает значительное снижение температуры текучести и, следовательно, ухудшение свойств при высокой температуре, особенно прочности на разрыв и деформационных свойств.
Следовательно, непрерывная рабочая температура снижается от величин около 260oC для ПТФЭ до около 200oC для ТФЭ/ГФП сополимеров.
Другие ТФЭ термообрабатываемые сополимеры такие, в которых ТФЭ сополимеризован с перфторалкилвиниловым эфиром (ПАВЭ) и особенно с перфторпропилвиниловым эфиром (ППВЭ) (смотри, например, US Патент 3.635.926). Такие сополимеры позволяют получать удовлетворительный баланс между механическими свойствами и обрабатываемостью при количествах ППВЭ около 2 - 3% по молям.
В итоге попытка устранить недостатки, описанные выше для ТФЭ/ГФП сополимеров, навела на мысль о терполимерах, где ТФЭ сополимеризован с 4 - 12% весовых ГФП и 0.5 - 3% весовых ППВЭ (смотри US Патент 4.029.868).
Даже если применение ППВЭ в значительной степени увеличит ТФЭ термообрабатываемые сополимерные свойства, в особенности в отношении максимальной рабочей температуры и перерабатываемости, таким образом увеличивая область применения, однако, необходимо, во-первых, дальнейшее расширение ряда свойств и, во-вторых, создание более легких условий для синтеза сополимеров. Действительно известно, что ШТВЭ показывает низкую реакционную способность, и необходимы сложные процессы для регенерации непревращенного мономера (смотри для примера GB Патент 1.514.700).
Известны диоксолы различных типов, имеющие общую формулу:
Figure 00000001

где Y1, Y2 означают -H, -F или -Cl; Y3, Y4 означают -F или -CF3 (смотри, например, US Патент 3.865.845, EP 76.581, EP 80.187, EP 95.077, EP 73.087). Такие соединения могут быть использованы для приготовления гомополимеров или сополимеров с другими фторированными мономерами. В частности, как аморфные, так и кристаллические сополимеры описаны и приготовлены между описанными выше диоксолами и ТФЭ (смотри, например, EP Патент 73.087, EP 95.077, US 4.558.141).
В Европейском патенте N EP 633257 A того же заявителя новые фтордиоксолы формулы:
Figure 00000002

описаны, где Rf - это перфторалкил, имеющий от 1 до 5 атомов углерода, X1 и X2, одинаковые или различные друг от друга, означают -F или -CF3.
Такие диоксолы могут быть использованы для приготовления гомополимеров и сополимеров с другими фторированными мономерами. В частности, описаны ТФЭ термообрабатываемые терполимеры, где ТФЭ сополимеризованы с фтордиоксолом формулы (I) и с перфторметилвинилэфиром. В примерах 9 и 10 кристаллические сополимеры более того приготовлены из ТФЭ и 2,2,4-трифтор-5-трифторметокси-1,3-диоксола, причем последний представлен в количестве, равном 1.1% и 3.3% по молям соответственно. Процесс сополимеризации проводили в растворе органического растворителя (CCl2FCF2Cl). Таким образом полученные сополимеры показывают очень высокую вязкость расплава, с неизмеряемой величиной индекса вязкости расплава и поэтому не термообрабатываемы. Не представлены характеристики, имеющие отношение к оптическим свойствам таких сополимеров.
Заявитель в настоящее время неожиданно обнаружил, что сополимеризация фтордиоксола, как описано здесь ниже с ТФЭ, необязательно в соединении с ГФП и/или перфторалкилвинилэфиром, например, перфторпропилвинилэфиром и перфторметилвинилэфиром, позволяет получать ТФЭ термообрабатываемые полимеры с улучшенными механическими свойствами, в частности, при высокой температуре. Такие свойства скомбинированы с удивительными оптическими свойствами, как показано радиационными трансмиссионными измерениями (прозрачность и мутность). Эта комбинация свойств приводит к результатам удивительно более высоким, чем достижимо с известными модифицирующими сомономерами, в частности по отношению к известным фтордиоксолам.
В настоящем изобретении определено, что для фтордиоксолов, рассмотренных в одинаковых количествах, еще замечено снижение текучести, неожиданно сочетаемое с сохранением прочностных свойств и сопротивлением фактору хрупкости при высокой температуре.
Наоборот, эксперименты, проведенные заявителем, неожиданно показали, что фтордиоксолы настоящего изобретения имеют более высокую модифицирующую способность, чем известные фтордиоксолы предшествующей статьи, и это позволяет получать сополимеры, имеющие более низкое содержание модифицирующего сомономера, которые, имея равную температуру текучести, показывают замечательные инженерные свойства, в частности предел текучести и улучшенные тепловые деформационные величины.
Реакционная способность фтордиоксолов настоящего изобретения так высока, что не нужно сложных процессов для извлечения мономера.
Предметом настоящего изобретения являются тетрафторэтиленовые (ТФЭ) термообрабатываемые сополимеры, включающие:
(A) от 0.1 до 15%, предпочтительно от 0.5 до 9%, по молям фтордиоксола формулы:
Figure 00000003

где Rf является перфторалкилом, имеющим от 1 до 5 атомов углерода; X1 и X2, одинаковые или различные друг от друга, являются -F или -CF3; Z выбран из -F, -H, -Cl;
(B) от 0 до 15%, предпочтительно от 0 до 10% по молям перфторированного мономера, выбранного из гексафторпропена (ГФП) и перфторалкилвинилэфиров формулы CF2 = CF-OR'f, где R'f является перфторалкилами C2-C4 или их смесями;
(C) ТФЭ, образующий оставшуюся часть до 100%; с условием, что общее количество мономеров (a) и (b) ниже или равно 20% по молям, предпочтительно ниже или равно 12% по молям.
Предпочтительно, в формуле (I) X1, X2 и Z являются -F, Rf является предпочтительно -CF3, -C2F5, или -C3F7. Фтордиоксолы формулы (I), где Rf является -CF3, или -C2F5, и X1, X2 и Z являются -F, особенно предпочтительны.
Среди перфторалкилвинилэфиров формулы CF2= CF-OR'f, перфторпропилвинилэфир (ППВЭ) особенно предпочтителен.
Фтордиоксолы формулы (I) описаны в заявке на Европейский патент N 94109782.6 тех же авторов, состав которых включен здесь ссылкой. В случае если Z является -F, они могут быть приготовлены следующим способом, включающим:
(а) реакцию при температуре между -140 и +60oC (предпочтительно между -110 и -20oC) диоксола формулы:
Figure 00000004

где X1 и X2 имеют значения, указанные выше, с фтороксисоединением, формулы RfOF, где Rf имеет значения, указанные выше, с получением диоксолана формулы:
Figure 00000005

(b) дегалогенирование диоксолана (III) в соответствии с известными технологиями, реакцией его с металлом в апротонном диполярном растворителе.
Диоксолы формулы (II) - известные соединения, они могут быть получены, например, в соответствии с заявкой на Европейский патент N 460.946. Фтороксисоединения Rf-OF также известные продукты. CF3OF может быть получен, например, в соответствии с описанием G.H. Cady и К.В. Kellogg в J. Am. Chem. Soc. 70, 3986, 1948, высшие гомологи процесса описаны в US Патенте 4.827.024.
Альтернативный процесс, предшествующий процессу для приготовления фтордиоксолов формулы (I), где Z является -F, описанный в заявке на Европейский патент N 94109782.6, включает:
(а) реакцию при температуре -140 и +60oC (предпочтительно между -110 и -20oC) олефина формулы:
RfO-CCl = CFCl (IV)
где Rf определен выше, с бис-фтороксисоединениями, имеющими формулу:
CX1X2(OF)2 (V)
таким образом получая диоксолан формулы (III),
(b) дегалогенирование диоксолана (III) как описано выше.
Олефин (IV) может быть получен реакцией CCl2 = CCl2 с RfOF, получая таким образом соединение Rf-OCCl2-CFCl2, которое при реакции дехлорирования с порошкообразным цинком в органическом растворителе дает олефин (IV).
Дальнейший процесс приготовления фтордиоксолов формулы (I), где Z является -F, описан в заявке на Европейский патент N 94109782.6 также хорошо, включает реакцию при температуре между 50 и 150oC диоксолана формулы:
Figure 00000006

необязательно в смеси с диоксоланом формулы:
Figure 00000007

где Rf определен выше, с KOH в твердом состоянии, с последующим дегидрохлорированием и образованием фтордиоксола.
Диоксолан (VI) может быть получен реакцией RfOF с трихлорэтиленом с получением RfO-CHCl-CFCl2 соединения, которое затем дехлорировали с порошкообразным цинком в органическом растворителе. Таким образом получали олефин формулы Rf -OCH = CFCl, который окончательно реагирует с CX1X2(OF)2, как описано выше для олефина (IV), давая диоксолан (VI).
Диоксолан (VII), в смеси с диоксоланом (VI), может быть приготовлен следующим образом. Олефин CHCl = CHCl реагировал с CX1X2(OF)2, давая диоксолан, имеющий формулу:
Figure 00000008

который дегидрогалогенированием с твердым KOH дает диоксол формулы:
Figure 00000009

Он наконец реагирует с RfOF, таким образом давая смесь диоксоланов (VI) и (VII).
Синтез фтордиоксолов (I) можно использовать, подобно уже показанным процессам, для дихлорэтилена или трихлорэтилена, которые реагируют с гипофторитами формулы:
Rf-OF и CX1X2(OF)2,
таким образом получая альтернативными реакциями дехлорирования и дегидрохлорирования различные промежуточные соединения, описанные выше.
Подобно описанному выше для Z = -F, когда Z является -Cl или -H, фтордиоксолы формулы (I) могут быть получены в соответствии со следующим методом. 1,1-Дихлорэтилен CH2 = CCl2 реагирует с гипохлоритом RfOCl, и реакционный продукт дегидрохлорирован как описано выше, таким образом давая олефин формулы Rf - OCCl = CHCl.
Последний реагирует с CX1X2(OF)2, как описано выше для олефина (IV), давая диоксолан, имеющий формулу:
Figure 00000010

Диоксолан (X) может быть дегидрохлорирован с твердым KOH, давая фтордиоксол (I) с Z = -Cl, или он может быть дехлорирован с порошкообразным цинком в органическом растворителе, давая фтордиоксол (I) с X = -H.
Сополимеры настоящего изобретения показывают вязкость расплава, которая делает их термообрабатываемыми в соответствии со стандартными технологиями, с измеряемыми величинами индекса вязкости расплава (MFI). В частности MFI, измеренный в соответствии со стандартом ASTM D-1238, в основном заключался между 0.5 и 50 г/10', преимущественно между 1 и 30 г/10'.
Сополимеры настоящего изобретения могут быть получены по известным технологиям сополимеризацией соответствующих мономеров, в суспензии в органической среде или в водной эмульсии, в присутствии подходящего инициатора радикальной полимеризации, при температуре между 0 и 150oC, предпочтительно между 20 и 100oC. Давление реакции в основном между 0.5 и 100 бар, предпочтительно между 5 и 40 бар.
Среди различных инициаторов радикальной полимеризации могут быть использованы в частности: неорганические пероксиды, растворимые в воде, такие как, например, персульфаты и перфосфаты аммония или щелочных металлов; в частности персульфат аммония или калия; органические или неорганические окислительно-восстановительные системы, такие как персульфат аммония /сульфит натрия, перекись водорода/ аминоиминометансульфиновая кислота; бис-ацилпероксиды формулы
(Rf-CO-O)2,
где Rf является пергалоалкилом C1-C10, или перфторополиоксиалкиленовой группой, например, бис(перфторопропионил)пероксид; диалкилпероксиды формулы (Rf-O)2, где Rf является пергалоалкилом C1-C10, таким как, например, дитретбутилпероксид (ДТБП); и т.д.
В случае сополимеризации в суспензии, реакционная среда образована органической фазой, к которой вода обычно добавлена для улучшения рассеивания тепла, выделяемого в ходе реакции. Как органическая фаза могут быть использованы галогенированные углеводороды, в частности (хлоро)фтороуглеводороды и хлорофтороуглероды; фторополиоксиалкилены и др.
В случае (со)полимеризации в водной эмульсии, требуется присутствие подходящих поверхностно-активных веществ. Наиболее часто использовались фторированные поверхностно-активные вещества формулы:
Rf-X--M+
где Rf является (пер)фторалкильной цепью C5-C16 или (пер)фторполиоксиалкиленовой цепью, X- означает -COO- или SO3-, М+ выбирают из: H+, NH4+, ион щелочного металла. Среди них могут быть использованы аммония и/или натрия перфтороктаноат; (пер)фторполиоксиалкилен с одной или более концевой карбоксильной группой, и др.
Процесс, который является объектом настоящего изобретения, может быть благоприятно проведен в присутствии эмульсий или микроэмульсий перфторполиоксиалкиленов согласно US Патенту 4.789.717 и 4.864.006, или также микроэмульсий фторполиоксиалкиленов, имеющих гидрированные повторяющиеся звенья, согласно заявке на EP Патент 625.526.
В порядке контроля молекулярного веса конечного продукта и, следовательно, вязкости расплава, к реакционной системе добавляют подходящие агенты переноса цепи, такие как: водород, углеводороды, необязательно содержащие галоиды, например, метан, этан, хлороформ, хлористый метилен, и прочие; сложные эфиры, простые эфиры или алифатические спирты, например, метанол, этанол, диэтилмалонат и прочие. Агент переноса цепи подают в реактор в начале реакции, или непрерывно отдельными порциями, в течение полимеризации. Количество применяемого агента переноса цепи может быть ограничено широкими пределами, в зависимости от желаемого молекулярного веса, эффективности самого агента переноса цепи и от температуры реакции.
Некоторые примеры настоящего изобретения приводятся ниже для иллюстрации, но они не ограничивают самого изобретения.
Пример 1.
5 л AISI 316 стальной хромированный автоклав, оборудованный мешалкой, работающей с 650 об/мин, был вакуумирован, и 3.0 л деминерализованной воды, и 2,2,4-трифтор-5-трифторметокси-1,3-диоксол (ТТД), имеющий формулу:
Figure 00000011

были введены в него в количествах, равных 0.67 г/л H2O. Затем была добавлена микроэмульсия перфторполиоксиалкиленов, полученная в соответствии с примером 1 из USP 4.864,006, в таких количествах, чтобы получить концентрацию перфторполиоксиалкиленового поверхностно-активного вещества, равной 2.0 г/л H2O. Автоклав был доведен до рабочей температуры 75oC и затем этан под давлением 0.24 абсол. бар был загружен как агент переноса цепи. Автоклав был доведен до рабочего давления 21 абсол. бар подачей ТФЭ/ТТД газообразной смеси в молярном соотношении 54.55/1. Перед началом реакции газовая фаза, проанализированная газохроматографом, показала следующий состав (% по молям): 97.9% ТФЭ, 2.1% ТТД. Посредством дозирующего насоса затем был подан инициатор, представляющий раствор персульфата калия (КПС), имеющего концентрацию, равную 0.00315 моль/л со скоростью расхода 88 мл/ч. В течение реакции рабочее давление сохраняли постоянным, непрерывно подавая реакционную смесь ТФЭ/ТТД, имеющую состав, указанный выше. Реакция была остановлена после того, как 1560 г ТФЭ/ТТД смеси было добавлено. Газовая фаза, находящаяся в автоклаве, имеет после окончания реакции, следующий состав (% по молям): 98.2% ТФЭ, 1.8 ТТД. Затем реактор был охлажден до комнатной температуры, эмульсия выгружена и коагулирована добавлением 65% по весу водного раствора HNO3. Получающийся полимер был отделен, промыт деминерализированной водой и высушен. Полимер был охарактеризован как показано в табл. 1.
Состав полимера был определен материальным балансом. Температура текучести (T2m) была определена сканирующей дифференциальной калориметрией (ДСК), индекс вязкости расплава в соответствии со стандартом ASTM D-1238-52Т, с 5 кг нагрузки.
Оптические свойства, то есть мутность и прозрачность, были измерены в соответствии со стандартом ASTM 1003.
Механические свойства были измерены при 23 и 250oC, в соответствии со стандартом ASTM D-1708, со скоростью растяжения 50 мм/мин, на образцах, имеющих 1.58±0.08 nn, прямое прессование проводили в соответствии со стандартом ASTM D-3307-81. Указанные величины представляют собой среднее значение 3 измерений.
Пример 2.
Пример 1 был повторен при таких же условиях, за исключением количества этана, поданного перед началом реакции, которое соответствовало давлению, равному 0.52 абсол. бар. Характеристики полученного полимера приведены в табл. 1. Деформационные измерения кроме того были проведены вслед за этим, в соответствии с ASTM D-2990, на образцах, спрессованных под давлением и предварительно обработанных при 200oC в течение 48 часов, при растягивающем напряжении при 275oC с силой 1.6 МПа. Результаты также приведены в табл. 1.
Пример 3.
Пример 1 был повторен при тех же условиях, за исключением количества этана, поданного перед началом реакции, которое соответствовало давлению, равному 0.57 абсол. бар. Характеристики полученного полимера приведены в табл. 1.
Пример 4 (сравнительный).
В такой же автоклав, как и в примере 1, 3.0 л деминерализованной воды и микроэмульсия перфторполиоксиалкиленов, полученная в соответствии с примером 1 из USP 4.864.006, в таком количестве, чтобы получилась концентрация перфторполиоксиалкиленового поверхностно-активного вещества, равная 2.0 г/л H2O, были добавлены после вакуумирования. Автоклав был приведен к рабочей температуре 75oC и затем количество этана, являющегося агентом переноса цепи, соответствующее давлению, равному 0.57 абсол. бар, было добавлено. Затем автоклав был приведен к рабочему давлению 21 абсол. бар давлением газообразной смеси между ТФЭ и 2,2,4,5-тетрафтор-1,3 -диоксол (PD), имеющего формулу
Figure 00000012

с молярным соотношением ТФЭ/PD, равным 54.55/1. Перед началом реакции газовая фаза, проанализированная газохроматографом, имела следующий состав (% по молям): 98.2% ТФЭ, 1.8% PD. Посредством дозирующего насоса затем был подан инициатор, образованный раствором персульфата калия (ПСК), имеющего концентрацию, равную 0.00315 молей/л, с расходом 88 мл/час. В течение реакции рабочее давление сохраняли постоянным, непрерывно подавая реакционную смесь ТФЭ/PD, имеющую состав, указанный выше. Реакция была остановлена после того, как подали 780 г ТФЭ/PD смеси. Газовая фаза в конце реакции имела следующий состав (% по молям): 99.1% ТФЭ, 0.9% PD. Полученный полимер был охарактеризован как приведено в табл. 1.
Пример 5 (сравнительный).
В такой же автоклав, как и в примере 1, 3.0 л деминерализованной воды и перфторпропилвинилэфир (ППВЭ) в количестве равном 3.67 г/л H2O, были добавлены после вакуумирования. Микроэмульсия перфторполиоксиалкиленов, полученная в соответствии с примером 1 из USP 4.868.006, была затем добавлена, в таком количестве, чтобы получить концентрацию перфторполиоксиалкиленового поверхностно-активного вещества, равную 2.0 г/л H2O. Автоклав был приведен к рабочей температуре 75oC и затем добавлен этан в количестве, соответствующем давлению 0.35 абсол. бар, действующий как агент переноса цепи. Автоклав затем был доведен до рабочего давления 21 абсол. бар давлением газообразной смеси ТФЭ/ППВЭ с молярным соотношением, равным 54.55/1. Перед началом реакции газовая фаза, проанализированная газохроматографом, имела следующий состав (% по молям): 94.52% ТФЭ, 5.2% ППВЭ. Посредством дозирующего насоса затем был подан инициатор, представляющий собой раствор персульфата калия (ПСК), имеющего концентрацию, равную 0.00315 молей/л, с расходом 88 мл/час. В течение реакции рабочее давление сохраняли, непрерывно подавая реакционную смесь ТФЭ/ППВЭ, имеющую состав, указанный выше. Реакция была остановлена после того, как добавили 1560 г смеси ТФЭ/ППВЭ. Газовая фаза в конце реакции имела следующий состав (% по молям): 94.3% ТФЭ, 5.7% ППВЭ. Потом реактор был охлажден до комнатной температуры, эмульсия выгружена и коагулирована добавлением 65% по весу водного раствора HNOs. Полимер был охарактеризован как представлено в табл. 1.
Горячие деформационные измерения проводились над упомянутым продуктом как указано выше, результаты представлены в табл. 1.
Пример 6.
Пример 1 был повторен при таких же условиях, за исключением начального количества ТТД, равного 0.6 г/л H2O, и молярного соотношения добавленной ТФЭ/ТТД смеси, равного 61.5/1. Характеристики полученного полимера представлены в табл. 2.
Пример 7.
Пример 4 был повторен при тех же условиях, за исключением количества этана, добавленного перед началом реакции, которое соответствовало давлению, равному 0.15 абсол. бар. Характеристики полученного полимера приведены в табл. 2.
Пример 8.
Пример 1 был повторен, но при использовании количества ТТД 0.427 г/л H2O.
Молярное соотношение в поданной газовой смеси между ТФЭ/ТТД было 60.73/1.
Количество этана соответствовало давлению, равному 0.375 бар.
Характеристики таким образом полученного полимера представлены в табл. 3 и их можно сравнить с данными примера 4.
Пример 9 (сравнительный).
Пример 4 был повторен, но со следующими отличиями:
- молярное соотношение в газообразных смесях ТФЭ/PD было 45.95/1;
- количество этана соответствовало давлению 0.627 бара.
Данные характеристик полимера представлены в табл. 3 и их можно сравнить с примером 2.
Пример 10 (сравнительный).
Пример 4 был повторен, но со следующими отличиями:
- молярное соотношение газообразных добавленных смесей ТФЭ/PD было 45.91/1;
- количество этана соответствовало давлению 0.64 бара.
Данные характеристик полимера представлены в табл. 3 и их можно сравнить с примером 3.
Пример 11.
Пример 1 был повторен, но со следующими отличиями:
- количество этана соответствовало давлению 0.336 бар.
Данные характеристик полимера приведены в табл. 3.
Пример 12 (сравнительный).
Пример 11 был повторен при использовании PD и при молярном соотношении ТФЭ/PD 45.91/1; и количество этана соответствовало давлению 0.619 бар.
Данные характеристик полимера приведены в табл. 3 и их можно сравнить с примером 11.
Дополнительный пример на получение тройных сополимеров.
Пример 13.
5 л AISI 316 стальной хромированный автоклав, оборудованный мешалкой, работающей с 650 об/мин, был вакуумирован, и 3.0 л деминерализованной воды, хлороформ (действующий как агент переноса цепи) и 2,2,4-трифтор-5- трифторметокси-1,3-диоксол (ТТД), имеющий формулу:
Figure 00000013

были введены в него в количествах, равных 0,247 г/л H2O для хлороформа, и в количествах, равных 0,67 г/л H2O для ТТД. Затем была добавлена микроэмульсия перфторполиоксиалкиленов, полученная в соответствии с примером 1 из USP 4.864.006, в таких количествах, чтобы получить концентрацию перфторполиоксиалкиленового поверхностно-активного вещества, равной 3.0 г/л H2O. Автоклав был доведен до рабочей температуры 85oC и затем гексафторпропен (HFP) под давлением 7.5 абсол. бар был загружен. Автоклав был доведен до рабочего давления 20 абсол. бар подачей ТФЭ/HFP газообразной смеси в молярном соотношении 16.5/1. Перед началом реакции газовая фаза, проанализированная газохроматографом, показала следующий состав (% по молям): 36.3% ТФЭ, 62.0% HFP, 2.1% ТТД. Посредством дозирующего насоса затем был подан инициатор, представляющий раствор персульфата калия (ПСК), имеющего концентрацию, равную 0,022 моль/л со скоростью расхода 88 мл/ч. В течение реакции рабочее давление сохраняли постоянным, непрерывно подавая реакционную смесь ТФЭ/HFP, имеющую состав, указанный выше. Реакция была остановлена после того, как 780 г ТФЭ/HFP смеси было добавлено. Газовая фаза, находящаяся в автоклаве, имеет после окончания реакции, следующий состав (% по молям): 37,1% ТФЭ, 62,8% HFP, 0,1% ТТД. Затем реактор был охлажден до комнатной температуры, эмульсия выгружена и коагулирована добавлением 65% по весу водного раствора HNO3. Получающийся полимер был отделен, промыт деминерализированной водой и высушен. Полимер был охарактеризован как показано в табл. 4.
Состав полимера был определен материальным балансом. Температура текучести (T2m) была определена сканирующей дифференциальной калориметрией (ДСК), индекс вязкости расплава в соответствии со стандартом ASTM D-1238-52T, с 5 кг нагрузки.
Механические свойства были измерены при 23 и 200oC, в соответствии со стандартом ASTM D-1708, со скоростью растяжения 50 мм/мин, на образцах, имеющих 1.58±0.08 mm, прямое прессование проводили в соответствии со стандартом ASTM D-3307-81. Указанные величины представляют собой среднее значение 3 измерений.
Перечень принятых в описании сокращений
1. ПТФЭ - политетрафторэтилен
2. ТФЭ - тетрафторэтилен
3. ГФП - гексафторпропен
4. ПАВЭ - перфторалкилвиниловый эфир
5. ППВЭ - перфторпропилвиниловый эфир
6. ПСК - персульфат калия
7. ДСК - дифференциальная калометрияP

Claims (9)

1. Термообрабатываемые сополимеры на основе тетрафторэтилена, полученные взаимодействием (А) фтордиоксола формулы I
Figure 00000014

где Rf является перфторалкилом, имеющим от 1 до 5 атомов углерода;
Х1 и Х2 - одинаковые или отличные друг от друга и являются -F или -CF3;
Z выбран из -F, -H, -Cl, в количестве 0,1 - 15 мол.% от общего количества мономеров;
(В) перфторированного мономера, выбранного из гексафторпропилена и перфторалкилвинилового эфира формулы
CF2 = CF-ORf,
где Rf является перфторалкилом С2 - С4,
или их смеси, в количестве 0 - 15 мол.% от общего количества мономеров, (С) тетрафторэтилена в оставшемся количестве до 100 мол.%, причем общее количество мономеров (А) и (В) ниже или равно 20 мол.%.
2. Термообрабатываемые сополимеры по п.1, отличающиеся тем, что перфторалкилвиниловый эфир является перфторпропилвиниловым эфиром.
3. Термообрабатываемые сополимеры по пп.1 и 2, отличающиеся тем, что фтордиоксол формулы I используют в количестве 0,5 - 9 мол.% от общего количества мономеров.
4. Термообрабатываемые сополимеры по пп.1 - 3, отличающиеся тем, что перфторированный мономер (В) используют в количестве 0 - 10 мол.% от общего количества мономеров.
5. Термообрабатываемые сополимеры по пп.1 - 4, отличающиеся тем, что общее количество мономеров (А) и (В) ниже или равно 12 мол.% от общего количества мономеров.
6. Термообрабатываемые сополимеры по пп.1 - 5, отличающиеся тем, что в формуле I мономера (А) Х1 = Х2 = F.
7. Термообрабатываемые сополимеры по пп.1 - 6, отличающиеся тем, что в формуле I мономера (А) Rf выбран из -CF3, -С2F5 и -C3F7.
8. Термообрабатываемые сополимеры по пп.1 - 7, отличающиеся тем, что они имеют вязкость расплава такую, чтобы получить величины индекса вязкости, расплава (МГ1) от 0,5 до 50 г/101, измеренные в соответствии со стандартом ASTM 1238 - 52 Т.
9. Термообрабатываемые сополимеры по п.8, отличающиеся тем, что величина индекса вязкости расплава (МГ1) составляет 1 - 30 г/101.
RU96100244/04A 1995-01-04 1996-01-03 Тетрафторэтиленовые термообрабатываемые сополимеры RU2154650C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI950012A IT1272863B (it) 1995-01-04 1995-01-04 Copolimeri termoprocessabili del tetrafluoroetilene
ITM195A000012 1995-01-04
ITMI95A000012 1996-01-04

Publications (2)

Publication Number Publication Date
RU96100244A RU96100244A (ru) 1998-03-27
RU2154650C2 true RU2154650C2 (ru) 2000-08-20

Family

ID=11370132

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96100244/04A RU2154650C2 (ru) 1995-01-04 1996-01-03 Тетрафторэтиленовые термообрабатываемые сополимеры

Country Status (9)

Country Link
US (1) US6066707A (ru)
EP (1) EP0720992B1 (ru)
JP (1) JP3719749B2 (ru)
AT (1) ATE179722T1 (ru)
DE (1) DE69509489T2 (ru)
ES (1) ES2132510T3 (ru)
IT (1) IT1272863B (ru)
RU (1) RU2154650C2 (ru)
TW (1) TW426692B (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1282378B1 (it) * 1996-04-24 1998-03-20 Ausimont Spa Perfluoroelastomeri a base di diossoli
US6737165B1 (en) * 1998-08-06 2004-05-18 Omlidon Technologies Llc Melt-processible poly(tetrafluoroethylene)
US7276287B2 (en) * 2003-12-17 2007-10-02 Eidgenössische Technische Hochschule Zürich Melt-processible poly(tetrafluoroethylene)
JP2003520863A (ja) 1998-08-06 2003-07-08 オムリドン テクノロジーズ エルエルシー 溶融加工性ポリ(テトラフルオロエチレン)
US6184270B1 (en) 1998-09-21 2001-02-06 Eric J. Beckman Production of power formulations
ITMI991514A1 (it) 1999-07-09 2001-01-09 Ausimont Spa Co polimeri peralogenati termoprocessabili del clorotrifluoroetilene
KR100538500B1 (ko) * 1999-08-30 2005-12-23 신에쓰 가가꾸 고교 가부시끼가이샤 고분자 화합물, 레지스트 재료 및 패턴 형성 방법
US6669487B1 (en) * 2000-04-28 2003-12-30 Hitachi, Ltd. IC card
IT1318596B1 (it) * 2000-06-23 2003-08-27 Ausimont Spa Copolimeri termoprocessbili del tfe.
IT1318595B1 (it) * 2000-06-23 2003-08-27 Ausimont Spa Microsfere di copolimeri termoprocessabili del tetrafluoroetilene.
US20040242819A1 (en) * 2003-05-14 2004-12-02 Earnest Thomas Robert High melt flow fluoropolymer
US7126056B2 (en) * 2003-05-14 2006-10-24 E. I. Du Pont De Nemours And Company High melt flow fluoropolymer
US7122609B2 (en) * 2003-05-14 2006-10-17 E. I. Du Pont De Nemours And Company High melt flow fluoropolymer
EP1836231B1 (en) * 2003-12-01 2009-04-22 Japan Science and Technology Agency Fluorinated polymers, method for producing the fluorinated compounds and polymers
JP6389825B2 (ja) * 2012-12-05 2018-09-12 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 熱処理後に改善された熱的および機械的特性を有する溶融加工可能なパーフルオロポリマー

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE560454A (ru) * 1957-03-29
US3635926A (en) * 1969-10-27 1972-01-18 Du Pont Aqueous process for making improved tetrafluoroethylene / fluoroalkyl perfluorovinyl ether copolymers
US3865845A (en) * 1971-02-24 1975-02-11 Paul Raphael Resnick Fluorinated dioxoles
US4029868A (en) * 1976-03-10 1977-06-14 E. I. Du Pont De Nemours And Company Tetrafluoroethylene terpolymers
US4042634A (en) * 1976-03-15 1977-08-16 E. I. Du Pont De Nemours And Company Fluorocarbon separation process
JPS5838707A (ja) * 1981-08-20 1983-03-07 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− パ−フルオロ−2,2−ジメチル−1,3−ジオキソ−ルの無定形共重合体
US4429143A (en) * 1981-09-28 1984-01-31 E. I. Du Pont De Nemours & Co. Cyclic monomers derived from trifluoropyruvate esters
US4399264A (en) * 1981-11-19 1983-08-16 E. I. Du Pont De Nemours & Co. Perfluorodioxole and its polymers
US4558141A (en) * 1981-11-19 1985-12-10 E. I. Du Pont De Nemours And Company Perfluorodioxole and its polymers
US4431786A (en) * 1982-05-06 1984-02-14 E. I. Du Pont De Nemours And Company Novel fluorodioxoles and fluorodioxole polymers
JPS59115314A (ja) * 1982-12-13 1984-07-03 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 部分的に結晶性のテトラフルオロエチレン共重合体
IT1184149B (it) * 1985-03-11 1987-10-22 Montefluos Spa Processo per la preparazione di fluorossi-alo-composti
IT1189092B (it) * 1986-04-29 1988-01-28 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri fluorurati
IT1204903B (it) * 1986-06-26 1989-03-10 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri florati
JPH0649359Y2 (ja) * 1990-06-05 1994-12-14 株式会社スタッフ ファクシミリ玩具
IT1249208B (it) * 1990-06-07 1995-02-20 Ausimont Srl Processo per la preparazione di 1,3-diossolani alogenati e nuovi prodotti ottenuti
IT1265067B1 (it) * 1993-05-18 1996-10-30 Ausimont Spa Processo di (co)polimerizzazione in emulsione acquosa di monomeri olefinici fluorurati
IT1264662B1 (it) * 1993-07-05 1996-10-04 Ausimont Spa Perflurodiossoli loro omopolimeri e copolimeri e loro impiego per il rivestimento di cavi elettrici
IT1269517B (it) * 1994-05-19 1997-04-01 Ausimont Spa Polimeri e copolimeri fluorurati contenenti strutture cicliche
IT1272861B (it) * 1995-01-04 1997-07-01 Ausimont Spa Copolimeri dell'etilene con tetrafluoroetilene e/o clorotrifluoroetilene,aventi migliorate proprieta' meccaniche alle alte temperature

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПАНШИН Ю.А. и др. Фторопласты. - Л.: Химия, Ленинградское отделение, 1978, с. 124-127. *

Also Published As

Publication number Publication date
ITMI950012A0 (it) 1995-01-04
JP3719749B2 (ja) 2005-11-24
JPH08231646A (ja) 1996-09-10
EP0720992A1 (en) 1996-07-10
ITMI950012A1 (it) 1996-07-04
ES2132510T3 (es) 1999-08-16
US6066707A (en) 2000-05-23
ATE179722T1 (de) 1999-05-15
IT1272863B (it) 1997-07-01
DE69509489T2 (de) 1999-09-02
EP0720992B1 (en) 1999-05-06
DE69509489D1 (de) 1999-06-10
TW426692B (en) 2001-03-21

Similar Documents

Publication Publication Date Title
RU2139866C1 (ru) Перфтордиоксолы, способ их получения (варианты), гомополимеры и сополимеры перфтордиоксолов, термоперерабатываемые сополимеры тетрафторэтилена
RU2154650C2 (ru) Тетрафторэтиленовые термообрабатываемые сополимеры
EP0822175B1 (en) Hydrogen-containing fluorosurfactant and its use in polymerisation
JP3531974B2 (ja) 新規な熱加工性テトラフルオロエチレンの共重合体類
KR100791504B1 (ko) 플루오로비닐에테르 및 그것으로부터 얻을 수 있는 중합체
US5494984A (en) Method for producing a fluorinated polymer
US6677414B2 (en) Aqueous emulsion polymerization process for the manufacturing of fluoropolymers
US4522995A (en) Fluorinated alkyl ether-containing ethylenes, precursors thereto, and copolymers thereof with tetrafluoroethylene
JPH07188337A (ja) 弗化オレフィンモノマー類の水性エマルション中での(共)重合法
EP0818490B1 (en) Process for the suspension polymerisation of fluoroethylenes
KR100406925B1 (ko) 고온에서개선된기계적성질을가지는테트라플로로에틸렌및/또는클로로트리플로로에틸렌과의에틸렌공중합체들
US6335408B1 (en) Copolymers of perfluorodioxoles
JP2000007733A (ja) クロロトリフルオロエチレンコポリマ―とその製造方法
JP3993239B2 (ja) 部分フッ素化ポリマー
US6469185B1 (en) Perfluorodioxoles
CA2123693C (en) New thermoplastic fluorocopolymers and the fluoromonomers used for their preparation
JP3272474B2 (ja) エチレン−テトラフルオロエチレン系共重合体の製造方法
JPH06184207A (ja) 含弗素重合体の製造方法
JPH06184204A (ja) 含弗素重合体の製造法
JPH06184208A (ja) 含フッ素重合体の製法
JPH0733805A (ja) エチレン−テトラフルオロエチレン系共重合体の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130104