RU2138781C1 - Датчик с улучшенной компенсацией - Google Patents

Датчик с улучшенной компенсацией Download PDF

Info

Publication number
RU2138781C1
RU2138781C1 RU96116924A RU96116924A RU2138781C1 RU 2138781 C1 RU2138781 C1 RU 2138781C1 RU 96116924 A RU96116924 A RU 96116924A RU 96116924 A RU96116924 A RU 96116924A RU 2138781 C1 RU2138781 C1 RU 2138781C1
Authority
RU
Russia
Prior art keywords
process variable
value
composite
variable
sensor
Prior art date
Application number
RU96116924A
Other languages
English (en)
Other versions
RU96116924A (ru
Inventor
Варриор Джогеш
Е.Бригхам Скотт
А.Ленз Гари
Original Assignee
Роузмаунт Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роузмаунт Инк. filed Critical Роузмаунт Инк.
Publication of RU96116924A publication Critical patent/RU96116924A/ru
Application granted granted Critical
Publication of RU2138781C1 publication Critical patent/RU2138781C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/036Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves
    • G01D3/0365Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves the undesired influence being measured using a separate sensor, which produces an influence related signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/022Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation having an ideal characteristic, map or correction data stored in a digital memory
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/90Fuzzy logic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/902Application using ai with detail of the ai system
    • Y10S706/903Control
    • Y10S706/906Process plant

Abstract

Используется для измерения переменной в автоматизированной системе управления технологическим процессом. Датчик содержит сенсор, который определяет первичную переменную процесса, такую, как перепад давления, и преобразователь, который преобразует определяемую переменную процесса в цифровую форму, Для повышения точности измерений производится компенсация ошибок, связанных с оцифровкой. Для этого запоминающее устройство в датчике хранит по меньшей мере две составные функции и набор компенсационных формул, каждая из которых соответствует некоторой составной функции. Схема выбора в датчике выбирает те составные функции, которые имеют ненулевое значение на оцифрованной переменной процесса, а корректировочная схема обеспечивает по меньшей мере одно поправочное значение, вычисленное из компенсационной формулы, соответствующей выбранной составной функции. Взвешивающая схема умножает каждое поправочное значение на его соответствующую выбранную составную функцию и складывает множимые для получения компенсированной переменной. Происходит повышение точности измерений при небольшом объеме вычислений. 6 с. и 11 з.п. ф-лы, 7 ил., 1 табл.

Description

Настоящее изобретение относится к технологии компенсации определяемой переменной, которая может представлять положение, например, в системе автоматизации технологического процесса, или некоторой другой переменной, например, давления, температуры, pH, оптической интенсивности, как в системах управления технологическим процессом, в частности к устройствам, таким как датчики, исполнительные механизмы и устройства для позиционирования, которые компенсируют определяемую переменную, чтобы выдать выходной сигнал, характеризующий данную переменную.
Существует необходимость в повышении точности, с которой измерительные датчики и устройства с активизированным выходом, в частности устройства для позиционирования, компенсируют выходные сигналы, характеризующие переменные процесса. Измерительные датчики определяют переменные процесса, такие как давление, температуру, расход, pH, положение, смещение, скорость и т.п. в системах управления технологическим процессом или автоматизации процесса. Датчики содержат аналогово-цифровые преобразователи (АЦП) для преобразования в цифровую форму выходов датчика, характеризующих определяемую переменную процесса, и компенсационную схему для компенсации повторяющихся ошибок в оцифрованных выходах переменных. Одним из главных источников ошибок является температура. Компенсационная схема типично содержит микропроцессор, который вычисляет компенсированный выход переменной процесса с помощью длинных полиномиальных функций, выбранных для подгонки ошибочных характеристик сенсора в некотором диапазоне давлений. Постоянные в этой длинной полиномиальной функции выбирают индивидуально для каждого сенсора. Во время изготовления путем индивидуального тестирования каждого сенсора формируют набор характеристических постоянных, связанных с ошибками сенсора, которые затем запоминают в ЭППЗУ датчика. С помощью такой схемы компенсации переменные процесса можно типично исправлять с точностью около 0,5% во всем диапазоне первичной переменной процесса, которую измеряет данный датчик. Например, известные датчики давления, имеющие диапазон от 0 до 150 дюймов вод. ст. (0 -37363,3 Па) дают давления, скорректированные с точностью 0,5%. Ограниченность электрического питания и времени на вычисление окончательного результата затрудняет выполнение более сложных вычислений для повышения точности.
Ошибки в рабочей характеристике сенсора могут быть комплексной, иногда нелинейной функцией многих переменных. Первичная переменная (переменная, которую компенсируют) прямо влияет на ошибку, тогда как вторичные переменные процесса (влияющие на измерение первичных переменных процесса) косвенно влияют на ошибку. С повышением требований к точности влияние вторичных переменных приобретает большее значение. Современные подходы решают эту проблему с помощью полиномов высокого порядка для процесса с многими переменными, но получающееся уравнение арифметически плохо обусловлено и чувствительно к способу вычисления полинома, так как могут возникать переполнения. Одно из компенсационных управлений для датчика является полиномом одиннадцатого порядка, состоящим из приблизительно 100 членов в трех переменных, которое должно вычисляться каждый раз, когда датчик выдает переменную процесса. Формирование характеристических постоянных для таких полиномов высокого порядка неэкономично и требует много времени. Кроме того, при таком подходе нельзя оптимально определить реальное поведение нелинейных переменных процесса, которые взаимодействуют нелинейно.
Кроме проблем сложности программного обеспечения и вычислений, критическое значение имеет расход энергии в датчиках, которые принимают всю свою рабочую мощность по тем же проводам, что и используемые для связи. Кроме того, некоторые "по существу безопасные" места, в которых устанавливают датчики, накладывают ограничения на доступную для датчика мощность. Ограниченный токовый бюджет не только ограничивает количество и сложность вычислений, но и влияет на функциональные возможности, которые можно заложить в датчик. Например, АЦП могут преобразовывать оцифрованные выходные сигналы сенсора гораздо быстрее, если имеется больше мощности, повышая тем самым скорость обновления данных в датчике. ЕЕПРОМ достаточно большой емкости, чтобы вместить все характеристические постоянные, также потребляет мощность, которая бы могла быть использована для обеспечения дополнительных функциональных возможностей.
Поэтому существует необходимость в точном способе компенсации переменных процесса, который был бы прост с точки зрения вычислений и требовал небольшого числа запоминаемых характеристических постоянных, чтобы расходовать меньше энергии и обеспечивать дополнительную мощность для расширения функциональных возможностей и повышения скорости обновления данных в датчике.
Один из вариантов измерительных датчиков содержит сенсор для определения переменной процесса (ПП), такой как давление, и цифрующее средство для преобразования в цифровую форму выходного сигнала, характеризующего определяемую ПП. Сенсор определяет ПП в некотором диапазоне значений ПП. ЗУ в датчике хранит по меньшей мере две составные функции, причем каждая составная функция имеет некоторое не равное нулю значение в установленной области диапазона ПП и по существу нулевое значение в остальной части этого диапазона. ЗУ также хранит набор компенсационных формул, каждая из которых соответствует некоторой составной функции. Схема выбора в датчике выбирает те составные функции, которые имеют ненулевую ординату в величине оцифрованной ПП, и корректирующая схема обеспечивает по меньшей мере одно поправочное значение, причем каждое поправочное значение вычисляют из компенсационной формулы, соответствующей выбранной составной функции. Взвешивающая схема взвешивает каждое поправочное значение ординатой, соответствующей выбранной составной функции, и суммирует множимые для получения компенсированной ПП. Компенсированную ПП передают в схему управления, связывающую датчик с системой управления.
Второй вариант содержит сенсор для определения первичной ПП, такой как перепад давления, и другие сенсоры для определения вторичных ПП, таких как линейное давление и температура. Ряд преобразователей преобразует определяемые ПП в цифровую форму. Каждой из переменных присваивают по меньшей мере одну составную функцию, причем по меньшей мере одной из переменных присваивают по меньшей мере две одномерных составных функции. Выбирают составные функции, имеющие по существу ненулевую ординату на оцифрованных значениях ПП, и из ЗУ извлекают компенсационные формулы, соответствующие выбранным составным функциям. Логическая схема размытого И формирует все индивидуальные трехкомпонентные комбинации и определяет "силу правила" или минимум каждой из комбинаций. Взвешивающая схема функционирует по существу так же, как описано выше, чтобы получить скомпенсированную первичную ПП, которую форматируют и передают на двухпроводную схему.
В дальнейшем изобретение поясняется описанием конкретных вариантов его воплощения со ссылкой на прилагаемые чертежи, на которых:
фиг. 1 изображает вид датчика, установленного в полевых условиях системы управления процессом;
фиг. 2 - структурную схему датчика согласно изобретению;
фиг. 3A- C - графики трех составных функций A-C, соответственно, и
фиг. 3D - график всех трех составных функций A-C, показанных как функции нескомпенсированного нормированного давления;
фиг. 4 - алгоритм компенсационной схемы 58 по фиг. 2;
фиг. 5 - структурную схему компенсационной схемы 58 с альтернативным вариантом схемы выбора составной функции 64;
фиг. 6 - график многомерных составных функций;
фиг. 7 - график ошибки как функции давления для двух сенсоров перепада давления A и B.
В таблице 1 показаны постоянные K1-K10 для каждой из областей.
Изображенный на фиг. 1 датчик давления, обозначенный в целом позицией 2, передает выходной сигнал, характеризующий давление, в цифровую систему управления (DCS) 4 через двухпроводной токовый контур, обозначенный в целом позицией 6. Жидкость 8 в резервуаре 10 течет через трубу 12 в ряд труб 14, 16 и 18, которые все содержат жидкость 8. Датчик давления 2 определяет перепад давления на пластине с отверстием 20, расположенной в потоке жидкости 8. Этот перепад давления характеризует расход жидкости 8 в трубе 12. Клапан 22, расположенный ниже по потоку от передатчика 2 управляет потоком в трубе 12 в зависимости от команд, принятых от блока DCS 4 через другой двухпроводной контур 24. Блок DCS 4 типично расположен в аппаратурном помещении, удаленном от полевых условий управления процессом и взрывозащищенном и по существу безопасном месте, тогда как датчик 2 и клапан 22 установлены непосредственно на трубе 12 в полевых условиях.
На фиг. 2 датчик 2 изображен с двумя выводами 50 и 52, выполненными с возможностью подключения к двум выводам блока DS 4 через витую пару проводов 6. Блок DCS 4 выполнен в виде сопротивления и источника питания, соединенных последовательно, и показан в общем позицией 4. Датчик 2 имеет часть 54, содержащую сенсоры, которые включают в себя емкостной сенсор перепада давления 54A, сенсор абсолютного давления 54B и датчик температуры 54C. Датчик 2 определяет перепады давления между 0 и 250 дюймами вод. ст. (0 - 62272,2 Па). Однако датчик 2 может также измерять переменные процесса, характеризующие положение, объемный и массовый поток, температуру, уровень, плотность, смещение, pH, турбулентность, растворенный кислород и концентрацию ионов. Аналоговый выходной сигнал сенсоров 54A-C передают на схему преобразования 56, которая содержит основанные на напряжении или емкости аналогово-цифровые преобразователи (АЦП), которые могут быть такого типа, как описано в патентах США 4878012, 5083091, 5119033 и 5155455. Каждый преобразователь 56A-C вырабатывает последовательный поток от 10 до 16 разрядов, характеризующих соответствующую оцифрованную переменную процесса (ПП), на шине, связанной с компенсационной схемой 58.
Компенсационная схема 58 использует размытую логику для формирования выходного сигнала, представляющего компенсированную ПП, и типично содержит микропроцессор, например, серии Motorola 68НC05, со встроенным ЗУ. Схема 58 компенсирует ошибки в оцифрованном сигнале, представляющем перепад давления, с помощью оцифрованных сигналов, представляющих абсолютное давление, температуру и перепад давления. Компенсационная схема 58 основана на посылке, что компенсацию точнее всего моделировать путем сегментации переменных, подлежащих компенсации, на множество областей, перекрывающих друг друга, где каждой области присвоена упрощенная компенсационная формула, оптимизированная для данной области, и составная функция, которая может быть многомерной. "Сила" формулы в данной области изменяется в рамках данной области и описана ординатой составной функции на значении переменной, подлежащей компенсации. Ордината составной функции типично выражается числом между 0 и 100%, показывающим степень, с которой значение переменной, подлежащей компенсации, можно смоделировать с помощью компенсационной формулы, присвоенной данной выбранной области. Компенсацию определяют сначала выбором областей, которые включают данное значение переменной, подлежащей компенсации, и выбором составных функций и компенсационных формул, соответствующих каждой выбранной области. Следующий этап - обеспечение набора поправочных значений путем вычисления каждой из компенсационных формул на значении переменной, подлежащей компенсации, и определения силы каждого поправочного значения из соответствующей составной функции. И наконец, компенсационное значение определяют путем сложения поправочных значений, умноженных на силу составной функции на значении переменной, подлежащей компенсации.
Схема выбора составной функции 64 вбирает, какая составная функция является ненулевой на цифровом значении P, Т, L, и выдает сигналы, характеризующие выбранные составные функции, на шину 64B. Схема 64 также выдает ординаты выбранных составных функций на оцифрованных значениях P, Т, L ("силы правила") на шину 64A. Как правило, компенсационная схема 58 включает как минимум две одномерные перекрывающие друг друга составные функции для перепада давления. Если для компенсации используют более одной переменной, должно быть по меньшей мере две составные функции для одной из переменных. На фиг. 3A-C показаны составные функции перепада давления A, B и C, каждая из которых имеет ненулевое значение в разном заранее установленном интервале нескомпенсированных давлений в рамках данного диапазона. Переменная, подлежащая компенсации (перепад давления), компенсируется всеми тремя переменными (P, Т и L), но только P присвоены составные функции. (В наиболее общем случае каждой переменной присваивают множество составных функций). Составная функция A, показанная сплошной линией на фиг. 3A, имеет ненулевое значение между 0 и 50% диапазона и после этого нулевой характер. Составная функция B, показанная прерывистой линией на фиг. 3B, имеет ненулевое значение между 0 и 100% диапазона и нулевое значение в остальных местах. Составная функция C, показанная сплошной линией на фиг. 3C, имеет ненулевое значение между 50 и 100% диапазона и нулевое значение в остальных местах. На фиг. 3D изображены составные функции A, B и C, нанесенные как функция диапазона нормированного давления. Ненулевые сегменты составных функций A, B и C определяют области 1, 2 и 3, соответственно. Форма уравнений не должна быть одинаковой для каждой из областей. Предпочтительная форма компенсационной формулы для областей 1-3, обеспечивающая требуемую точность сенсора перепада давления с металлическим элементом, представлена уравнением 1, которое имеет член второго порядка как максимальный член и требует не более 10 характеристических постоянных.
Pкорр(P T, L)=К12P+К3Т+К4L+К5P2+ К6Т2 +K7L2+K8PL+K9TP+K10LT (1)
Схема оценки компенсационной формулы 66 оценивает и выдает поправочное значение для каждой из компенсационных формул, соответствующих выбранным составным функциям. Набор характеристических постоянных для каждой из областей 1-3 хранится в ЗУ 68 и приведен в таблице (см. в конце описания).
ЗУ 68 является энергонезависимым ЗУ, содержащим составные функции, компенсационные формулы и характеристические постоянные для компенсационных формул. Схема сложения функций 70 принимает поправочные значения и силы правила и выдает компенсированную переменную процесса P согласно следующему уравнению:
Figure 00000002

где N - число выбранных областей,
Wi - сила правила для i-й области,
fi(P, T, L) - поправочное значение из компенсационной формулы, соответствующей i-й области, и
Pкомп - компенсированный перепад давления.
Выходная схема 62 принимает и форматирует компенсированный перепад давления ПП и передает его на выводы 50, 52 для передачи к контуру управления процессом 6. Выходная схема 62 может быть реализована несколькими путями. Первой альтернативой является цифроаналоговая схема, в которой компенсированную ПП преобразуют в аналоговый ток, характеризующий компенсированное ПП, а затем передают на токовый контур 6. Вторая альтернатива состоит в полностью цифровой передаче, например, типа Fieldbus, компенсированного ПП на контур 6. В третьем варианте реализации накладывают цифровой сигнал, характеризующий ПП, на аналоговый ток, также характеризующий ПП, как в протоколе HART.
Число и функциональную форму составных функций определяют по требуемой точности компенсации (например, точности 0,05%) и рабочим характеристикам сенсора. Например, сенсор со значительной степенью ошибок, которые необходимо компенсировать, требует больше составных функций, чем сенсор, который отвечает требуемой степени точности. Каждая составная функция для сенсора, который требует больше компенсации, может иметь разную функциональную форму (например, экспоненциальную, гауссову и логарифмическую).
Рассмотрим давление для приблизительно 30% диапазона, соответствующее приложенному давлению 75,0 дюймов вод. ст. (18681,6 Па), показанное на фиг. 3D сплошной вертикальной линией и включенное в ненулевые сегменты составных функций A и B. Составные функции A и B, соответствующие областям 1 и 2, являются "выбранными составными функциями". Значения двух составных функций на 30% интервала -0,359 и 0,641, соответственно. Компенсационные формулы для областей 1 и 2 даны в уравнениях 3 и 5.
fp(P, T, L) = -2,512+278,5154P-4,137T+2,4908L-3,4611P2-4,1901T2- 0,1319L ** 2+11,957PL-9,3189TP+1,1318LT (3)
fp(P, T, L) = -3,4206+283,4241P-2,3884T+2,5038L-10,5786P2-5,694T ** 2- 0,1589L ** 2+11,833PL-10,3664TP+1,2281LT (5)
Поправочные значения из уравнений 3 и 5 составляют 75,188 дюймов вод.ст. (18728,5 Па) и 75,070 дюймов вод.ст. (18699,1 Па) соответственно. Компенсированное давление обеспечивается функцией сложения, приведенной в уравнении 2 выше, и составляет 75,112 дюймов вод.ст. (18709,6 Па), упрощенным из
Figure 00000003

Значения T и L, подставленные в приведенное выше уравнение, соответствуют окружающей температуре и линейному атмосферному давлению.
Вместо того, чтобы обрабатывать полином одиннадцатого порядка, как это делается в прототипе, вычисляют только два полинома второго порядка. Полученное из функции второго порядка поправочное значение нечувствительно к способу вычисления (т.е. отсутствует переполнение), требует меньше времени на его определение, использует меньшее число характеристических постоянных и оставляет больше места в памяти для дополнительных функциональных возможностей программного обеспечения в датчике 2. Еще одно преимущество применения размытой логики компенсационной схемы 58 состоит в учете эффекта нелинейного взаимодействия между переменными, когда трудно смоделировать в известной одной полиномиальной схеме компенсации. Виды переменных, подходящих для использования в предложенной компенсационной схеме, не ограничиваются определяемыми переменными. Переменная может быть зависимой от времени, например, первой или второй производной, или интегралом переменной. В этом случае соответствующая составная функция будет использоваться для обеспечения минимальной компенсации, если производная большая (т.е. величина компенсации незначительна по сравнению с величиной изменения давления, поэтому можно компенсировать первичную ПП приблизительно).
Активизация инструмента устройством для позиционирования или исполнительным механизмом на оптимальную величину, например, в машине для отбора и размещения требует наличия определяемого положения и может включать скорость и ускорение.
Другим видом переменной может быть переменная "зависящая от истории", в которой учитываются эффекты гистерезиса. Зависящие от истории переменные включают информацию о предыдущих измерениях, сделанных конкретным сенсором в датчике 2. Например, чрезмерное превышение давления в емкостном датчике давления модифицирует его емкость как функцию давления в последующих измерениях. Разные компенсационные формулы применяют в зависимости от серьезности и частоты превышения давления. Еще один вид переменной - "зависящая от положения" переменная, у которой значение изменяется с изменением положения, например, в диафрагме, имеющей одну жесткость при изгибе и другую в отсутствии приложенного давления.
Следующий вид переменной - "зависящая от устройства" переменная, для которой составные функции и компенсационные формулы изменяются с изменением материалов, используемых для изготовления датчика 2. Например, сенсор, определяющий давление в интервале низких давлений, имеет требования к компенсации, отличные от тех, которые применимы для сенсора, определяющего давление в интервале высоких давлений. Аналогично, сенсор давления с диафрагмой из материала марки хастеллой (Hastelloy) имеет другие характеристики ошибок и поэтому требует других вычислений, чем при материале марки монель (Monel).
Изобретение решает проблему неточностей в известной технологии компенсации, так называемой поэлементной линейной подгонке. При поэлементной линейной подгонке диапазон интересующей переменной сегментируют на два или более интервалов и выбирают линейное уравнение для каждого интервала, оптимально подходящее для него. К сожалению, на границах между такими отдельно компенсированными интервалами существуют небольшие нарушения непрерывности или несоответствия. Предложенная схема компенсации с перекрывающимися составными функциями обеспечивает плавный переход между интервалами интересующих переменных.
На фиг. 4 показан алгоритм функций компенсационной схемы 58. Переменные процесса P, Т, L определяют и преобразуют в цифровую форму в блоках 200 и 202, соответственно. Счетчик для подсчета числа областей инициализируют в блоке 204. Блок решения 206 находит i-ю составную функцию в блоке ЗУ 208 и определяет, есть ли оцифрованное значение P,T,L в i-й области, описанное i-й составной функцией. Если данная цифровая точка включена в эту область, блок вычисления 210 находит соответствующие компенсационные формулы и характеристические постоянные в ЗУ 208 для вычисления значения ординаты составной функции fmi(P, T,L) и поправочного значения fci(P,T,L), вычисленного из i-й компенсационной формулы, или иным образом увеличивает счетчик области i. Блок решения 212 обеспечивает повторную обработку этим контуром до тех пор, пока не будут выбраны все области, включающие оцифрованную точку P,T,L. Затем блок 214 вычисляет скомпенсированный перепад давления, как указано.
На фиг. 5 детально представлен альтернативный вариант схемы выбора составной функции 64. Так же как на фиг. 2, схема размытой компенсации 58 принимает оцифрованный перепад давления (P), оцифрованное абсолютное линейное давление (L) и оцифрованную температуру (Т) и использует эти три переменные для получения скомпенсированного перепада давления. Три основных функциональных блока представлены схемой силы правила 302, схемой оценки компенсационной формулы 304 и суммирующей схемой 306. Однако в этом альтернативном варианте всем трем переменным (P, Т, L) присвоено множество составных функций. В частности, перепаду давления присвоено четыре составные функции, обозначенные как fp1, fp2 fp3 и fp4 температуре присвоено три составные функции ft1, ft2 и ft3, и абсолютному давлению присвоено две составные функции f11 и f12. Схема 58 предпочтительно реализована в КМОП- микропроцессоре (с соответствующим ЗУ на кристалле), чтобы сберегать мощность в датчике, который получает питание только из токового контура.
Схема 310 принимает оцифрованное значение P и выбирает те составные функции, которые имеют ненулевую ординату на данном оцифрованном значении P. Поскольку ненулевые части составных функций могут перекрываться, обычно выбирают больше одной составной функции для каждой оцифрованной ПП. Если составные функции перекрываются более чем на 50%, вычисляют уравнения 2N, где N - число переменных, разделенных на более чем одну составную функцию. Выход схемы 310 является ординатой каждой из выбранных составных функций, соответствующих оцифрованному значению P, и маркируется в 310A. Например, если бы оцифрованное значение P входило в ненулевую часть трех из четырех составных функций P, тогда схема 310 выдала бы три значения, каждое из которых является ординатой трех выбранных составных функций, соответствующих данному оцифрованному значению P. В частности, для P=po шина 310A содержит следующие ординаты: [fp2(p0), fp3(p0), fp4(po)]. Приблизительно в то же время, чтобы обеспечить синхронность, схема 312 принимает оцифрованное значение Т и выбирает составные функции температуры, имеющие ненулевое значение в оцифрованном значении Т. Если бы оцифрованное значение Т входило в ненулевую часть двух из трех составных функций Т, схема 312 выдала бы два значения на шину 312A, каждое из которых было бы ординатой выбранной составной функции. В частности, для T=to шина 312A содержит следующие ординаты: [ft2(t0) и ft3(t0)] . Аналогичным образом схема 314 принимает оцифрованное значение L и выбирает составные функции абсолютного давления, имеющие ненулевое значение на оцифрованном значении L. Если бы данное оцифрованное значение L входило в обе составные функции L, схема 314 выдала бы два значения на шину 314A, каждое из которых было бы ординатой выбранной составной функции. В частности, для L= l0 шина 314A включает следующие ординаты: [f11(l0), f12(l0)].
Логическая схема размытого И 316 формирует все индивидуальные трехэлементные комбинации ординат, которые она принимает из схем 310-314 (где каждая комбинация содержит одно значение из каждой из трех шин 310A, 312A и 314A), и выдает размытое И (минимум) для каждой из индивидуальных комбинаций на шину 316A. Для группы значений P, Т, L в приведенном выше примере набор индивидуальных комбинаций ординат составных функций выглядит следующим образом:
[fp2 (P0) ft2 (t0) f11 (l0)]
[fp2 (P0) ft2 (t0) f12 (l0)]
[fp2 (P0) ft3 (t0) f11 (l0)]
[fp2 (P0) ft3 (t0) f12 (l0)]
[fp3 (P0) ft2 (t0) f11 (l0)]
[fp3 (P0) ft2 (t0) f12 (l0)]
[fp3 (P0) ft3 (t0) f11 (l0)]
[fp3 (P0) ft3 (t0) f12 (l0)]
[fp4 (P0) ft2 (t0) t11 (l0)]
[fp4 (P0) ft2 (t0) f12 (l0)]
[fp4 (P0) ft3 (t0) f11 (l0)]
[fp4 (P0) ft3 (t0) f12 (l0)]
Эффект логической схемы размытого И 316 состоит в том, что берут составные функции для отдельных переменных P, Т, L и формируют составные функции для нескольких переменных в пространстве P-T-L. Хотя это невозможно представить графически, схема 316 создает в пространстве P-T-L набор из 24 составных функций для трех переменных, полученных из четырех одномерных составных функций P, трех Т и двух L. Имеется 24 компенсационные формулы, соответствующие этим 24 составным функциям. В целом число создаваемых составных функций для нескольких переменных равно произведению числа составных функций, определенного для каждой отдельной переменной. На фиг. 6 представлен пример составных функций для нескольких переменных, полученных для двух переменных P и Т. 12 перекрывающихся пятигранных составных функций двух переменных определены в пространстве P-Т из четырех треугольных составных функций P и трех треугольных составных функций Т. Каждая составная функция нескольких переменных соответствует некоторой компенсационной формуле, и ординату составной функции нескольких переменных (выход размытого И) называют "силой правила", которое описывает меру, до которой можно смоделировать компенсированное давление с помощью соответствующей компенсационной формулы.
Схема 316 выбирает те компенсационные формулы, которые соответствуют каждому выходу "силы правила" на шине 316B. Шина 316B имеет столько сигналов, сколько, есть компенсационных формул. Значение "один", соответствующее конкретной компенсационной формуле, показывает, что она выбрана для использования в схеме оценки компенсационной формулы 304. В нашем конкретном примере каждая из 12 сил правила определяет некоторую точку на поверхности 12 отдельных пятигранников, так что выбирают 12 компенсационных формул (из общего числа 24).
ЗУ 308 сохраняет форму и характеристические постоянные для каждой из компенсационных формул. Схема оценки компенсационной формулы 304 находит постоянные для выбранных компенсационных формул, указанных через шину 316B, из ЗУ 308 и вычисляет поправочное значение, соответствующее каждой из выбранных компенсационных формул. Схема сложения 306 принимает поправочное значение и силы правила для каждой из выбранных областей и умножает поправочные значения на весовой коэффициент - соответствующую силу правила. Взвешенное среднее представлено уравнением 4. Характеристические постоянные, хранящиеся в ЗУ 308, являются результатом подгонки методом взвешенных наименьших квадратов между действительными рабочими характеристиками сенсора и выбранной формой компенсационной формулы для данной компенсационной формулы. (Подгонку методом взвешенных наименьших квадратов выполняют во время изготовления, а не при эксплуатации устройства.) Подгонку методом взвешенных наименьших квадратов получают из уравнения:
b=p-1s (8)
где b - вектор nx1 вычисленных характеристических коэффициентов,
р - взвешенная ковариантная матрица пхп матрицы входных данных х и
s - взвешенный ковариантный вектор nx1 x с y.
Матрица данных х имеет размер mxn, где каждая строка состоит из m векторов данных, представляющих одну из характеристических точек m (P, Т, L).
В альтернативном варианте компенсационной схемы 58, показанной на фиг. 5, логическая схема размытого И 316 исключена и схемы составной функции 310-314 заменены тремя подробно определенными трехмерными составными функциями, имеющими форму радиальной основной функции, представленной в целом как
Figure 00000004

В радиальной основной функции X является трехмерным вектором, компоненты которого - оцифрованные значения P, Т, L, Хi - трехмерный вектор, определяющий центр функции пространства P-Т-L, а g регулирует ширину функции. Набор многомерных составных функций, таких как радиальные основные функции, эффективно заменяет функцию логической схемы размытого И 316, поскольку логическая схема размытого И обеспечивает набор многомерных составных функций из наборов одномерных составных функций.
Изобретение особенно подходит для использования в датчике с двумя сенсорами перепада давления. На фиг. 7 показана ошибка сенсора на соответствующих осях у 400, 402, нанесенная как функция определяемого перепада давления на осях x 404, 406 для двух сенсоров давления A и B (маркированные), каждый из которых подключен как показано для сенсора 54A на фиг. 2. Сенсор A определяет широкий интервал давлений между 0 и 1000 фунтов на кв.дюйм (0-6894,8 кПа), тогда как сенсор B определяет давление на 1/10 диапазона другого сенсора, от 0 до 100 фунтов/кв.дюйм (0-689,5 кПа). Ошибка сенсора A больше при любом данном давлении, чем ошибка сенсора B при том же давлении. Датчик с двумя сенсорами, описанный выше, имеет выходной сигнал, характеризующий преобразованный выходной сигнал сенсора B при низких давлениях, но переключается на выходной сигнал, характеризующий преобразованный выходной сигнал сенсора A при более высоких давлениях. Такая схема компенсации обеспечивает плавный выходной сигнал датчика, когда тот переключается между сенсорами A и B. Так же, как описано в связи с фиг. 3A-D, выходной сигнал сенсора A рассматривается как одна переменная процесса, а выходной сигнал сенсора B - как другая переменная процесса. Как описано, каждой переменной процесса присваивают составную функцию и компенсационную формулу, которые показывают, в какой мере можно моделировать данную переменную процесса с помощью компенсационной формулы. Поправочное значение получают путем вычисления каждой из двух компенсационных формул и суммарную функцию умножают на поправочные значения и получают компенсированное давление. Эта схема компенсации является предпочтительной для датчиков с двумя сенсорами, так как выходной сигнал обоих сенсоров используют во всем интервале переключения давления ( т.е. вообще не отбрасываются данные давлений, измеренных в интервале переключения) с относительным взвешиванием выходного сигнала каждого сенсора, определенного по составной функции каждого сенсора. Применение предложенной схемы компенсации для двух сенсоров в равной степени касается и датчиков, имеющих множество сенсоров, определяющих одну и ту же переменную процесса, и датчиков с избыточными сенсорами, где каждый сенсор воспринимает тот же интервал переменных процесса, что и другой.
Хотя данное изобретение было описано со ссылкой на предпочтительные варианты, специалисты поймут, что можно внести изменения в форму и детали, не отходя от идеи и объема изобретения. Изобретение можно применить в устройствах за рамками систем управления и автоматизации технологического процесса, например, для компенсации положения управляющей поверхности в самолете. Виды переменных, используемых в компенсационной схеме, могут отличаться от ПП, а компенсационные формулы и составные функции могут отличаться от полиномов и суммирующая функция может быть нелинейной усредняющей функцией.

Claims (17)

1. Измерительное устройство, относящееся к управлению процессом, отличающееся тем, что содержит сенсорное средство для определения переменной процесса в некотором диапазоне значений переменной процесса и выдачи сигнала, характеризующего определяемую переменную процесса, запоминающее средство для сохранения по меньшей мере двух составных функций, каждая из которых имеет ненулевое значение в заранее установленной области диапазона переменной процесса и по существу нулевое значение в остальной части диапазона, причем каждой составной функции соответствует компенсационная формула, компенсационное средство для вычисления поправочных значений по компенсационной формуле для тех составных функций, которые не равны нулю на данном значении определяемой переменной процесса, причем компенсационное средство корректирует каждое поправочное значение значением соответствующей составной функции, чтобы получить взвешенное поправочное значение, и складывает взвешенные поправочные значения для получения компенсированной переменной процесса, и выходную схему для передачи компенсированной переменной процесса на контрольную схему управления.
2. Измерительный датчик, отличающийся тем, что содержит преобразовательное средство для определения переменной процесса в некотором диапазоне значений переменной процесса и выдачи оцифрованного выходного сигнала, характеризующего определяемую переменную процесса, запоминающее устройство для сохранения по меньшей мере двух составных функций, каждая из которых имеет ненулевое значение в заранее установленной области диапазона переменной процесса и по существу нулевое значение в остальной части диапазона, и для запоминания набора компенсационных формул, каждая из которых соответствует некоторой составной функции, выбирающее средство для выбора тех составных функций, которые имеют ненулевое значение на каждой оцифрованной переменной процесса, корректировочное средство для обеспечения по меньшей мере одного поправочного значения, причем каждое поправочное значение вычисляют из компенсационной формулы, соответствующей выбранной составной функции, взвешивающее средство для взвешивания каждого поправочного значения умножением его на соответствующую выбранную составную функцию и для сложения взвешенных поправочных значений, чтобы получить компенсированную переменную процесса, и выходную схему для передачи компенсированной переменной процесса на схему управления.
3. Датчик по п.2, отличающийся тем, что ненулевые области двух из составных функций перекрывают друг друга.
4. Датчик по п.2, отличающийся тем, что по меньшей мере одна составная функция имеет треугольную форму.
5. Датчик по п.2, отличающийся тем, что по меньшей мере одна составная функция является гауссовой функцией.
6. Датчик по п.2, отличающийся тем, что взвешивающее средство складывает поправочные значения в соответствии со взвешенным средним.
7. Датчик по п.2, отличающийся тем, что по меньшей мере одна составная функция является полиномиальной функцией.
8. Датчик по п. 2, отличающийся тем, что переменная процесса является одной из набора переменных процесса, характеризующих перепад давления, положение, объемный поток, массовый поток, температуру, уровень, плотность, смещение, pH, мутность, растворенный кислород и концентрацию ионов.
9. Датчик по п.8, отличающийся тем, что имеются три составные функции для перепада давления, каждая из которых имеет центральную точку, соответствующую максимальному значению данной составной функции, причем центральные точки равно разнесены по всему диапазону значений переменной процесса.
10. Датчик по п.8, отличающийся тем, что имеются три составные функции, каждая из которых перекрывает по меньшей мере одну другую составную функцию на 50%.
11. Способ вычисления компенсированных переменных процесса, отличающийся тем, что включает следующие этапы: определяют переменную процесса, характеризующую процесс, причем данную переменную процесса берут на значениях в пределах заранее установленного диапазона значений переменной процесса, преобразуют определяемую переменную процесса в оцифрованную, запоминают по меньшей мере две составные функции, каждая из которых имеет ненулевое значение в заранее установленной области диапазона переменной процесса и по существу нулевое значение в остальной части этого диапазона, запоминают набор компенсационных формул, каждая из которых соответствует некоторой составной функции, выбирают те составные функции, которые имеют ненулевое значение для данной оцифрованной переменной процесса, обеспечивают по меньшей мере одно поправочное значение, причем каждое поправочное значение вычисляют из компенсационной формулы, соответствующей выбранной составной функции, взвешивают каждое поправочное значение умножением его на соответствующую выбранную составную функцию и складывают взвешенные поправочные значения, чтобы получить компенсированную переменную процесса и передают компенсированную переменную процесса на схему управления.
12. Способ вычисления компенсированной переменной, относящейся к автоматизированному процессу, отличающийся тем, что включает следующие этапы: определяют переменную процесса, характеризующую процесс, причем данную переменную процесса берут на значениях в пределах заранее установленного диапазона значений переменной процесса, преобразуют определяемую переменную процесса в оцифрованную переменную, запоминают по меньшей мере две составные функции, каждая из которых имеет ненулевое значение в заранее установленной области диапазона переменной процесса и по существу нулевое значение в остальной части этого диапазона, запоминают набор компенсационных формул, каждая из которых соответствует составной функции, выбирают те составные функции, которые имеют ненулевое значение на данной оцифрованной переменной процесса, обеспечивают по меньшей мере одно поправочное значение, причем каждое поправочное значение вычисляют из компенсационной формулы, соответствующей выбранной составной функции, взвешивают каждое поправочное значение умножением его на соответствующую выбранную составную функцию, складывают взвешенные поправочные значения для получения компенсированной переменной процесса и передают компенсированную переменную на схему управления.
13. Датчик для системы управления процессом, отличающийся тем, что содержит сенсор для определения физической переменной в данной системе, причем физическую переменную берут на значениях в некотором диапазоне значений, и сенсор имеет выходной сигнал, характеризующий данную физическую переменную в данном диапазоне, цифрующее средство для преобразования выходного сигнала сенсора в цифровую форму, выбирающее и запоминающее средство для выбора некоторой области из набора областей, причем каждая область относится к другой части диапазона, область выбирают, если выходной сигнал сенсора входит в данную область, и каждая область имеет соответствующие ей компенсационную формулу и составную функцию, вычислительное средство для нахождения составных функций и компенсационных формул, соответствующих выбранным областям, получения ординат составных функций на значении выходного сигнала сенсора и определения значения компенсационных формул на данном значении выходного сигнала сенсора и компенсационного средство для взвешивания значения компенсационных формул умножением его на ординату соответствующих составных функций, чтобы получить компенсированный выходной сигнал датчика.
14. Датчик по п.13, отличающийся тем, что каждой переменной присваивают по меньшей мере одну составную функцию и взвешивающее средство дополнительно содержит формирующее средство для формирования комбинации ординат каждой из выбранных составных функций, причем каждая комбинация содержит одну ординату, относящуюся к каждой переменной, логическую схему нечеткое И для выбора минимального значения в каждой из комбинаций, причем взвешивающее средство взвешивает каждое поправочное значение умножением его на ординату соответствующих составных функций, чтобы получить компенсированный выходной сигнал датчика.
15. Измерительный датчик, отличающийся тем, что содержит сенсорное средство, содержащее по меньшей мере два сенсора, один из которых выполнен с возможностью определять переменные процесса в первом интервале переменной процесса, а второй - определять переменную процесса во втором интервале значений переменной процесса, причем каждый сенсор выдает выходной сигнал, характеризующий определяемую переменную процесса, интервалы включают максимальное и минимальное значения переменной процесса, а минимум и максимум определяют диапазон датчика, запоминающее средство для сохранения по меньшей мере двух составных функций, каждая из которых имеет ненулевое значение в заданной области диапазона ПП и по существу нулевое значение в остальной части диапазона, причем каждой составной функции соответствует компенсационная формула, компенсационное средство для вычисления поправочных значений по компенсационной формуле для тех составных функций, которые не равны нулю на данном значении определяемой переменной процесса, причем компенсационное средство корректирует каждое поправочное значение значением соответствующей составной функции, чтобы получить взвешенное поправочное значение, и складывает взвешенные поправочные значения для получения компенсированной переменной процесса и выходную схему для передачи компенсированной переменной процесса на контрольную схему управления.
16. Измерительный датчик по п.15, отличающийся тем, что первый интервал по существу равен второму интервалу.
17. Измерительный датчик по п.15, отличающийся тем, что первый интервал больше второго интервала.
RU96116924A 1994-01-25 1995-01-17 Датчик с улучшенной компенсацией RU2138781C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/186,288 US5642301A (en) 1994-01-25 1994-01-25 Transmitter with improved compensation
US08/186,288 1994-01-25
PCT/US1995/000835 WO1995020141A1 (en) 1994-01-25 1995-01-17 Transmitter with improved compensation

Publications (2)

Publication Number Publication Date
RU96116924A RU96116924A (ru) 1998-11-27
RU2138781C1 true RU2138781C1 (ru) 1999-09-27

Family

ID=22684353

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96116924A RU2138781C1 (ru) 1994-01-25 1995-01-17 Датчик с улучшенной компенсацией

Country Status (11)

Country Link
US (2) US5642301A (ru)
EP (1) EP0741858B1 (ru)
JP (1) JP3557213B2 (ru)
CN (1) CN1139483A (ru)
BR (1) BR9506548A (ru)
CA (1) CA2178809A1 (ru)
DE (1) DE69504036T2 (ru)
MX (1) MX9602017A (ru)
RU (1) RU2138781C1 (ru)
SG (1) SG44457A1 (ru)
WO (1) WO1995020141A1 (ru)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642301A (en) * 1994-01-25 1997-06-24 Rosemount Inc. Transmitter with improved compensation
US7254518B2 (en) * 1996-03-28 2007-08-07 Rosemount Inc. Pressure transmitter with diagnostics
EP0845741B1 (en) * 1996-11-29 2003-04-16 Matsushita Electric Industrial Co., Ltd. Processor which can favorably execute a rounding process
US6104875A (en) * 1997-12-18 2000-08-15 Honeywell Inc. Method for field programming an industrial process transmitter
US6850806B2 (en) * 1999-04-16 2005-02-01 Siemens Energy & Automation, Inc. Method and apparatus for determining calibration options in a motion control system
US6594602B1 (en) * 1999-04-23 2003-07-15 Halliburton Energy Services, Inc. Methods of calibrating pressure and temperature transducers and associated apparatus
US6508131B2 (en) 1999-05-14 2003-01-21 Rosemount Inc. Process sensor module having a single ungrounded input/output conductor
US6295875B1 (en) 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
US6264774B1 (en) 1999-08-23 2001-07-24 Fargo Electronics, Inc. Card laminator with regulatory control
US6865499B2 (en) * 2001-04-26 2005-03-08 Siemens Energy & Automation, Inc. Method and apparatus for tuning compensation parameters in a motion control system associated with a mechanical member
US6859747B2 (en) * 2001-04-26 2005-02-22 Siemens Energy & Automation, Inc. Method and apparatus for self-calibrating a motion control system
US6516672B2 (en) 2001-05-21 2003-02-11 Rosemount Inc. Sigma-delta analog to digital converter for capacitive pressure sensor and process transmitter
ITTO20010705A1 (it) * 2001-07-18 2003-01-18 St Microelectronics Srl Modulatore elettromeccanico a sovracampionamento autocalibrante e relativo metodo di autocalibrazione.
US7506328B2 (en) * 2002-02-11 2009-03-17 Xerox Corporation Method and system for optimizing performance of an apparatus
US6839546B2 (en) 2002-04-22 2005-01-04 Rosemount Inc. Process transmitter with wireless communication link
US6910381B2 (en) * 2002-05-31 2005-06-28 Mykrolis Corporation System and method of operation of an embedded system for a digital capacitance diaphragm gauge
US7053787B2 (en) * 2002-07-02 2006-05-30 Halliburton Energy Services, Inc. Slickline signal filtering apparatus and methods
US7440735B2 (en) * 2002-10-23 2008-10-21 Rosemount Inc. Virtual wireless transmitter
US6834258B2 (en) * 2002-12-31 2004-12-21 Rosemount, Inc. Field transmitter with diagnostic self-test mode
US6935156B2 (en) * 2003-09-30 2005-08-30 Rosemount Inc. Characterization of process pressure sensor
RU2003133241A (ru) * 2003-11-17 2005-04-20 Александр Владимирович Лопатин (RU) Устройство определения значения изменяющейся во времени измеряемой величины
WO2005064280A2 (en) * 2003-12-29 2005-07-14 Madison Technologies Limited Measurement results data processing apparatus, system, method, and program
CN1954138B (zh) * 2004-03-02 2011-02-16 罗斯蒙德公司 具有改进电能产生的过程设备
US8538560B2 (en) * 2004-04-29 2013-09-17 Rosemount Inc. Wireless power and communication unit for process field devices
US7164355B2 (en) * 2004-05-19 2007-01-16 Rosemount Inc. Process transmitter with a plurality of operating modes
US8145180B2 (en) 2004-05-21 2012-03-27 Rosemount Inc. Power generation for process devices
US7262693B2 (en) * 2004-06-28 2007-08-28 Rosemount Inc. Process field device with radio frequency communication
US8160535B2 (en) * 2004-06-28 2012-04-17 Rosemount Inc. RF adapter for field device
CA2578490A1 (en) * 2004-08-31 2006-03-09 Watlow Electric Manufacturing Company Operations system distributed diagnostic system
US7680460B2 (en) * 2005-01-03 2010-03-16 Rosemount Inc. Wireless process field device diagnostics
US9184364B2 (en) * 2005-03-02 2015-11-10 Rosemount Inc. Pipeline thermoelectric generator assembly
US7334484B2 (en) * 2005-05-27 2008-02-26 Rosemount Inc. Line pressure measurement using differential pressure sensor
US8452255B2 (en) 2005-06-27 2013-05-28 Rosemount Inc. Field device with dynamically adjustable power consumption radio frequency communication
US7379792B2 (en) * 2005-09-29 2008-05-27 Rosemount Inc. Pressure transmitter with acoustic pressure sensor
US7415886B2 (en) * 2005-12-20 2008-08-26 Rosemount Inc. Pressure sensor with deflectable diaphragm
US7308830B2 (en) * 2006-01-26 2007-12-18 Rosemount Inc. Pressure sensor fault detection
US7913566B2 (en) * 2006-05-23 2011-03-29 Rosemount Inc. Industrial process device utilizing magnetic induction
US8188359B2 (en) * 2006-09-28 2012-05-29 Rosemount Inc. Thermoelectric generator assembly for field process devices
US7808379B2 (en) * 2007-03-05 2010-10-05 Rosemount Inc. Mode selectable field transmitter
WO2008144169A2 (en) * 2007-05-14 2008-11-27 Dow Global Technologies, Inc. Faced fiber insulation batt and method of making same
US8898036B2 (en) 2007-08-06 2014-11-25 Rosemount Inc. Process variable transmitter with acceleration sensor
US7484416B1 (en) 2007-10-15 2009-02-03 Rosemount Inc. Process control transmitter with vibration sensor
US8250924B2 (en) 2008-04-22 2012-08-28 Rosemount Inc. Industrial process device utilizing piezoelectric transducer
US8033175B2 (en) * 2008-05-27 2011-10-11 Rosemount Inc. Temperature compensation of a multivariable pressure transmitter
US8694060B2 (en) 2008-06-17 2014-04-08 Rosemount Inc. Form factor and electromagnetic interference protection for process device wireless adapters
CN102084307B (zh) 2008-06-17 2014-10-29 罗斯蒙特公司 用于具有低压本质安全钳的现场设备的rf适配器
JP5232299B2 (ja) * 2008-06-17 2013-07-10 ローズマウント インコーポレイテッド ループ電流バイパスを備えるフィールド機器のためのrfアダプター
US8929948B2 (en) 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
US8847571B2 (en) 2008-06-17 2014-09-30 Rosemount Inc. RF adapter for field device with variable voltage drop
US7977924B2 (en) 2008-11-03 2011-07-12 Rosemount Inc. Industrial process power scavenging device and method of deriving process device power from an industrial process
US7870791B2 (en) * 2008-12-03 2011-01-18 Rosemount Inc. Method and apparatus for pressure measurement using quartz crystal
US7954383B2 (en) * 2008-12-03 2011-06-07 Rosemount Inc. Method and apparatus for pressure measurement using fill tube
US8327713B2 (en) 2008-12-03 2012-12-11 Rosemount Inc. Method and apparatus for pressure measurement using magnetic property
US9674976B2 (en) * 2009-06-16 2017-06-06 Rosemount Inc. Wireless process communication adapter with improved encapsulation
US8626087B2 (en) 2009-06-16 2014-01-07 Rosemount Inc. Wire harness for field devices used in a hazardous locations
US8429978B2 (en) 2010-03-30 2013-04-30 Rosemount Inc. Resonant frequency based pressure sensor
US8234927B2 (en) 2010-06-08 2012-08-07 Rosemount Inc. Differential pressure sensor with line pressure measurement
JP2012002741A (ja) 2010-06-18 2012-01-05 Yamatake Corp 物理量センサ
US8132464B2 (en) 2010-07-12 2012-03-13 Rosemount Inc. Differential pressure transmitter with complimentary dual absolute pressure sensors
CN101936746B (zh) * 2010-08-02 2012-09-05 北京华控技术有限责任公司 一种非电学量测定系统及方法
US9057634B2 (en) * 2010-08-11 2015-06-16 Rosemount Inc. Noise detection and avoidance
US10761524B2 (en) 2010-08-12 2020-09-01 Rosemount Inc. Wireless adapter with process diagnostics
US9310794B2 (en) 2011-10-27 2016-04-12 Rosemount Inc. Power supply for industrial process field device
US8752433B2 (en) 2012-06-19 2014-06-17 Rosemount Inc. Differential pressure transmitter with pressure sensor
US9048901B2 (en) 2013-03-15 2015-06-02 Rosemount Inc. Wireless interface within transmitter
CN105745522B (zh) * 2013-11-04 2019-03-29 耐克斯特纳威公司 确定不同传感器的压力的校准测量
US10635064B2 (en) * 2014-06-30 2020-04-28 Rosemount Inc. Hysteretic process variable sensor compensation
US9616876B2 (en) 2015-06-29 2017-04-11 Westinghouse Air Brake Technologies Corporation Verification system and method for an end-of-train unit of a train and an improved end-of-train unit for a train
DE102018122014A1 (de) * 2018-09-10 2020-03-12 Endress + Hauser Flowtec Ag Meßgeräte-System sowie damit gebildete Meßanordnung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161880A (en) * 1978-01-05 1979-07-24 Electromedics, Inc. Linearized digital thermometer
US4437164A (en) * 1981-03-05 1984-03-13 Bristol Babcock Inc. Ridge circuit compensation for environmental effects
JPH0774961B2 (ja) * 1988-04-07 1995-08-09 株式会社日立製作所 オートチユーニングpid調節計
US4926364A (en) * 1988-07-25 1990-05-15 Westinghouse Electric Corp. Method and apparatus for determining weighted average of process variable
JPH02132502A (ja) * 1988-07-28 1990-05-22 Omron Tateisi Electron Co ファジィ制御装置における動作方法および調整装置
JPH02104929A (ja) * 1988-10-14 1990-04-17 Hitachi Ltd 電子制御燃料噴射装置
JPH02133215A (ja) * 1988-11-11 1990-05-22 Mitsubishi Electric Corp ショックアブソーバ制御装置
US5083288A (en) * 1989-02-24 1992-01-21 Arpad Somlyody Apparatus for configuring a remote process sensor and signal transmitter
JP2647217B2 (ja) * 1989-12-28 1997-08-27 出光興産株式会社 複合制御方法
US5161110A (en) * 1990-02-27 1992-11-03 Atlantic Richfield Company Hierarchical process control system and method
EP0452824A3 (en) * 1990-04-17 1992-12-02 Apt Instruments Corp. Approximate reasoning apparatus
JP2816758B2 (ja) * 1990-09-07 1998-10-27 株式会社日立製作所 ファジイ推論を用いた流量測定装置及び方法
JPH04119814A (ja) * 1990-09-10 1992-04-21 Nissei Plastics Ind Co 射出成形機の温度制御方法
US5251124A (en) * 1991-04-30 1993-10-05 Omron Corporation Fuzzy controller apparatus and method for steady state control
CA2049618A1 (en) * 1991-07-18 1993-01-19 Christopher J. O'brien Integrated transmitter and controller
JPH07105194B2 (ja) * 1991-09-24 1995-11-13 岩崎電気株式会社 ランプ用ガラス管封止工程のファジイ制御装置
JP2654736B2 (ja) * 1992-05-20 1997-09-17 株式会社荏原製作所 乾燥汚泥熔融炉装置
US5642301A (en) * 1994-01-25 1997-06-24 Rosemount Inc. Transmitter with improved compensation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN. Т.14, N 367 (М-1008)б 09.06.90. *

Also Published As

Publication number Publication date
JP3557213B2 (ja) 2004-08-25
US5960375A (en) 1999-09-28
EP0741858B1 (en) 1998-08-12
DE69504036D1 (de) 1998-09-17
US5642301A (en) 1997-06-24
CA2178809A1 (en) 1995-07-27
JPH09508210A (ja) 1997-08-19
MX9602017A (es) 1997-05-31
WO1995020141A1 (en) 1995-07-27
BR9506548A (pt) 1997-08-19
EP0741858A1 (en) 1996-11-13
DE69504036T2 (de) 1999-04-15
CN1139483A (zh) 1997-01-01
SG44457A1 (en) 1997-12-19

Similar Documents

Publication Publication Date Title
RU2138781C1 (ru) Датчик с улучшенной компенсацией
CN1243954C (zh) 用于校正传感器漂移的设备和方法
US5598356A (en) Displacement converting device and method for measuring pressure differences using same
US6519546B1 (en) Auto correcting temperature transmitter with resistance based sensor
CN115950557B (zh) 一种基于压力变送器的温度智能补偿方法
EP1111344B1 (en) Sensor fault detection method and apparatus
EP2422289B1 (en) Field device with measurement accuracy reporting
US5877423A (en) Method for providing temperature compensation for a wheatstone bridge-type pressure sensor
EP1214633B1 (en) Process transmitter with orthogonal-polynomial fitting
EP0457134A2 (en) Hysteresis-compensated weighing apparatus and method
EP1668333A1 (en) Calibration of a process pressure sensor
EP2745284B1 (en) Two-wire process control loop current diagnostics
RU2571445C2 (ru) Способ коррекции измерения напряжения на контактах датчика
RU2108556C1 (ru) Способ и устройство для емкостной температурной компенсации и двухпластинчатый емкостной преобразователь давления для его реализации
JP4636428B2 (ja) 多変数伝送器及び多変数伝送器の演算処理方法
US5477471A (en) Method of compensating for power supply variation in a sensor output
RU2082129C1 (ru) Преобразователь давления в электрический сигнал
Cvitaš et al. Increasing accuracy of temperature measurement based on adaptive algorithm for microcontroller transmitter
CN215338567U (zh) 一种用于无实物自适应标定的称重电路
Barford et al. Choosing designs of calibration transducer electronic data sheets
SU938256A1 (ru) Устройство дл настройки регул торов
Horn van der et al. Calibration and linearization method for microcontroller-based sensor systems
WO1995023956A1 (en) Improvements in measuring apparatus
Eichhorn On Systems of Standards
JPH09246968A (ja) D/aコンバーターの特性の測定方法及びd/aコンバーターの特性の測定ユニット