RU2137292C1 - Схема генерирования высоковольтных импульсов - Google Patents

Схема генерирования высоковольтных импульсов Download PDF

Info

Publication number
RU2137292C1
RU2137292C1 RU97114635A RU97114635A RU2137292C1 RU 2137292 C1 RU2137292 C1 RU 2137292C1 RU 97114635 A RU97114635 A RU 97114635A RU 97114635 A RU97114635 A RU 97114635A RU 2137292 C1 RU2137292 C1 RU 2137292C1
Authority
RU
Russia
Prior art keywords
primary winding
generating
power source
generating circuit
circuit
Prior art date
Application number
RU97114635A
Other languages
English (en)
Other versions
RU97114635A (ru
Inventor
Н.Хичкок Роджер
Дж.Марзиале Майкл
В.Томпсон Ланс
Original Assignee
Сименс Медикал Системз, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Медикал Системз, Инк. filed Critical Сименс Медикал Системз, Инк.
Publication of RU97114635A publication Critical patent/RU97114635A/ru
Application granted granted Critical
Publication of RU2137292C1 publication Critical patent/RU2137292C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/105Modifications for increasing the maximum permissible switched voltage in thyristor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/601Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors using transformer coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • X-Ray Techniques (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Изобретение относится к электропитанию и предназначено для снабжения электроэнергией клистронов и подобных им устройств. Схема включает в себя источник электропитания постоянного тока, имеющий положительный и отрицательный выводы, трансформатор обратного хода, имеющий первичную обмотку и вторичную обмотку, причем первичная обмотка имеет первый и второй выводы для соединения с источником электропитания постоянного тока, чувствительный элемент для вырабатывания сигнала, показывающего амплитуду тока в первичной обмотке, и твердотельную схему выключения для подсоединения источника электропитания постоянного тока к первичной обмотке трансформатора обратного хода. Первичная обмотка соединяется с источником электропитания под действием управляющего сигнала и отсоединяется от источника электропитания, когда в первичной обмотке обнаруживается ток заранее определенного уровня. Технической задачей является обеспечение улучшенной высоковольтной системы электропитания для электроснабжения клистронов и подобных им устройств, обеспечение высоковольтной системой электропитания, которая требует меньше места и значительно легче. 2 с. и 15 з.п. ф-лы, 6 ил.

Description

Изобретение касается источников электропитания, и более конкретно - компактных источников электропитания, используемых для снабжения электроэнергией линейных ускорителей и подобных устройств.
Лучеиспускающие устройства обычно известны и используются, например, в качестве устройств лучевой терапии для лечения пациентов. Устройство лучевой терапии обычно содержит платформу, которую можно поворачивать вокруг горизонтальной оси вращения в ходе терапевтического лечения. Линейный ускоритель располагают в платформе для генерирования испускаемого луча высокой энергии для терапии. Этот испускаемый луч высокой энергии может быть электронным или фотонным (рентгеновским) лучом. Во время лечения этот испускаемый луч направляют на одну область пациента, лежащую в изоцентре излучения платформы.
В этом устройстве излучение генерируется посредством подачи электронного луча на мишень для вырабатывания рентгеновских лучей. Электронный луч обычно генерируется в линейном ускорителе, на который подается электроэнергия от основанного на клистроне источника электропитания, имеющего выходную мощность в диапазоне 10-30 кВт. На фиг.1 представлена блок-схема медицинского линейного ускорителя, иллюстрирующая основные компоненты и вспомогательные системы. Источник электропитания 10 обеспечивает электроэнергию постоянного тока для модулятора 12. Модулятор 12 включает в себя схему формирования импульсов и коммутирующую лампу, известную под названием импульсного водородного тиратрона. Тиратрон представляет собой устройство разреженного газа с термокатодом. С течением времени сам катод истощается. Таким образом, тиратрон имеет присущий механизм изнашивания. Высоковольтные импульсы с модулятора 12 представляют собой импульсы постоянного тока с плоской вершиной длительностью несколько микросекунд. Эти импульсы подаются на магнетрон или клистрон 14 и одновременно на электронный прожектор 16. Импульсные микроволны, обеспеченные магнетроном или клистроном 14, вводятся в трубку ускорителя 20 через волноводную систему 22. В надлежащий момент электроны, которые создаются электронным прожектором 16, также представляют собой импульсы, направляемые в трубку ускорителя 20. Электроны высших энергий выходят из трубки ускорителя 20 в виде луча диаметром примерно 3 мм. Эти электроны можно подавать в лечебную насадку 24 в виде прямого луча или в лечебную насадку 26 в виде изогнутого луча. Если электроны подаются в лечебную насадку 26, электроны изгибаются, например, посредством изгибающего магнита под соответствующим углом (например, 270 градусов) между трубкой ускорителя 20 и мишенью.
Известные источники электропитания для линейных ускорителей являются громоздкими, тяжелыми устройствами, которые значительно увеличивают стоимость и размер медицинской лечебной системы. В одном типе известной системы используется высоковольтная система трансформатор-выпрямитель для вырабатывания напряжения электропитания 21 кВ постоянного тока из обычного трехфазного напряжения 208 В. Высокое напряжение источника постоянного тока затем используется для вырабатывания импульса напряжения 15 кВ, который преобразуется в требуемый импульс напряжения 150 кВ посредством высоковольтного импульсного трансформатора. Высоковольтный узел трансформатора-выпрямителя обычно весит 150 фунтов (68 кг) и занимает объем 8 кубических футов (0,227 м3). В результате, источник электропитания следует размещать в отдельном от линейного ускорителя кабинете. Кроме того, для возрастающего места на полу, необходимого для размещения системы ускорителя, этот дополнительный кабинет требует специальных линий передачи электроэнергии для подсоединения выхода клистрона к линейному ускорителю, которые дополнительно увеличивают стоимость и сложность системы. И наконец, настоящий вес системы увеличивает стоимость перевозки.
Технической задачей изобретения является обеспечение улучшенной высоковольтной системы электропитания для электроснабжения клистронов и подобных им устройств, обеспечение высоковольтной системой электропитания, которая требует меньше места, чем известные высоковольтные системы электропитания, и обеспечение высоковольтной системой электропитания, которая значительно легче известных систем электропитания. Решение технической задачи настоящего изобретения станет очевидной специалистам в данной области техники из последующего подробного описания изобретения и прилагаемых чертежей.
Изобретение представляет собой схему генерирования высоковольтных импульсов для снабжения электроэнергией клистронов и подобных им устройств. В одном варианте осуществления, изобретение используется в устройстве лучевой терапии. Схема генерирования высоковольтных импульсов включает в себя источник электропитания постоянного тока, трансформатор обратного хода, чувствительный элемент и твердотельную схему переключения. Источник электропитания постоянного тока имеет положительный и отрицательный выводы. Трансформатор обратного хода имеет первичную обмотку и вторичную обмотку. Первичная обмотка трансформатора обратного хода имеет первый и второй выводы для подсоединения к источнику электропитания постоянного тока. Чувствительный элемент вырабатывает сигнал, включающий в себя амплитуду тока в первичной обмотке. Твердотельная схема коммутации подсоединяет источник электропитания постоянного тока к первичной обмотке трансформатора обратного хода. Первичная обмотка подсоединяется к источнику электропитания под действием управляющего сигнала и отсоединяется от источника электропитания, когда в первичной обмотке обнаруживается заранее определенный уровень тока.
Фиг .1 представляет блок-схему медицинского линейного ускорителя, иллюстрирующую основные компоненты и вспомогательные системы.
Фиг. 2 представляет блок-схему типичной известной системы электропитания для приведения в действие клистрона с целью возбуждения линейного ускорителя.
Фиг. 3 представляет блок-схему одного варианта соответствующей настоящему изобретению высоковольтной системы электропитания.
Фиг. 4 представляет принципиальную электрическую схему соответствующего настоящему изобретению выключателя электропитания.
Фиг. 5 представляет принципиальную электрическую схему соответствующего изобретению высоковольтного выключателя.
Фиг. 6 представляет блок-схему предпочтительного варианта осуществления схемы формирования импульсов.
Способ, которым изобретение повышает свои преимущества по сравнению с существующими, можно легче понять со ссылкой на фиг. 2, на которой представлена блок-схема типичной системы электропитания 50 для снабжения электроэнергией клистрона. Система электропитания 50 преобразует напряжение 208 В трехфазного источника электроэнергии в импульсы напряжения 15 кВ, тока 1200 А, длительностью примерно 5 мкс. Эти импульсы увеличиваются ступенями до 150 кВ посредством импульсного трансформатора 85, выходной сигнал которого возбуждает клистрон. Импульсы напряжения 15 кВ вырабатываются схемой генерирования импульсов, на которую подается напряжение 21 кВ от источника постоянного тока. Источником напряжения 21 кВ постоянного тока обычно является узел 60 высоковольтного трансформатора и выпрямителя. Как отмечалось выше, этот источник электропитания постоянного тока обычно занимает место 8 кубических футов (0,227 м3) и весит примерно 500 фунтов (68 кг).
Схема генерирования высоковольтных импульсов обычно состоит из катушки индуктивности 72, которая резонансным образом заряжает схему формирования импульсов 76. Окончательная амплитуда импульса, который подается на клистрон, регулируется посредством управления количеством времени замкнутого состояния выключателя 71 зарядки высокого напряжения. Система измеряет ток, проходящий через резистор 73, и напряжения на схеме формирования импульсов, с целью определения временной задержки размыкания выключателя. На чертеже опущено соединение со схемой формирования импульсов. В управляющем устройстве 74 используются измерения тока и напряжения с целью управления длительностью замкнутого состояния выключателя. Следует отметить, что диапазон регулирования окончательной амплитуды импульса, которую можно получить конструкцией катушки индуктивности, показанной на фиг. 2, ограничивается, потому что только часть энергии окончательного импульса накапливается в катушке индуктивности 72. Следует также отметить, что преобразование напряжения 208 В в напряжение 21 кВ постоянного тока требует значительного количества высоковольтных компонентов, которые должны работать с высокими уровнями мощности, требующими высоковольтной изоляции и проблем безопасности расположения.
На фиг. 3 представлена блок-схема системы 100 высоковольтного источника электропитания, соответствующей изобретению. В изобретении используется трансформатор 120 обратного хода для снабжения электроэнергией схемы формирования импульсов 176. Электропитание на трансформатор обратного хода 120 поступает от источника 102 напряжения 300 вольт постоянного тока. Это напряжение источника гораздо ниже напряжения 21 кВ постоянного тока источника электропитания, используемого в известной технике. Для управления выходным напряжением трансформатора обратного хода 120 используется твердотельный выключатель 110. Управляющее устройство 122 воспринимает ток, проходящий по первичной обмотке трансформатора обратного хода 120, как показано позицией 121. Когда ток достигает требуемого уровня, выключатель 110 размыкается, и энергия, накопленная в трансформаторе обратного хода 120, передается в схему формирования импульсов 176. После зарядки схемы формирования импульсов 176 высоковольтный выключатель 175 замыкается для разрядки схемы формирования импульсов 176, передавая тем самым энергию, накопленную в схеме формирования импульсов 176, в первичную обмотку импульсного трансформатора 185 по существу такая же, как и описано выше относительно типичной системы электропитания клистрона, показанной на фиг. 2.
Следует отметить, что трансформатор обратного хода 120 накапливает 100% энергии, которая позже передается импульсу клистрона. Следовательно, изобретение обеспечивает более высокий диапазон управления по сравнению с амплитудой выходного импульса, подаваемого на клистрон. Таким образом, посредством изобретения упрощается управление амплитудой импульса. Амплитудой импульса управляет размыкание выключателя 110 под действием заранее определенного тока, воспринимаемого первичной обмоткой трансформатора обратного хода 120. Выключатель 110 срабатывает только при напряжении 300 В, в противоположность показанному на фиг. 2 выключателю 71, который должен срабатывать при напряжении 21 киловольт. Следовательно, дополнительно к улучшенной надежности и безопасности достигается значительная экономия расходов.
Далее, поскольку трансформатор обратного хода 120 возбуждается низковольтным источником электропитания, устраняются проблемы, связанные с высоковольтным источником электропитания. Источник электропитания 102 требует примерно 1/4 кубического фута (0,007 м3) пространства и весит только примерно 5 фунтов (2,27 кг) (снижение веса 800 фунтов (363 кг)). Кроме того, более низкое рабочее напряжение обеспечивает повышенную надежность и безопасность.
В маломощных системах в течение некоторого времени использовали основную конструкцию трансформатора обратного хода, показанную на фиг. 3. Однако, раньше не находили возможности практических реализаций таких источников электропитания для выходных сигналов высокой мощности. В частности, отсутствовало практическое выполнение выключателя 110. Вакуумный тетрод, используемый в известной технике, содержит присущий механизм износа (катод), таким образом, более желательной является твердотельная конструкция. В настоящем изобретении выключатель выполнен в виде пары биполярных транзисторов с изолированными затворами (БТИЗ).
На фиг. 4 представлена электрическая принципиальная схема соответствующего изобретению выключателя электропитания 200. В выключателе электропитания 200 используются две схемы выключения, показанные позициями 210 и 220. Каждая схема выключения включает в себя БТИЗ 211 и шунтирующий диод 212. Схемы выключения 210 и 220 имеются на рынке. Схемы выключения 210 и 220 подсоединяют источник электропитания постоянного тока к первичной обмотке трансформатора обратного хода 120. Когда схемы выключения 210 и 220 отсоединяют первичную обмотку трансформатора обратного хода 120, на первичной обмотке вырабатывается сигнал обратного потенциала. Закорачивающие диоды 231 и 232 предотвращают повреждение этим потенциалом выключающих схем 210 и 220, соответственно. Закорачивающие диоды 231 и 232 перенаправляют эту энергию на источник электропитания постоянного тока, где она накапливается в находящихся в нем конденсаторах сглаживающего фильтра. В результате этого энергия преобразуется для использования в следующем импульсе.
В предпочтительном варианте осуществления изобретения, высоковольтный выключатель 175 (фиг. 3) выполнен в виде столбика высоковольтного выпрямителя с полупроводниковым управлением (ВПУ) (то есть, ряд соединенных последовательно ВПУ). В существующих схемах аналогичный выключатель обычно выполняют с газовым тиратроном, который имеет меньшую надежность и более высокую стоимость, чем столбик ВПУ, используемый в изобретении. Предпочтительный вариант осуществления соответствующего настоящему изобретению высоковольтного выключателя показан на фиг. 5 позицией 300. Выключатель 300 сконструирован из ряда соединенных последовательно каскадов ВПУ. Первый, второй и последний каскады показаны позициями 310, 320 и 340, соответственно. Каждый каскад включает в себя ВПУ, соединенный параллельно с резистором и конденсатором, где резистор и конденсатор подсоединены между анодом и катодом ВПУ. Например, каскад 310 включает в себя ВПУ 311, конденсатор 312 и резистор 313. Конденсаторы и резисторы соединены также последовательно с целью образования цепи делителя напряжения. Делитель напряжения гарантирует, что одинаковое напряжение подается на каждый ВПУ, когда выпрямители ВПУ не проводят. При отсутствии делителя напряжения, различия импедансов выпрямителей ВПУ в непроводящем состоянии могут привести к разным потенциалам, реализуемым на каждом ВПУ, когда столбик ВПУ не проводит. Это может привести к тому, что один из ВПУ будет подвергаться разности потенциалов, превышающей его напряжение пробоя.
Выпрямительный столбик запускается посредством подачи сигнала через катушку индуктивности 316 в каждом каскаде. Эти катушки индуктивности представляют собой вторичную ступень трансформатора 350, где сигнал подается на первичную обмотку 351 импульсного трансформатора 350. Каждый каскад включает в себя резистор и стабилитрон, который гарантирует, что триггерное напряжение между затвором и катодом ВПУ в каждом каскаде одинаковое для всех каскадов. Резистор и стабилитрон в первом каскаде показаны позициями 314 и 315, соответственно.
В схеме формирования импульсов улучшается конструкция катушки индуктивности. В частности, индуктивность делается регулируемой во время работы системы. На фиг. 6 представлена блок-схема соответствующей изобретению схемы формирования импульсов. Схема формирования импульсов 400 включает в себя катушки индуктивности 410-416. Обычно в схеме формирования импульсов на катушках индуктивности расположен зажим, и систему необходимо выключать для ручного изменения индуктивности. Индуктивность изменяют с целью точной настройки формы волны, создаваемой схемой формирования импульсов. Это выключение системы и проверку формы волны производят многократно, пока не будет получена требуемая форма волны. Специально натренированному человеку требуется примерно 1 ч для точной настройки формы волны. В противоположность этому, в настоящей конструкции используют алюминиевые подстроечные сердечники 420-426, которые размещены внутри катушек индуктивности 410-416. Каждый из алюминиевых подстроечных сердечников 420-426 можно перемещать вверх и вниз в процессе работы системы, с целью изменения индуктивности и точности настойки формы волны. Алюминиевые подстроечные сердечники 420-426 можно перемещать либо вручную, либо автоматически. При этой улучшенной конструкции, точная настройка занимает примерно 3 мин.

Claims (17)

1. Схема генерирования высоковольтных импульсов, содержащая источник электропитания постоянного тока, имеющий положительный и отрицательный выводы, отличающаяся тем, что содержит трансформатор обратного хода, имеющий первичную обмотку и вторичную обмотку, причем первичная обмотка имеет первый и второй выводы для подсоединения к источнику электропитания постоянного тока, средство для вырабатывания сигнала, показывающего ток, проходящий в первичной обмотке, где сигнал показывает амплитуду тока, и твердотельную выключающую схему для подсоединения источника электропитания постоянного тока к первичной обмотке трансформатора обратного хода под действием управляющего сигнала и для отсоединения источника электропитания постоянного тока от первичной обмотки под действием сигнала, показывающего, что по первичной обмотке проходит заранее определенный уровень тока.
2. Схема генерирования по п. 1, отличающаяся тем, что твердотельная выключающая схема содержит первый и второй биполярные транзисторы с изолированными затворами (БТИЗ), где первый БТИЗ подсоединяет первый вывод первичной обмотки к положительному выводу источника электропитания постоянного тока, когда первый БТИЗ находится в проводящем состоянии, а второй БТИЗ подсоединяет второй вывод первичной обмотки к отрицательному выводу источника электропитания постоянного тока, когда второй БТИЗ находится в проводящем состоянии.
3. Схема генерирования по п.1, отличающаяся тем, что твердотельная выключающая схема дополнительно содержит первый и второй диоды, соединяющие первый и второй выводы первичной обмотки с положительным и отрицательным выводами источника электропитания постоянного тока.
4. Схема генерирования по п.1, отличающаяся тем, что дополнительно содержит схему формирования импульсов, подсоединенную к первому и второму выводам вторичной обмотки, и высоковольтный выключатель для закорачивания схемы формирования импульсов под действием сигнала закорачивания.
5. Схема генерирования по п.4, отличающаяся тем, что высоковольтный выключатель включает в себя множество каскадов выпрямителей с полупроводниковым управлением (ВПУ), причем каждый каскад ВПУ содержит ВПУ, резистор и генератор управляющего сигнала, где ВПУ имеет анод, катод и затвор, ВПУ проводит ток от анода к катоду при наличии управляющего сигнала, вырабатывая потенциал между затвором и катодом, управляющий сигнал вырабатывает генератор управляющего сигнала, резистор подсоединен между анодом и катодом, каскады соединены таким образом, что ВПУ соединены последовательно.
6. Схема генерирования по п.5, отличающаяся тем, что генератор управляющего сигнала в каждом каскаде содержит вторичную обмотку импульсного трансформатора, причем каждая вторичная обмотка соединена с общей первичной обмоткой.
7. Схема генерирования по п.1, отличающаяся тем, что напряжение источника электропитания постоянного тока больше 250 В и меньше 10 кВ.
8. Схема генерирования по п.1, отличающаяся тем, что средство для вырабатывания сигнала, показывающего ток, проходящий в первичной обмотке, представляет собой чувствительный элемент.
9. Схема генерирования по п.1, отличающаяся тем, что дополнительно содержит схему формирования импульсов, подсоединенную к первому и второму выводам вторичной обмотки, причем схема формирования импульсов включает в себя катушки индуктивности с сердечниками, где сердечники способны изменять индуктивность схемы формирования импульсов.
10. Схема генерирования высоковольтных импульсов в устройстве лучевой терапии, содержащая источник излучения, способный вырабатывать испускаемый луч, имеющий переменную выходную мощность излучения, отличающаяся тем, что содержит источник электропитания постоянного тока, имеющий положительный и отрицательный выводы, трансформатор обратного хода, имеющий первичную обмотку и вторичную обмотку, причем первичная обмотка имеет первый и второй выводы для подсоединения к источнику электропитания постоянного тока и средство для вырабатывания сигнала, показывающего ток, проходящий в первичной обмотке, причем сигнал показывает амплитуду тока, причем источник электропитания постоянного тока, трансформатор обратного хода и средство для вырабатывания сигнала используются для подачи электроэнергии на источник излучения таким образом, что вырабатывается испускаемый луч.
11. Схема генерирования по п.10, отличающаяся тем, что дополнительно содержит твердотельную схему выключения для подсоединения источника электропитания постоянного тока к первичной обмотке трансформатора обратного хода под действием управляющего сигнала и для отсоединения источника электропитания постоянного тока от первичной обмотки под действием сигнала, показывающего, что в первичной обмотке проходит ток заранее определенного уровня.
12. Схема генерирования по п.11, отличающаяся тем, что твердотельная схема выключения содержит первый и второй транзисторы БТИЗ, где БТИЗ соединяет первый вывод первичной обмотки с положительным выводом источника электропитания постоянного тока, когда первый БТИЗ находится в проводящем состоянии, и второй БТИЗ соединяет второй вывод первичной обмотки с отрицательным выводом источника электропитания постоянного тока, когда второй БТИЗ находится в проводящем состоянии.
13. Схема генерирования по п.11, отличающаяся тем, что твердотельная схема выключения дополнительно содержит первый и второй диоды, подсоединяющие первый и второй выводы первичной обмотки к положительному и отрицательному выводам источника электропитания постоянного тока.
14. Схема генерирования по п.10, отличающаяся тем, что дополнительно содержит схему формирования импульсов, подсоединенную к первому и второму выводам вторичной обмотки, и высоковольтный выключатель для закорачивания схемы формирования импульсов под действием закорачивающего сигнала.
15. Схема генерирования по п.14, отличающаяся тем, что высоковольтный выключатель включает в себя множество каскадов ВПУ, причем каждый упомянутый каскад ВПУ содержит ВПУ, резистор и генератор управляющего сигнала, где каждый ВПУ имеет анод, катод и затвор, ВПУ проводит ток от анода к катоду при наличии управляющего сигнала, вырабатывая потенциал между затвором и катодом, управляющий сигнал вырабатывает генератор управляющего сигнала, резистор подсоединен между анодом и катодом, каскады соединены таким образом, что ВПУ соединены последовательно.
16. Схема генерирования по п.15, отличающаяся тем, что генератор управляющего сигнала в каждом каскаде содержит вторичную обмотку импульсного трансформатора, каждая вторичная обмотка подсоединена к общей первичной обмотке.
17. Схема генерирования по п.10, отличающаяся тем, что первый и второй выводы вторичной обмотки представляют собой схему формирования импульсов, где схема формирования импульсов включает в себя катушки индуктивности с сердечниками, причем сердечники способны менять индуктивность схемы формирования импульсов.
RU97114635A 1996-08-28 1997-08-27 Схема генерирования высоковольтных импульсов RU2137292C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/704,054 US5930125A (en) 1996-08-28 1996-08-28 Compact solid state klystron power supply
US08/704,054 1996-08-28

Publications (2)

Publication Number Publication Date
RU97114635A RU97114635A (ru) 1999-06-20
RU2137292C1 true RU2137292C1 (ru) 1999-09-10

Family

ID=24827871

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97114635A RU2137292C1 (ru) 1996-08-28 1997-08-27 Схема генерирования высоковольтных импульсов

Country Status (8)

Country Link
US (2) US5930125A (ru)
EP (1) EP0827280A3 (ru)
JP (1) JPH1094271A (ru)
KR (1) KR100331777B1 (ru)
CN (1) CN1175128A (ru)
CA (1) CA2213920A1 (ru)
RU (1) RU2137292C1 (ru)
TW (1) TW349027B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453022C2 (ru) * 2010-06-17 2012-06-10 Федеральное государственное унитарное предприятие "Научно-производственный центр газотурбостроения "Салют" (ФГУП "НПЦ газотурбостроения "Салют") Устройство для одновременного питания электрофизических аппаратов высоким постоянным и частотно-импульсным напряжением субмикросекундного диапазона (варианты)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100276019B1 (ko) * 1998-06-23 2000-12-15 윤문수 마그네트론 구동용 고압 펄스 발생 장치
US6498444B1 (en) 2000-04-10 2002-12-24 Siemens Medical Solutions Usa, Inc. Computer-aided tuning of charged particle accelerators
US6466455B2 (en) 2000-09-08 2002-10-15 Seimens Medical Solutions Usa, Inc. Unified power architecture with dynamic reset
US6339314B1 (en) * 2000-12-27 2002-01-15 Philips Electronics North America Corporation Battery charger circuit with low standby power dissipation
JP2002253687A (ja) * 2001-03-02 2002-09-10 Mitsubishi Heavy Ind Ltd 放射線医療装置
US6529387B2 (en) 2001-06-06 2003-03-04 Siemens Medical Solutions Usa. Inc. Unified power architecture
GB2378065B (en) * 2001-06-15 2004-09-15 Marconi Applied Technologies High voltage switching apparatus
KR100692204B1 (ko) * 2004-11-26 2007-03-09 (주) 엠큐브테크놀로지 완충용 인덕터 기능을 수행할 수 있는 변압기를 구비한전기 회로 및 이를 이용한 자기 자극기
WO2006057532A1 (en) * 2004-11-26 2006-06-01 Mcube Technology Co., Ltd. An electric circuit, having transformer which can function as a buffer inductor, and magnetic stimulator therewith
US7072196B1 (en) 2005-01-28 2006-07-04 Applied Pulsed Power, Inc. Multi-stage high voltage solid state switch
US8040189B2 (en) 2005-12-20 2011-10-18 Leek Paul H Microwave system for driving a linear accelerator
CN101076218B (zh) * 2006-05-19 2011-05-11 清华大学 产生具有不同能量的x射线的设备、方法及材料识别系统
US8183801B2 (en) 2008-08-12 2012-05-22 Varian Medical Systems, Inc. Interlaced multi-energy radiation sources
GB2481602B (en) * 2010-06-30 2017-11-15 E2V Tech (Uk) Ltd Switching arrangement
CN101984548A (zh) * 2010-07-26 2011-03-09 香港脑泰科技有限公司 一种脉冲高压发生器
DE102010043176A1 (de) * 2010-10-29 2012-05-03 Converteam Gmbh Elektrische Schaltung zur Umwandlung elektrischer Energie zwischen einem dreiphasigen Stromnetz und einem einphasigen Stromnetz
US8575990B2 (en) 2011-10-14 2013-11-05 Silicon Power Corporation Matrix-stages solid state ultrafast switch
US9706630B2 (en) 2014-02-28 2017-07-11 Eagle Harbor Technologies, Inc. Galvanically isolated output variable pulse generator disclosure
CN109873621B (zh) 2013-11-14 2023-06-16 鹰港科技有限公司 高压纳秒脉冲发生器
US10978955B2 (en) 2014-02-28 2021-04-13 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10020800B2 (en) 2013-11-14 2018-07-10 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
US11539352B2 (en) 2013-11-14 2022-12-27 Eagle Harbor Technologies, Inc. Transformer resonant converter
US10892140B2 (en) 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10483089B2 (en) 2014-02-28 2019-11-19 Eagle Harbor Technologies, Inc. High voltage resistive output stage circuit
CN105813366A (zh) * 2014-12-29 2016-07-27 核工业西南物理研究院 具有阳极的高功率速调管的新型运行方法及阳极供电装置
US11430635B2 (en) 2018-07-27 2022-08-30 Eagle Harbor Technologies, Inc. Precise plasma control system
US10903047B2 (en) 2018-07-27 2021-01-26 Eagle Harbor Technologies, Inc. Precise plasma control system
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US10439393B2 (en) 2016-10-31 2019-10-08 General Electric Company Switch systems for controlling conduction of multi-phase current
CN106330156B (zh) * 2016-11-11 2018-10-02 佛山市汇凯达科技有限公司 一种隔离式射频开关
CN115378264A (zh) 2017-02-07 2022-11-22 鹰港科技有限公司 变压器谐振转换器
KR102601455B1 (ko) 2017-08-25 2023-11-13 이글 하버 테크놀로지스, 인코포레이티드 나노초 펄스를 이용한 임의의 파형 발생
CN109936348B (zh) * 2017-12-18 2020-11-10 中国科学院大连化学物理研究所 脉冲调制器高压稳定装置及方法
CN108462482B (zh) * 2018-02-10 2020-10-27 西安交通大学 一种产生双极性高压脉冲的装置和方法
GB201808892D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Mass spectrometer
GB201808949D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
GB201808932D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
US11367607B2 (en) 2018-05-31 2022-06-21 Micromass Uk Limited Mass spectrometer
GB201808894D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Mass spectrometer
WO2019229463A1 (en) 2018-05-31 2019-12-05 Micromass Uk Limited Mass spectrometer having fragmentation region
GB201808890D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
GB201808912D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
GB201808936D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
US11222767B2 (en) 2018-07-27 2022-01-11 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10607814B2 (en) 2018-08-10 2020-03-31 Eagle Harbor Technologies, Inc. High voltage switch with isolated power
US11302518B2 (en) 2018-07-27 2022-04-12 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
US11532457B2 (en) 2018-07-27 2022-12-20 Eagle Harbor Technologies, Inc. Precise plasma control system
CN112805920A (zh) 2018-08-10 2021-05-14 鹰港科技有限公司 用于rf等离子体反应器的等离子体鞘控制
KR102141684B1 (ko) 2018-08-24 2020-09-14 한국원자력연구원 전류 펄스를 제어하는 모듈레이터 및 그 방법
CN109039140A (zh) * 2018-10-22 2018-12-18 中国工程物理研究院应用电子学研究所 一种紧凑的高压开关组件
CN109275255B (zh) * 2018-10-29 2024-04-26 同方威视技术股份有限公司 用于电子加速器的灯丝电源和电子加速器
TWI783203B (zh) 2019-01-08 2022-11-11 美商鷹港科技股份有限公司 奈秒脈波產生器電路
CN110545089B (zh) * 2019-09-05 2021-06-18 西南交通大学 一种脉冲形成电路及ltd模块
TWI778449B (zh) 2019-11-15 2022-09-21 美商鷹港科技股份有限公司 高電壓脈衝電路
JP7285377B2 (ja) 2019-12-24 2023-06-01 イーグル ハーバー テクノロジーズ,インク. プラズマシステム用ナノ秒パルサrf絶縁
CN111355474B (zh) * 2020-03-16 2023-04-07 四川英杰电气股份有限公司 固态调制器的控制方法
WO2022139659A1 (en) * 2020-12-22 2022-06-30 Opticept Technologies Ab High voltage pulse generator unit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1252905A (ru) * 1968-05-17 1971-11-10
US4302651A (en) * 1977-11-30 1981-11-24 Varo Semiconductor, Inc. High-voltage SCR circuit for microwave oven and the like
US5045658A (en) * 1987-12-28 1991-09-03 General Electric Company Magnetron with temperature probe isolation
US4835353A (en) * 1987-12-28 1989-05-30 General Electric Company Filament power conpensation for magnetron
US4970439A (en) * 1989-04-28 1990-11-13 Minnesota Mining And Manufacturing Company Power supply circuit for a gaseous discharge tube device
US5083093A (en) * 1990-06-22 1992-01-21 Varian Associates, Inc. Circuit for coupling energy to pulse forming network or capacitor
JPH04230988A (ja) * 1990-07-26 1992-08-19 Sharp Corp インバータ電子レンジの駆動回路
US5321235A (en) * 1991-06-04 1994-06-14 Sanyo Electric Co., Ltd. Half-bridge converter switching power supply for magnetron
US5483122A (en) * 1994-02-18 1996-01-09 Regents Of The University Of Michigan Two-beam particle acceleration method and apparatus
US5764002A (en) * 1996-07-01 1998-06-09 U.S. Philips Corporation Over-current protection circuit for use in television horizontal deflection circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453022C2 (ru) * 2010-06-17 2012-06-10 Федеральное государственное унитарное предприятие "Научно-производственный центр газотурбостроения "Салют" (ФГУП "НПЦ газотурбостроения "Салют") Устройство для одновременного питания электрофизических аппаратов высоким постоянным и частотно-импульсным напряжением субмикросекундного диапазона (варианты)

Also Published As

Publication number Publication date
EP0827280A2 (en) 1998-03-04
JPH1094271A (ja) 1998-04-10
CN1175128A (zh) 1998-03-04
US5933335A (en) 1999-08-03
KR19980019090A (ko) 1998-06-05
CA2213920A1 (en) 1998-02-28
EP0827280A3 (en) 1999-12-15
TW349027B (en) 1999-01-01
KR100331777B1 (ko) 2002-06-20
US5930125A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
RU2137292C1 (ru) Схема генерирования высоковольтных импульсов
KR100467875B1 (ko) 펄스 전압 시퀀스 발생 방법 및 그 회로 장치
US6529387B2 (en) Unified power architecture
RU97114635A (ru) Схема генерирования высоковольтных импульсов
WO1998028845A1 (en) Power modulator
JPH0684474A (ja) 電子ビーム装置
JP3642907B2 (ja) 電子管用パルス電源装置
CN110289832A (zh) 一种固态调制器
Lim et al. Solid-state pulse modulator using Marx generator for a medical linac electron-gun
US4409492A (en) Shock excited pulse transformer
US4731803A (en) Circuit for operating an X-ray tube
US6359420B1 (en) Circuit for coupling energy to a pulse forming network or capacitor
JP4127728B2 (ja) パルスx線装置
JP2002033064A (ja) 三極x線管グリッド制御装置
US6466455B2 (en) Unified power architecture with dynamic reset
Jo et al. Compact design of 40 kV 100 a high-voltage pulsed-power modulator for driving X-band magnetrons
Crewson A new solid state high power pulsed modulator
CN111050454B (zh) 灯丝电源以及放疗设备
US20240063780A1 (en) High voltage pulse generator unit
JP2001230098A (ja) 高電圧スイッチ回路及びこれを用いたx線高電圧装置
CN118102565A (zh) 一种x射线管栅极电压控制装置、方法和x射线设备
JPH11329784A (ja) インバータ式x線高電圧装置
Jo et al. Design of prototype discharge stage of high voltage pulse modulator for driving X-band magnetron
JPS6147100A (ja) X線装置
Butakov et al. Linear induction accelerators with magnetic elements

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040828