RU2136357C1 - Способ перемещения кусковых материалов в жидкости и устройство для его осуществления - Google Patents

Способ перемещения кусковых материалов в жидкости и устройство для его осуществления Download PDF

Info

Publication number
RU2136357C1
RU2136357C1 RU98110182/25A RU98110182A RU2136357C1 RU 2136357 C1 RU2136357 C1 RU 2136357C1 RU 98110182/25 A RU98110182/25 A RU 98110182/25A RU 98110182 A RU98110182 A RU 98110182A RU 2136357 C1 RU2136357 C1 RU 2136357C1
Authority
RU
Russia
Prior art keywords
liquid
jets
solid
nozzle
carried out
Prior art date
Application number
RU98110182/25A
Other languages
English (en)
Inventor
В.Е. Морковников
Л.С. Рагинский
Н.В. Морозов
С.П. Елисеев
Original Assignee
Государственный научный центр РФ "Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственный научный центр РФ "Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара" filed Critical Государственный научный центр РФ "Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара"
Priority to RU98110182/25A priority Critical patent/RU2136357C1/ru
Priority to PCT/RU1999/000177 priority patent/WO1999062317A2/ru
Priority to US09/701,778 priority patent/US6616385B1/en
Priority to KR1020007013722A priority patent/KR20010052563A/ko
Priority to CNB998069760A priority patent/CN1150120C/zh
Priority to PCT/GB1999/001540 priority patent/WO1999062799A1/en
Priority to JP2000552024A priority patent/JP2002516800A/ja
Priority to EP99955256A priority patent/EP1091897A1/en
Application granted granted Critical
Publication of RU2136357C1 publication Critical patent/RU2136357C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G51/00Conveying articles through pipes or tubes by fluid flow or pressure; Conveying articles over a flat surface, e.g. the base of a trough, by jets located in the surface
    • B65G51/01Hydraulic transport of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G35/00Mechanical conveyors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/02Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid
    • B65G49/04Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction
    • B65G49/0409Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length
    • B65G49/0413Conveying systems characterised by their application for specified purposes not otherwise provided for for conveying workpieces through baths of liquid the workpieces being immersed and withdrawn by movement in a vertical direction specially adapted for workpieces of definite length arrangements for conveyance through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Изобретение относится к технологии массообменных противоточных процессов непрерывного действия между твердой и жидкой фазами, таких как отмывка, выщелачивание, растворение, и может быть использовано в радиохимической, химической, гидрометаллургической и в других отраслях промышленности. Технической задачей предлагаемого изобретения является повышение эффективности противоточных массообменных процессов в системах твердое - жидкость с помощью нового способа и устройства для перемешивания твердофазного кускового материала. В устройстве трубчатый корпус (1) выполнен наклонным к горизонтальной поверхности в диапазоне от 5 до 60o и снабжен насадкой (4), представляющей собой сопла (6), образованные плоскими лопатками (5), имеющими острый угол наклона к оси трубчатого корпуса (1) в диапазоне от 5 до 45o с размещенными между лопатками защитными решетками (7) против провала твердофазных материалов под насадку, которая размещена внутри корпуса вдоль его оси, делит корпус на верхнюю (2) и нижнюю (3) полости и опирается на поперечные перегордки (11), образующие под насадкой полости, сообщающиеся с помощью трубопроводов (13) в нижней части каждая со своей выносной пульсационной камерой (14), причем количество пульсационных камер четное. 2 с. и 6 з.п. ф-лы, 7 ил.

Description

Изобретение относится к технологии массообменных противоточных процессов непрерывного действия между твердой (в виде отдельных кусков, деталей и др.) и жидкой фазой, таких как отмывка, выщелачивание, растворение, и может быть использовано в радиохимической, химической, гидрометаллургической и в других отраслях промышленности. С наибольшим эффектом изобретение может быть использовано для обработки твердого материала, имеющего форму блочков длиной в 3-5 раз больше ширины, и значительную массу и плотность (до десятков грамм), например, для отмывки от жировых загрязнений металлоизделий или для выщелачивания кусковых материалов.
Наиболее перспективной схемой для массообменных процессов является противоточная схема движения твердофазных и жидкофазных реагентов. Благодаря противоточной схеме, снижается необходимое время контактирования твердой и жидкой фаз и повышается эффективность вышеуказанных процессов. Наибольшее распространение среди противоточных схем движения реагентов получили те, в которых твердая фаза в технологических аппаратах движется вниз (в направлении действия силы тяжести), а жидкая фаза вверх. Однако при использовании такой схемы противотока реагентов возникает ряд проблем, таких как недостаточное среднее время пребывания твердой фазе в одном аппарате, которое прежде всего определяется скоростью осаждения твердой фазы, а также технические сложности удаления твердой фазы из аппарата после процесса. Это связано с тем, что твердофазный материал скапливается внизу аппарата под слоем жидкости и находится чаще всего под значительным гидростатическим давлением (например, в колонных аппаратах), что заставляет разрабатывать сложные и, как правило, ненадежные узлы выгрузки твердой фазы.
Решение проблемы перемещения кускового материала вверх обеспечивает его более простое удаление из массообменного аппарата, чем в случае опускания твердой фазы вниз аппарата, а также открывает возможности по управлению временем пребывания твердой фазы в массообменном аппарате в более широких диапазонах и более простыми средствами.
Известен способ контактирования кусковых материалов, когда под действием возвратно-поступательного движения по наклонной поверхности, на которой находится твердофазный материал, он перемещается в верхнюю часть массообменного аппарата под действием вибровозбудителя (Вибрация в технике. М., Машиностроение, 1981, т. 4, с. 13 - 26). В этом способе на твердофазный материал воздействует наклонная поверхность, совершающая колебательное (возвратно-поступательное) движение направленного действия (под углом к направлению движения твердой фазы).
Такой способ позволяет осуществлять противоточное контактирование объектов с жидкой фазой (SU 648240, кл. B 01 D 11/02). Однако он весьма технически сложен для реализации в промышленных условиях из-за наличия подвижных элементов устройства в реакционной зоне, с агрессивными реагентами. Кроме того, обеспечить надежные подсоединения подводящих и отводящих трубопроводов к аппарату, совершающему частотные колебания, также затруднительно. Также важно то обстоятельство, что осуществлять колебательные движения с помощью вибровозбудителя можно только устройством ограниченной массы, поскольку с ростом такой массы резко возрастает мощность вибровозбудителя. Это означает, что технологические аппараты с виброприводом не могут иметь большие габариты, следовательно, их производительность достаточно низка.
Известен также способ перемещения твердой фазы в жидкой с использованием энергии пневматических импульсов заданных параметров и формы. Под действием пневматических импульсов жидкофазная среда, содержащая твердую фазу, приводится в возвратно-поступательное движение. При этом благодаря несимметричной форме импульсов (время подачи сжатого газа меньше времени его отвода) твердая фаза движется в направлении более интенсивного действия жидкостного импульса (SU 874093 кл. B 01 D 15/04).
Недостатком такого способа перемещения твердофазных материалов при осуществлении противотока является тот факт, что таким способом можно перемещать в технологическом аппарате только объекты небольшой массы, размеров и плотности, например ионообменные смолы. При больших плотностях и массах кусков твердого материала его движение прекращается, поскольку скорость осаждения твердофазных материалов сравнивается со скоростью подъема под действием поступательного движения жидкофазного реагента.
Устройство для осуществления этого способа просто по конструкции и надежно в работе за счет отсутствия у него подвижных элементов в реакционной зоне.
Технической задачей заявляемого изобретения является повышение эффективности противоточных массообменных процессов в системах твердое-жидкость с помощью нового способа и устройства для перемещения твердофазного кускового материала.
Поставленная задача достигается тем, что для эффективного перемещения кусковых материалов вверх при противоточной схеме массообменных процессов поступательное движение, осуществляемое под действием пневматических импульсов, преобразуют в периодическое истечение ряда параллельных пульсационных гидравлических струй, которые располагают вдоль направления движения твердой фазы и ориентируют вверх под острым углом к этому направлению, причем воздействие этих пульсационных гидравлических струй на твердый материал осуществляют одновременно всеми струями.
По второму варианту, воздействие пульсационных гидравлических струй на кусковой твердый материал осуществляют путем их истечения чередующимися группами в режиме противофазы.
По третьему варианту, воздействие пульсационных гидравлических струй на кусковой твердый материал осуществляют поочередно всеми группами гидравлических струй в режиме "бегущей волны".
Поставленная цель достигается тем, что в устройстве известной конструкции для контактирования твердофазных материалов с жидкими трубчатый корпус выполнен наклонным к горизонтальной поверхности в диапазоне от 5 до 60 градусов и снабжен насадкой, представляющей собой сопла, образованные плоскими лопатками, имеющими острый угол наклона к оси трубчатого корпуса в диапазоне от 5 до 45 градусов, с размещенными между лопатками защитными решетками против провала твердофазных материалов под насадку, которая размещена внутри корпуса вдоль его оси, делит корпус на верхнюю и нижнюю полости и опирается на поперечные перегородки, образующие под насадкой полости, сообщающиеся с помощью трубопроводов в нижней части, каждая со своей выносной пульсационной камерой, причем количество пульсационных камер является четным числом.
Сущность изобретения поясняется с помощью приведенных ниже графических материалов.
На фиг. 1 представлен поперечный разрез устройства для перемещения твердо-фазных материалов в жидкой среде.
На фиг. 2 приведено поперечное сечение устройства по плоскости А-А на фиг. 1.
На фиг.3 приведено устройство вид сверху.
На фиг. 4 приведен фрагмент насадки с фиг. 1.
На фиг. 5 приведена схема перемещения кускового твердофазного материала под действием пульсационных гидравлических струй при их одновременном действии.
а - при поступательном движении жидкости;
b - при возвратном движении жидкости.
На фиг. 6 приведена схема перемещения кускового твердофазного материала под действием пульсационных гидравлических струй при чередовании фаз пульсации жидкости в секторах (противофаз)
а) при истечении из нечетных групп струй,
b) при истечении из четных групп струй.
На фиг. 7 приведена схема перемещения кускового твердофазного материала под действием пульсационных гидравлических струй при поочередной пульсации в секторах ("бегущая волна").
а - при истечении струй первой группы,
b - при истечении струй второй группы;
c - при истечении струй третьей группы;
d - при истечении струй четвертой группы
Устройство для перемещения кусковых твердофазных материалов в жидкой среде включает (см. фиг. 1, фиг. 2 и фиг 3) трубчатый корпус (1), который разделен на верхнюю (2) и нижнюю (3) полости насадкой (4). Насадка (4) сформирована (см. фиг. 4) плоскими лопатками (5), установленными поочередно друг за другом и формирующими наклонные щелевые сопла (6), причем угол между плоскостью лопаток (5) и горизонтальной плоскостью составляет от 5 до 85 градусов. Между соседними лопатками (5) установлена решетка (7), предназначенная для удержания твердофазного материала (8) на насадке. К верхней полости (2) трубчатого корпуса (1) подсоединены патрубки (9) с отводом (15) - для загрузки кускового материала и вывода жидкой фазы, патрубок (17) - для сдувки из аппарата, патрубок (10) - для выгрузки обработанного кускового материала и патрубок (16) - для подачи свежего раствора (жидкой фазы). Нижняя полость (3) трубчатого корпуса (1) разделена поперечными перегородками (11) на четное число секторов (групп) (12), каждый из которых сообщен трубопроводом (13) со своей пульсационной камерой (14), которая подключается к пульсатору (на рисунках не показан). Количество пульсационных камер зависят от длины трубчатого корпуса предлагаемого устройства, но является четным числом.
Устройство работает следующим образом: проводят заполнение устройства жидким реагентом с заданным постоянным расходом через патрубок (16). По загрузочному канату (9) твердая фаза в виде кусков одинакового размера или заданного фракционного состава с дозированным расходом поступает на нижний участок насадки (6). От пульсаторов по трубопроводам (на рисунке не показаны) поступают пневматические импульсы заданных параметров (f - частоты колебании, P давления сжатого газа и соотношения времени впуска и выпуска газа) в пульсационные камеры (14). Под действием этих пневматических импульсов, поступающих в пульсационные камеры (14), из них вытесняется жидкость заданного объема и с заданной скоростью пропускается по трубопроводу (13) в соответствующие им сектора (12). Затем эта жидкость, проходя через сопла (6) и решетки (7) и приобретая форму струй, поступает в верхнюю полость (2). Образовавшийся излишек жидкости в верхней полости (2) заполняет свободное пространство патрубка сдувки (15). В этот момент сила тяжести кускового твердого материала (8) преодолевается напором струи, под действием этих гидравлических струй кусковой материал (8) отрывается от решетки (7), поднимается вверх на определенную высоту и перебрасывается на соседние сопла насадки (6). В следующий момент с помощью пульсаторов (на рисунках не показаны) осуществляется выпуск отработавшего сжатого газа из пульсационных камер (14), и жидкость возвращается в пульсационные камеры (14) до первоначального уровня тем же пукам. Кусковой материал в этот момент обратным током жидкости прижимается к решетке (7) насадки (6) и остается неподвижным. Таким образом кубковой твердофазный материал (8) с заданной частотой перемещается по насадке в верх аппарата, откуда с помощью патрубка (10) удаляется из аппарата. А жидкость, пройдя через аппарат навстречу твердофазному материалу удаляется через патрубок (15).
Способ перемещения кускового твердофазного материала может осуществляться по схемам, представленным на фиг 5, 6 и 7.
По первому варианту (фиг. 5), когда все пульсационные камеры (14) работают одновременно от одного пульсатора, весь твердофазный материал при истечении всех струй одновременно отрывается от насадки и перемещается вперед (поз. "а" на фиг. 5). Затем, при обратном токе, весь материал неподвижен (поз. "b" на фиг 5). Этот вариант является наиболее эффективным в случае, когда твердый материал расположен в виде равномерного плотного стоя по всей длине аппарата.
По второму варианту (фиг. 6), когда каждая нечетная пульсационная камера (14) срабатывает одновременно от одного пульсатора, например, в момент истечения жидкости под действием пневматического импульса (поз."а" фиг. 6) приходит в движение только тот твердый материал, на который воздействуют в данный момент группа гидравлических струй. В то же время все четные пульскамеры (14) в режиме противофазы срабатывают одновременно от одного пульсатора (на рисунке не показан) на возврат жидкости (в момент сброса отработавшего газа из пульсационных камер). При этом на участках насадки, расположенных над секторами, соответствующими нечетным пульсационным камерам, идет перемещение кускового материала (8), а на участках насадки, расположенных над секторами, соответствующими четным пульсационным камерам, куски материалы неподвижны. Этот вариант наиболее эффективен в случае, когда твердый материал располагается тонким слоем по всей длине аппарата
По третьему варианту (фиг. 7), пульсационные камеры (14) работают от пульсаторов по заданной программе последовательно (в режиме "бегущей волны"). При этом перемещение кускового материала происходя только на участке насадки, пульсационная камера которого в настоящий момент работает на истечение жидкости. Этот ворует наиболее эффективен, когда твердый материал располагается отдельными кучками по длине аппарата.
В качестве примера рассмотрим процесс обезжиривания точеных изделий цилиндрической формы, длиной 55 мм и диаметром 12 мм, массой 6,10,20,30 и 36 г с использованием предлагаемого способа и устройства. Испытания проводились на модельном аппарате, конструкция которого представлена на фиг. 1, длина насадочной части составила 2400 мм, а ее ширина - 150 мм. Расстояние между лопатками насадки составляло 7 мм.
Испытания в первом варианте проводились следующим образом: аппарат заполнялся обезжиривающим раствором, затем включался пульсатор, генерировавший импульсы сжатого воздуха заданного давления и формы (пилообразной) с соотношением времени впуска и времени выпуска tвп/tвып=0,2 (с) / 2,5 (с). Устанавливалось максимальное давление сжатого воздуха в пульсационных камерах (в каждой из четырех) Pmax = 0,065 МПа. Через загрузочный патрубок (9) на начальный (нижний) участок насадки осуществлялась загрузка изделия с расходом 100 шт. /мин, толщина слоя соответствовала трем- четырем диаметрам деталь. Фиксировалось время их прохождения по насадке массообменного аппарата до их появления на выходе. Проведенные замеры показали, что при таком режиме среднее время пребывания изделий в аппарате составило 15 мин.
Во втором варианте испытания проводились на том же модельном аппарате и на тех же изделиях, что и в первом варианте. Соотношение было tвп/tвып= 0,3/0,3. Подача сжатого воздуха (Pmax = 0,060 МПа - максимальное давление воздуха в пульскамерах) осуществлялась в нечетные пульсационные камеры в течение 0,3 с, затем в четные в такое же время. А четные пульсационные камеры сообщались со сдувкой, затем цикл повторялся. Загрузка изделий с такими же характеристиками, что и в первом варианте, составила 40 шт./мин, толщина слоя соответствовала диаметру деталей. Проведенные замеры показали, что при таком режиме среднее время составило 20 мин. В третьем варианте испытания проводились на том же модельном аппарате и на тех же изделиях, что и в первом варианте. Соотношение времени впуска и выпуска сжатого воздуха было tвп/tвып= 0,2/2,5. Подача сжатого воздуха (Pmax = 0,064 МПа) осуществлялась четырьмя пульсаторами, управляемыми по команде от электронного командного устройства (на рисунках не показаны) последовательно по принципу "бегущей волны". Загрузка изделий составила 20 шт./мин. При таком режиме пульсации среднее время пребывания изделий в аппарате составило 22 мин.

Claims (8)

1. Способ перемещения кусковых материалов в жидкости в массообменных аппаратах, включающий преобразование пневматических импульсов пилообразной формы в возвратно-поступательное движение жидкости и поступательное движение снизу-вверх кусковых материалов, отличающийся тем, что возвратно-поступательное движение жидкости формируют с помощью щелевых насадок в виде плоских струй, которые в фазе подачи импульса давления ориентируют вверх под острым углом к направлению перемещения кусков материала.
2. Способ по п.1, отличающийся тем, что формирование струй осуществляют по зонам, расположенным по длине аппарата.
3. Способ по п.1 или 2, отличающийся тем, что формирование струй осуществляют одновременно по всей длине массообменного аппарата.
4. Способ по п.2, отличающийся тем, что формирование струй в соседних зонах осуществляют в режиме противофазы.
5. Способ по п.2, отличающийся тем, что формирование струй в соседних зонах осуществляют в режиме "бегущей волны".
6. Устройство для перемещения кусковых материалов в жидкости при проведении массообменных процессов, включающее трубчатый корпус, размещенную внутри корпуса насадку, штуцера загрузки и выгрузки реагентов и пульсационную камеру, отличающееся тем, что корпус размещен под углом 5 - 60o к горизонтали, насадка выполнена в виде ряда плоских лопаток, установленных по длине корпуса под углом 5 - 45o к оси корпуса и делящих рабочий объем на верхнюю и нижнюю полости.
7. Устройство по п.6, отличающееся тем, что нижняя полость поделена поперечными перегородками на зоны, каждая из которых соединена трубопроводом с пульсационной камерой.
8. Устройство по п.6 или 7, отличающееся тем, что щель между соседними лопатками перегорожена сетчатой перегородкой.
RU98110182/25A 1998-06-03 1998-06-03 Способ перемещения кусковых материалов в жидкости и устройство для его осуществления RU2136357C1 (ru)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU98110182/25A RU2136357C1 (ru) 1998-06-03 1998-06-03 Способ перемещения кусковых материалов в жидкости и устройство для его осуществления
PCT/RU1999/000177 WO1999062317A2 (fr) 1998-06-03 1999-05-28 Procede de melange de materiaux en morceaux dans un liquide et dispositif de mise en oeuvre de ce procede
US09/701,778 US6616385B1 (en) 1998-06-03 1999-06-03 Liquid transport of solid material
KR1020007013722A KR20010052563A (ko) 1998-06-03 1999-06-03 고체물질의 액체수송
CNB998069760A CN1150120C (zh) 1998-06-03 1999-06-03 在液相中输送固体材料块的方法和装置
PCT/GB1999/001540 WO1999062799A1 (en) 1998-06-03 1999-06-03 Liquid transport of solid material
JP2000552024A JP2002516800A (ja) 1998-06-03 1999-06-03 固体材料の液体移動
EP99955256A EP1091897A1 (en) 1998-06-03 1999-06-03 Liquid transport of solid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98110182/25A RU2136357C1 (ru) 1998-06-03 1998-06-03 Способ перемещения кусковых материалов в жидкости и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2136357C1 true RU2136357C1 (ru) 1999-09-10

Family

ID=20206555

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98110182/25A RU2136357C1 (ru) 1998-06-03 1998-06-03 Способ перемещения кусковых материалов в жидкости и устройство для его осуществления

Country Status (7)

Country Link
US (1) US6616385B1 (ru)
EP (1) EP1091897A1 (ru)
JP (1) JP2002516800A (ru)
KR (1) KR20010052563A (ru)
CN (1) CN1150120C (ru)
RU (1) RU2136357C1 (ru)
WO (2) WO1999062317A2 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10015049C1 (de) * 2000-03-25 2001-11-15 Minitec Engineering Gmbh Vorrichtung zur Aufarbeitung von Walzschlämmen
NL1030450C2 (nl) * 2005-11-17 2007-05-21 Greefs Wagen Carrosserie Inrichting en werkwijze voor het gekanaliseerd transporteren van vruchten met behulp van een vloeistofkanaal.
TW200738532A (en) * 2006-04-10 2007-10-16 Chicony Electronic Co Ltd Material delivery system capable of preventing dust suspension
US20100241759A1 (en) * 2006-07-31 2010-09-23 Smith Donald L Systems and methods for sar-capable quality of service
CN102976100B (zh) * 2012-12-12 2016-05-11 刘嘉殷 一种用于物联网管道自动配送系统的批量运输装置
CN104724481B (zh) * 2013-12-20 2017-07-18 深圳富泰宏精密工业有限公司 筛选机构
PL2910481T3 (pl) * 2014-02-24 2016-07-29 Ltw Intralogistics Gmbh Sposób częściowego rozładunku pływalnych przedmiotów oraz urządzenie do realizacji tego sposobu
WO2015174854A1 (en) * 2014-05-16 2015-11-19 Compac Technologies Limited Gentle flume
US11014632B2 (en) 2018-04-04 2021-05-25 Alexander Skrizhinsky Apparatuses, systems, and methods for aquatic transportation, storage, and distribution
CN109210021B (zh) * 2018-10-11 2024-04-02 中国水利水电科学研究院 一种无叶片式水底或其他液体中物料提取装置及使用方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258852A (en) 1965-04-19 1966-07-05 Detrex Chem Ind Material handling apparatus
US3822919A (en) * 1971-07-09 1974-07-09 Kaiser Ind Corp Apparatus and method for fluidizing and handling particulates
US3947236A (en) * 1971-11-29 1976-03-30 Lasch Jr Cecil A Fluid bearing transfer and heat treating apparatus and method
SU633545A1 (ru) * 1972-05-22 1978-11-25 Пркдприятие П/Я А-1545 Массообменный аппарат
US3989227A (en) * 1974-10-10 1976-11-02 General Kinematics Corporation Fluid bed blender and cooler
SU874093A1 (ru) * 1976-09-17 1981-10-23 Предприятие П/Я Р-6575 Способ контактировани жидкости с твердым зернистым материалом и устройство дл его осуществлени
US4230675A (en) 1978-02-15 1980-10-28 The United States Of America As Represented By The United States Department Of Energy Apparatus for leaching core material from clad nuclear fuel pin segments
EP0009868B1 (en) 1978-08-09 1982-05-12 United Kingdom Atomic Energy Authority Improvements in or relating to a method and to an apparatus for transporting items and plant therefor
JPS59118621A (ja) * 1982-12-24 1984-07-09 Hitachi Ltd 物品移送装置
JPS6235531A (ja) * 1985-08-08 1987-02-16 Fujitsu Ltd ウエ−ハ水中搬送機構
HUT52999A (en) * 1988-04-18 1990-09-28 Nitrokemia Ipartelepek Method and apparatus for intensive countercurrent contacting granular solid materials with low-amount liquid
GB8821190D0 (en) 1988-09-09 1988-10-12 Atomic Energy Authority Uk Pulsed transporter
FR2663558B1 (fr) * 1990-06-21 1992-09-11 Commissariat Energie Atomique Colonne pulsee avec garnissage a paniers.

Also Published As

Publication number Publication date
WO1999062799A1 (en) 1999-12-09
JP2002516800A (ja) 2002-06-11
EP1091897A1 (en) 2001-04-18
US6616385B1 (en) 2003-09-09
WO1999062317A2 (fr) 1999-12-09
CN1150120C (zh) 2004-05-19
WO1999062317A3 (fr) 2000-02-03
KR20010052563A (ko) 2001-06-25
CN1304376A (zh) 2001-07-18

Similar Documents

Publication Publication Date Title
RU2136357C1 (ru) Способ перемещения кусковых материалов в жидкости и устройство для его осуществления
US4207007A (en) Liquid-stirring device and installation for treating loose materials
EP0186357B1 (en) Tumbling apparatus
PL120806B1 (en) Granulate conveying method and apparatusportirovki granuljata
SU874093A1 (ru) Способ контактировани жидкости с твердым зернистым материалом и устройство дл его осуществлени
SU505864A1 (ru) Установка дл термообработки сыпучих материалов
RU2000132712A (ru) Способ жидкостной транспортировки кусков твердого материала в устройствах массообмена и устройство для его осуществления
RU2085247C1 (ru) Массообменный двухколонный аппарат
SU753443A1 (ru) Массообменный аппарат
RU217565U1 (ru) Насадочная колонна
JP6766785B2 (ja) 分割型ウォーキングビーム式熱処理炉のスケール排出装置
WO1989008231A1 (en) Liquid to solids heat exchanger
EP0497310B1 (en) Wet exhaust gas desulfurization apparatus and wet exhaust gas desulfurization method using this apparatus
SU656637A1 (ru) Массобменный аппарат
SU868293A1 (ru) Установка дл сушки сыпучих материалов в виброкип щем слое
SU1255833A2 (ru) Сушилка
SU791401A1 (ru) Аппарат с насадкой
US324856A (en) Gilbeet m
SU498012A1 (ru) Устройство дл контактировани в системе:твердое тело-жидкость
SU1097388A1 (ru) Устройство дл очистки проволоки
RU5737U1 (ru) Аппарат для проведения гетерогенных химических реакций
SU1033151A1 (ru) Вибрационный массообменный аппарат
RU2324639C1 (ru) Способ гидравлической транспортировки мелкозернистых материалов по трубам
RU2094112C1 (ru) Газораспределительное устройство для аппаратов с псевдоожиженным слоем
SU549417A1 (ru) Установка дл мойки банок

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060604