RU2126407C1 - Производные ксантина - Google Patents

Производные ксантина Download PDF

Info

Publication number
RU2126407C1
RU2126407C1 RU94027686/04A RU94027686A RU2126407C1 RU 2126407 C1 RU2126407 C1 RU 2126407C1 RU 94027686/04 A RU94027686/04 A RU 94027686/04A RU 94027686 A RU94027686 A RU 94027686A RU 2126407 C1 RU2126407 C1 RU 2126407C1
Authority
RU
Russia
Prior art keywords
compound
cells
xanthine
formula
effect
Prior art date
Application number
RU94027686/04A
Other languages
English (en)
Other versions
RU94027686A (ru
Inventor
Шуберт Ханс-Петер (DE)
Шуберт Ханс-Петер
Дж.Гроум Джон (GB)
Дж.Гроум Джон
Киттнер Барбара (DE)
Киттнер Барбара
Рудольфи Карл (DE)
Рудольфи Карл
Original Assignee
Хест АГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хест АГ filed Critical Хест АГ
Publication of RU94027686A publication Critical patent/RU94027686A/ru
Application granted granted Critical
Publication of RU2126407C1 publication Critical patent/RU2126407C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/04Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
    • C07D473/06Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurosurgery (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Производные ксантина формулы
Figure 00000001

где R1 гидроксиалкил (C1-C8), углеродная цепь которого может быть неразветвленной или разветвленной; R2 водород; R3 этоксиалкил (C1-C4) или их физиологически переносимые соли; обладают способностью ингибировать образование свободных радикалов. 2 табл.

Description

Настоящее изобретение относится к новым производным ксантина формулы I
Figure 00000003

и их физиологически переносимым солям,
где R1 - гидроксиалкил с 1 - 8 атомами углерода, углеродная цепь которого может быть неразветвленной или разветвленной и гидроксильная группа которого представляет функцию первичного, вторичного или третичного спирта;
R2 - водород;
R3 - этоксиалкил с 1 - 4 атомами углерода, углеродная цепь которого может быть неразветвленной или разветвленной.
Эти соединения обладают ценными свойствами и применяются для изготовления лекарственных препаратов для лечения закрытых черепно-мозговых травм.
Производные ксантина формулы I ингибируют образование свободных радикалов.
Пригодными филологическими солями производных ксантина формулы I являются соли щелочных, щелочноземельных металлов и соли аммония.
Соединения согласно изобретению получают тем, что
а) защищенные по R2 или по R2 и R3 ксантины в щелочных условиях подвергают реакции с соединением формулы II
Figure 00000004

или формулы III
Figure 00000005

или с алкилгалогенидом с максимально 6 C-атомами,
где A представляет собой алкилгруппу с 1-6 атомами углерода;
X - такой галоген, как фтор, хлор, бром или иод;
R4 - водород и/или метил,
и непосредственно после этого защитные группы отщепляют;
б) ксантины, защищенные по R2, подвергают реакции с соединением формулы II или формулы III или с алкилгалогенидом с максимально 6 C-атомами, с превращением в 3,7-замещенный ксантин, непосредственно после этого подвергают реакции с соединением формулы II или формулы III или с алкилгалогенидом с максимально 6 C-атомами и после этого защитные группы отщепляют.
Исходные вещества, участвующие в реакциях, известны или могут быть легко приготовлены известными из литературы методами.
Соединения формулы I могут использоваться для получения фармацевтических компзицийв, которые состоят из по крайней мере одного производного ксантина формулы I и/или по крайней мере одной из его физиологически совместимых солей, а кроме того, содержат фармацевтически пригодны и физиологически совместимые наполнители (носители), разбавители и/или другие активные и вспомогательные компоненты (добавки).
Пример 1. Получение 7-Этоксиметил-1-(5-гидрокси-5-метилгексил) ксантина.
а) 48,4 г (0,02 моль) 3-бензилксантина растворяют в растворе 8 г (0,2 моль) гидроксида натрия в 200 мл воды. После фильтрования остаток упаривают в вакууме, несколько раз дистиллируют с метанолом и высушивают натриевую соль в высоком вакууме.
Высушенная соль суспендируется в 0,6 л диметилформамида (ДМФ), при перемешивании смешивается с 18,92 г (0,2 моль) этоксиметилхлорида и перемешивается 18 ч при 110oC. После этого горячая смесь фильтруется, упаривается в вакууме, остаток растворяется в 500 мл 2 н. едкого натра и для удаления образующегося в качестве побочного продукта 1,7-диалкилированного 3-бензилксантина встряхивается с хлороформом. Щелочной водный раствор с помощью 2 н. соляной кислоты при перемешивании доводят до pH 9, образующиеся кристаллы отсасывают на humre, промывают сначала свободной от хлора водой и затем метанолом и высушивают в вакууме. Температура плавления: 136 - 138oC.
C15H16N4O4 (молекулярный вес = 300,3)
б) 15 г полученного в пункте а) 7-Этоксиметил-3-бензил-ксантина в 300 мл ДМФ смешивается с 7,5 г (0,064 моль) карбоната калия и 8,2 г (0,054 моль) 1-хлор-5-гидрокси-5-метилгексана (изготовленного, как это описано в US 4833146) и при перемешивании в течение 5 ч прогреваются при 110oC. Горячую смеси отсасывают, упаривают и остаток вносят в хлороформ, промывают сначала 1 н. едким натром и затем водой, высушивают над сульфатом натрия, отгоняют под пониженным давлением растворитель и перекристаллизовывают остаток из диизопропилового эфира при добавлении этилацетата.
Выход: 19,1 г (92,3% от теории)
Температура плавления: 96 - 97oC
C22H30N4O4 (молекулярный вес = 414,5).
с) 4,14 г (0,01 моль) полученного в пункте Б) 7-Этоксиметил-1-(5-гидрокси-5-метилгексил)-3-бензил-ксантина при 60oC и давления 3,5 бар, в течение 198 часов, при перемешивании гидрируются в 100 мл этанола, 75 мл воды, 5 мл концентрированного N H4OH-раствора над 1,5 г палладия (10%) на активированном угле. После охлаждения заполняют азот, отфильтровывают катализатор, упаривают и перекристаллизовывают твердый остаток из этилового эфира уксусной кислоты.
Выход: 2,6 (80,1% от теории)
C15H24N4O4 (молекулярный вес = 324,4)
Пример 2. Получение 1-(5-гидрокси-5-метилгексил)ксантина.
а) 36,3 г (0,15 моль) 3-бензилксантина, 3,6 г (0,15 моль) NaH перемешиваются при 45oC в 500 мл ДМФ. Затем по каплям добавляются 25,6 г бензилбромида, растворенные в 45 мл ДМФ, и смесь нагревается 5 часов при 100 - 110oC. После этого продукт очищается, как это описано в примере 1a).
б) 19,9 г (0,06 моль) полученного в а) 3,7-дибензилксантина, 8,3 г карбоната калия и 10 г (0,065 моль) 1-хлор-5-гидрокси-5-метиленгексана в 350 мл ДМФ прогреваются 8 ч при перемешивании при температуре 110 - 120oC, и далее продукт очищается, как это описано в 1б).
с) 4,46 (0,01 моль) полученного в б) 3,7-дибензил-1-(5-гидрокси-5-метилгексил)ксантина в течение 163 ч подвергаются реакции, как это описано в примере 1с), и, согласно этому примеру, далее полученный продукт очищается.
Выход: 1,53 г (57,5% от теории).
Температура плавления: 238 - 239oC.
C12H18N4O3 (молекулярный вес = 266,3).
Биологическая активность производных ксантина формулы III подтверждена ниже приведенными данными.
Пример 3. Фармацевтические испытания и результаты.
Для измерения внутриклеточного образования свободных кислородных радикалов в перитонеальных макрофагах, а также в культурах активированной микроглии был выбран проточный цитометрический метод (Rorhe, Oser, Voilet, Naturwissenchoiffen 75, 354, 1988). Специально определяли образование свободных радикалов в отдельных витальных клетках, при этом измерялось внутриклеточное окисление мембранопроницаемого и не флуоресцирующего дигидрородамина 123 (DHR; Eugene, OR, США) в мембранонепроницаемый и внутриклеточно "захваченный", зеленый флуоресцирующий родамин 123.
Дигидрородамин растворялся в 43,3 мМ исходного раствора в N,N- диметилформамиде (ДМФ; Мерк, Дармштадт, ФРГ). Метод пригоден также для индивидуального и одновременного измерения различных подпопуляций внутри одной гетерогенной клеточной популяции; он позволяет поэтому исключение загрязненных популяций. Исходя их этого в другой серии опытов гарантированно идентифицировали, подлежащие измерению типы клеток посредством специфического иммуноцитохимического окрашивания антител непосредственно во время поточного цитометрического измерения. Перитонеальные макрофаги получались посредством перитонеального промывания с 10 мл HBS - Hаnks (Серва Файнбиохемика, Гейдельберг/Serva Feinbiochemica, Heidelberg) мужских особей Вистар-крыс в возрасте 12 недель. Клетки седиментировались при 20 г в 20oC в течение 5 мин и ресуспендировались в HBS - Hanks (4 х 106 клеток/мл). Все клетки после приготовления хранились до цитометрического анализа при 4oC в течение максимально 2 часов.
Перед началом измерения все клетки (суспензия макрофагов (10 мкл) еще разбавлялась 1 мл HBS - Hanks) 5 минут при 37oC, окрашивались с 1 мкл 43,4 мМ раствора дигидрородамина 123 (DHR) в диметилформамиде. Для того чтобы испытать влияние соединения 1, в экспериментальных группах DHR - загруженные клетки инкубировались с 10 мкМ или 50 мкМ предлагаемого по изобретению соединения в течение 15, 25, 35, 45 и 60 мин, а именно с или без параллельно протекающего стимулирования образования свободных радикалов посредством конканавалина A (Сигма Хеми, Дайзенхофен, сопА, 100 мкМ/мл). К соответствующим контрольным группам активное вещество не добавлялось.
Микроглиальные культуры препарировались из головного мозга новорожденных крыс (Ginlian & Baker, F.Neuroscience, 1986, 6:2163-2178). После механической диссоциации ткани в модифицированной среде Далбекко-Иглса (Dulbecco's modifiziertem Eagle's Medium) (Сигма Хеми/Sigma Chemie, ДМЕМ), дополненные 2 г/л NaHCO3 и 20% жаро-инактивированной эмбриональной сывороткой телят, первичные культуры в течение 2 - 4 недель выдерживались в 75 см3-сосудах при 3% pCO2 и 37oC. Клетки, которые вырастали на поверхности непрерывного слоя клеток, удалялись при помощи встряхивания, гранулировались и ресуспендировались (3 х 106 клеток/мл) в Hepes Hanks-буферный солевой раствор (5 мМ Hepes, 0,15 M NaCl, pH 7,35; Серва Фейнбиохемика, Гейдельберг, ФРГ). Для того чтобы испытать влияние соединения 1, в экспериментальных группах DHR -загруженные клетки инкубировались с 50 мкМ предлагаемого по изобретению соединения в течение 15, 25, 35, 45 и 60 минут, а именно с или без параллельно протекающего стимулирования образования свободных радикалов посредством конканавалина A (сопА, 100 мкМ/мл). К соответствующим контрольным группам активное вещество не добавлялось.
Клеточный объем и две флуоресценции измерялись одновременно в почти 10000 клетках на "образец" с помощью FACScan - проточного цитометра (Бектон Дикинсон, Сан Хосе, США/Becton Dickinson, San Jose, USA). Флюоресценция родамина 123-зеленого (500 - 530 нм) и флюоресценция пропидий иодида-красного (590 - 700 нм) измерялись при возбуждении при помощи аргонового лазера с длиной волны 488 нм. Цитометр калибровался с помощью стандартизованных желто-зелено-флюоресцирующих "микросфер" диаметром 4,3 мкм (Полисайенс, ФРГ/Polyscience, St. Goar, F.R.G.)
Каждое измеренное значение основывается на измерениях отдельных клеток, содержащих в одном "образце" (около 10000). Для того чтобы поддерживать экспериментальные граничные условия возможно постоянными, проводилось несколько экспериментов друг за другом в один день. В одной такой серии опытов цитометрически измерялись 4 различных "образца" одной экспериментальной группы и их контроль в различные, определенные моменты времени. Как правило, выполнялись 3 - 4 серии опытов на одну экспериментальную группу.
A) Действие на перитонеальные макрофаги.
Стимуляция перитонеальных макрофогов посредством конканавалина A (сопА, 100 мкг/мл) ведет к значительному росту образования свободных кислородных радикалов, измеренному как % увеличения зеленой флюоресценции после окисления дигидрородамина 123 (DHR) в родамин 123. Когда измерялись перитонеальные макрофаги в присутствии 50 мкМ соединения 1, стимуляторный эффект сопА был блокирован (таблица 1). Влияние соединения 1 при времени инкубации свыше 15 минут значительно во всех измерениях (p<0,05 в t-тесте). Измеренная % флюоресценция сопА-стимулированных перитонеальных макрофагов в присутствии 50 мкМ соединения I была даже меньше, чем в контрольных измерениях нестимулированных макрофагов. Супрессивный эффект (подавляющее действие) соединения I на образование свободных радикалов зависел от дозы, наиболее значительный эффект достигался при концентрации соединения 1 10 мкМ. При этом измерялось % торможения (подавления) 10 мкМ соединения I на сопА-стимулированные макрофаги при максимальной сопА-активирующей способности. Он составлял в момент времени 35 мин; 21% и был значительным (p<0,05 в t-тесте).
Таблица 1 описывает эффект 50 мкМ соединения I на образование свободных радикалов посредством сопА-стимулированных макрофагов.
Численные значения в таблице (средние значения ± приведенное в скобках) дают значения флюоресценции в собственных единицах прибора.
Данные, приведенные в примечании, статистически значительно отличаются от контроля p<0,05, t-тест.
B) Действие на микроглиальные клетки
В культивированных микроглиальных клетках образование свободных радикалов (измеренное как флюоресценция родамина) было существенно выше (приблизительно в 50 - 100 раз), чем в перитонеальных макрофагах. Как описывалось ранее (Банати с сотрудниками/Banati et al, Glia, 1991), это обширное образование свободных радикалов в микроглиальных клетках не может быть еще увеличено посредством стимулирования конканавалином A. Инкубирование микроглиальных клеток с 50 мкМ соединения I ведет к ярко выраженному торможению образования свободных радикалов. После инкубирования в течение 35 мин в 50 мкМ соединения I подавление клеточной родамин 123-флуоресценции достигает своего максимума и составляет приблизительно треть от контрольного значения без соединения I (таблица 2). Влияние соединения 1 при времени инкубации свыше 15 минут значительно во всех измерениях (p<0,05 в t-тесте).
Таблица 2 описывает эффект 50 мкМ соединения I на образование свободных радикалов в культивированных микроглиальных клетках
Численные значения (средние значения ± приведенные в скобках) дают значения флюоресценции в собственных единицах прибора.
Сведения, приведенные в примечании, статистически значительно отличаются от контроля P<0,05, t-тест.

Claims (1)

  1. Производные ксантина формулы
    Figure 00000006

    где R1 - гидроксиалкил с 1 - 8 атомами углерода, углеродная цепь которого может быть неразветвленной или разветвленной;
    R2 - водород;
    R3 - этоксиалкил с 1 - 4 атомами углерода,
    или их физиологически переносимые соли.
RU94027686/04A 1991-07-11 1992-07-10 Производные ксантина RU2126407C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4122884 1991-07-11
DEP4122884.7 1991-07-11
DE4217639 1992-05-28
DEP4217639.5 1992-05-28

Publications (2)

Publication Number Publication Date
RU94027686A RU94027686A (ru) 1996-05-27
RU2126407C1 true RU2126407C1 (ru) 1999-02-20

Family

ID=25905369

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94027686/04A RU2126407C1 (ru) 1991-07-11 1992-07-10 Производные ксантина

Country Status (20)

Country Link
US (1) US5409935A (ru)
EP (1) EP0528164B1 (ru)
JP (1) JP3436547B2 (ru)
KR (1) KR100237945B1 (ru)
AT (1) ATE138573T1 (ru)
AU (1) AU649851B2 (ru)
CA (1) CA2073633C (ru)
CZ (2) CZ281480B6 (ru)
DE (1) DE59206403D1 (ru)
DK (1) DK0528164T3 (ru)
ES (1) ES2088519T3 (ru)
GR (1) GR3020233T3 (ru)
HU (1) HU217983B (ru)
IE (1) IE74888B1 (ru)
IL (1) IL102456A (ru)
MX (1) MX9203323A (ru)
PH (1) PH30341A (ru)
RU (1) RU2126407C1 (ru)
SK (1) SK280537B6 (ru)
TW (1) TW210285B (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648357A (en) * 1992-03-04 1997-07-15 Cell Therapeutics, Inc. Enatiomerically pure hydroxylated xanthine compounds
DE69332634T2 (de) * 1992-03-04 2003-05-08 Cell Therapeutics Inc Enantiomere hydroxylierte xanthinverbindungen
US5580874A (en) * 1992-03-04 1996-12-03 Cell Therapeutics, Inc. Enatiomerically pure hydroxylated xanthine compounds
EP0570831A2 (de) * 1992-05-20 1993-11-24 Hoechst Aktiengesellschaft Verwendung von Xanthinderivaten zur Behandlung von Nervenschädigungen nach Unterbrechung der Blutzirkulation
AU1090795A (en) 1993-11-12 1995-05-29 Cell Therapeutics, Inc. Method for preventing tissue injury from hypoxia
US5856330A (en) * 1996-07-31 1999-01-05 Hoechst Aktiengesellschaft Use of xanthine derivatives for the inhibition of dephosphorylation of cofilin
US5981536A (en) * 1996-07-31 1999-11-09 Hoechst Aktiengesellschaft Use of xanthine derivatives for the modulation of apoptosis
PT1246808E (pt) * 2000-01-14 2011-11-30 Bayer Schering Pharma Ag 1,2¿diarilbenzimidazol para o tratamento de doenças associadas a uma activação das micróglias
US7115645B2 (en) 2000-01-14 2006-10-03 Schering Aktiengesellschaft 1,2 diarylbenzimidazoles and their pharmaceutical use
US7329679B2 (en) 2000-01-27 2008-02-12 Schering Aktiengesellschaft 1,2 Diarylbenzimidazoles and their pharmaceutical use
US20040110776A1 (en) * 2002-02-22 2004-06-10 Iok-Hou Pang Use of propentofylline to control intraocular pressure
WO2005037286A1 (en) 2003-03-25 2005-04-28 Vasopharm Biotech Gmbh Use of pteridine derivatives for the treatment of increased intracranial pressure and secondary ischemia

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2330742C2 (de) * 1973-06-16 1982-07-29 Hoechst Ag, 6000 Frankfurt 1-(Oxoalkyl)-3-methyl-7-alkylxanthine, Verfahren zu ihrer Herstellung und diese enthaltende Arzneimittel
CH608236A5 (ru) * 1974-01-22 1978-12-29 Wuelfing J A Fa
US4275064A (en) * 1976-02-06 1981-06-23 Interx Research Corporation Transient pro-drug forms of xanthine derivatives and their use as topical anti-inflammatory agents
US4567183A (en) * 1983-03-11 1986-01-28 Analgesic Associates Analgesic and anti-inflammatory compositions comprising xanthines and methods of using same
JPS6110715A (ja) * 1984-06-26 1986-01-18 Fanuc Ltd 絶対位置検出方式
JPH062675B2 (ja) * 1985-04-05 1994-01-12 ヘキストジヤパン株式会社 記憶障害治療剤
DE3525801A1 (de) * 1985-07-19 1987-01-22 Hoechst Ag Tertiaere hydroxyalkylxanthine, verfahren zu ihrer herstellung, die sie enthaltenden arzneimittel und ihre verwendung
IT1197516B (it) * 1986-12-24 1988-11-30 Abc Ist Biolog Chem Spa Derivati teofillinmetilanici e teofillinmetilditianici procedimento per la loro preparazione e composizioni farmaceutiche che li comprendono

Also Published As

Publication number Publication date
DK0528164T3 (da) 1996-09-30
IL102456A0 (en) 1993-01-14
EP0528164A2 (de) 1993-02-24
US5409935A (en) 1995-04-25
EP0528164A3 (ru) 1994-03-02
IE74888B1 (en) 1997-08-13
DE59206403D1 (de) 1996-07-04
MX9203323A (es) 1994-07-29
IE922259A1 (en) 1993-01-13
CZ282140B6 (cs) 1997-05-14
HU217983B (hu) 2000-05-28
CZ216092A3 (en) 1993-01-13
CA2073633C (en) 2003-09-23
RU94027686A (ru) 1996-05-27
AU649851B2 (en) 1994-06-02
HU9202273D0 (en) 1992-10-28
KR100237945B1 (ko) 2000-02-01
IL102456A (en) 1996-10-16
EP0528164B1 (de) 1996-05-29
PH30341A (en) 1997-04-02
JP3436547B2 (ja) 2003-08-11
CA2073633A1 (en) 1993-01-12
ES2088519T3 (es) 1996-08-16
SK216092A3 (en) 1995-09-13
CZ281480B6 (cs) 1996-10-16
CZ81696A3 (en) 1997-05-14
SK280537B6 (sk) 2000-03-13
GR3020233T3 (en) 1996-09-30
AU1959192A (en) 1993-01-14
HUT61763A (en) 1993-03-01
TW210285B (ru) 1993-08-01
ATE138573T1 (de) 1996-06-15
JPH05186350A (ja) 1993-07-27
KR930001911A (ko) 1993-02-22

Similar Documents

Publication Publication Date Title
RU2126407C1 (ru) Производные ксантина
DE60007329T2 (de) N-heterozyklische derivate als nos inhibitoren
TW577880B (en) Novel carboxylic acid derivatives, their preparation and use
DE69832715T2 (de) Cyclin-abhängige-kinase inhibierende purinderivate
FR2477542A1 (fr) Derives de carbostyrile, leurs procedes de preparation et leur application en therapeutique
JPH06293764A (ja) グアニン誘導体及びその製造方法及びそれを含有する製薬組成物
CA2094270C (en) Xanthine derivatives
CA1276635C (en) 9-(2-(hydroxymethyl)cycloalkylmethyl)guanines
IL28189A (en) Biologically active 1-amidino-3-(substituted phenyl) ureas
JPH0780882B2 (ja) 6‐チオキサンチン誘導体
US4849563A (en) Novel 1-alkyl-1-arenesulfonyl-2-alkoxycarbonylsulfenylhydrazines having antineoplastic activity
EP3978494A1 (en) Methyl- and trifluoromethyl-containing disubstituted sulfonamide selective bcl-2 inhibitor
FR2492383A1 (fr) Halogenures d&#39;ammonium spiro-quaternaire, leur procede de prepatation et leur utilisation dans un procede de production de n-(2-pyrimidinyl) piperazinyl-alkylazospiro-alcanediones
IE910853A1 (en) 2,4-pyrimidinedione derivatives and pharmaceutical compositions containing them
CA1288098C (en) 4-(guanin-9-yl)butanals and their 3-oxa, 3-thia and 2-ene derivatives having antiviral and antitumor activity
US4503045A (en) 2&#39;-Deoxy-3&#39;,5&#39;-di-O-alkylcarbonyl-5-fluorouridine derivatives, a process for the preparation of the derivatives and anti-tumor agents containing the derivatives
CN109369623B (zh) 一种取代1,2,3三氮唑类二芳基嘧啶衍生物及其制备方法与应用
JPS6222771A (ja) 5−置換−6−アミノピリミジン誘導体、組成物および使用
RU2106353C1 (ru) Соли 5&#39;-н-фосфоната 3&#39;- азидо-3&#39;-дезокситимидина, являющиеся специфическими ингибиторами продукции вируса иммунодефицита человека вич-1 и вич-2
US4962114A (en) 1-alkyl-1-sulfonyl-2-alkoxycarbonylsulfenylhydrazines having antineoplastic activity
EP0074411A1 (en) Ascorbic acid derivatives
DE1795151B2 (de) 7- eckige Klammer auf D-alpha-Amino-(3-actamidophenylacetamido) eckige Klammer zu -cephalosporansäure
JPH0560478B2 (ru)
EP0226753A2 (en) Alpha-tocopherol (halo) uridine phosphoric acid diester, salts thereof, and methods for producing the same
RU2648998C1 (ru) Способ получения монозамещенных производных урацила

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner