RU2123683C1 - Способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов - Google Patents

Способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов Download PDF

Info

Publication number
RU2123683C1
RU2123683C1 RU97121555A RU97121555A RU2123683C1 RU 2123683 C1 RU2123683 C1 RU 2123683C1 RU 97121555 A RU97121555 A RU 97121555A RU 97121555 A RU97121555 A RU 97121555A RU 2123683 C1 RU2123683 C1 RU 2123683C1
Authority
RU
Russia
Prior art keywords
flaw detector
pipe
radiation
ray
self
Prior art date
Application number
RU97121555A
Other languages
English (en)
Other versions
RU97121555A (ru
Inventor
Е.А. Пеликс
Original Assignee
Пеликс Евгений Абрамович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пеликс Евгений Абрамович filed Critical Пеликс Евгений Абрамович
Priority to RU97121555A priority Critical patent/RU2123683C1/ru
Application granted granted Critical
Publication of RU2123683C1 publication Critical patent/RU2123683C1/ru
Publication of RU97121555A publication Critical patent/RU97121555A/ru

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Использование: в области дефектоскопии, в частности для неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов методом панорамного просвечивания изнутри трубы проникающим, например, рентгеновским, излучением с помощью самоходного дефектоскопа и может быть эффективно использовано при строительстве газо- и нефтепроводов или их ремонте. Сущность изобретения: для повышения радиационной безопасности и простоты управления при высокой скорости проведения контроля управление перемещением самоходного рентгеновского дефектоскопа осуществляют сигналами проникающего излучения снаружи трубы, а в качестве управляющего проникающего излучения используют импульсное рентгеновское излучение, частота следования импульсов которого имеет два различных фиксированных значения, соответствующих командам перемещения дефектоскопа внутри трубы в прямом или обратном направлении. 1 ил.

Description

Изобретение относится к области дефектоскопии, в частности к неразрушающему контролю качества кольцевых сварных швов магистральных трубопроводов методом панорамного просвечивания проникающим излучением, и может быть эффективно использовано при строительстве газо- и нефтепроводов или их ремонте.
Известен способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов путем панорамного просвечивания сварных швов изнутри трубы с помощью гамма- источника или рентгеновского излучения (далее излучатель), входящего в состав самоходного дефектоскопа, перемещающегося по трубе по командам, посылаемым источником проникающего излучения (далее командный аппарат), расположенным снаружи трубы, и воздействующим на устройство управления движением дефектоскопа. В качестве командного аппарата используется радиоактивный изотоп, а команды на начало движения и остановку дефектоскопа оператор осуществляет, перемещая командный аппарат вдоль трубы в направлении движения дефектоскопа. Описанный способ контроля реализован с помощью самоходных дефектоскопов фирм Х-MAS (США), OIS (АНГЛИЯ), JME LTD (АНГЛИЯ), SOLUS OCEANEERING Int., Inc. (США), ГАММАМАТ (ГЕРМАНИЯ).
Самоходный дефектоскоп состоит из рентгеновского или гамма-источника с панорамным излучением (излучатель), самоходной тележки, предназначенной для перемещения излучателя внутри трубы, устройства управления, расположенного на тележке и предназначенного для приема сигналов командного аппарата, обработки их и включения исполнительных органов (двигателя тележки, таймера экспозиций излучателя и т.д.). Управление движения дефектоскопа осуществляют с помощью командного аппарата, подающего сигналы управления движения тележки, ее остановки, включения излучателя [1, 2, 3].
Во всех известных способах контроля кольцевых сварных швов панорамным просвечиванием изнутри трубы, осуществляющихся с помощью самоходных дефектоскопов, в качестве командного аппарата используют радиоактивный изотоп, например, иридий-192, установленный снаружи трубы и излучающий гамма-кванты через стенку внутрь трубы. При подъеме дефектоскопа под пучок гамма-квантов командного аппарата срабатывает электронная схема управления движением дефектоскопа, и он останавливается в положении, когда излучатель устанавливается в положение напротив сварного шва. Далее излучатель автоматически отрабатывает заданную экспозицию, просвечивая панорамно весь кольцевой шов. Регистрируют изображение сварного шва, например, фотопленкой, которую накладывают на контролируемый шов предварительно. Затем дефектоскопу задают очередную команду на движение вперед (к следующему контролируемому шву) или назад (на выезд из трубы). Команды подаются командным радиоактивным изотопом, находящимся в руках оператора, маховым движением вдоль трубы в том или ином направлении.
К недостаткам известных способов контроля сварных швов с помощью известных самоходных дефектоскопов относятся высокая радиационная опасность для оператора и сложность в управлении.
Наиболее близким по технической сущности является способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов методом панорамного просвечивания изнутри трубы, реализованный с помощью самоходного рентгеновского дефектоскопа, в котором в качестве излучателя используют импульсный рентгеновский излучатель, а управление перемещением дефектоскопа по трубе осуществляют сигналами командного аппарата, в качестве которого также используют радиоактивный изотоп [4 - прототип].
Существенным недостатком данного способа также является радиационная опасность для обслуживающего персонала, поскольку управление движением дефектоскопа осуществляют командным изотопом, который оператор держит непосредственно в руках, совершая при этом необходимые перемещения изотопа (махами) вдоль трубы. Несмотря на принимаемые меры радиационной защиты, опасность облучения, особенно персонала низкой квалификации, весьма вероятна. Кроме того, эксплуатация изотопов сложна, так как требует наличия специальных контейнеров для хранения, а также перезарядки изотопов на специализированных предприятиях по мере выработки их ресурса.
Целью изобретения является повышение безопасности контроля качества кольцевых сварных швов магистральных трубопроводов, также простота управления при достаточно высокой скорости проведения контроля.
Указанная цель достигается за счет того, что в способе неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов методом панорамного просвечивания изнутри трубы с помощью самоходного дефектоскопа, например, рентгеновского, управление перемещением которого осуществляют сигналами проникающего излучения снаружи трубы, в качестве управляющего проникающего излучения используют импульсное рентгеновское излучение, частота следования импульсов которого имеет два различных фиксированных значения, соответствующих командам перемещения дефектоскопа внутри трубы в прямом или обратном направлении.
Сущность предлагаемого способа иллюстрируется фиг. 1, на котором схематично представлена одна из возможных реализаций способа с помощью самоходного рентгеновского дефектоскопа, включающего самоходную тележку 1 (электрический двигатель не показан), на которой установлены рентгеновский излучатель 2 (с источником питания и таймером экспозиции - не показаны) и детектор 3 с электронной схемой управления 4. В качестве излучателя 2 использован импульсный рентгеновский аппарат "Арина-05-2М", серийно изготавливающийся на совместном предприятии СПЕКТРОФЛЭШ. Управление перемещением дефектоскопа внутри трубы осуществляется с помощью командного аппарата 5, в качестве которого использован портативный импульсный рентгеновский аппарат типа "Арина-1" со встроенным аккумулятором, также разработанный и выпускаемый на этом же предприятии, и устанавливаемый снаружи трубы 6 на определенном расстоянии от контролируемого шва. Включение аппарата "Арина-1" осуществляют дистанционно с выносного пульта управления 7 с расстояния 10 - 20 м. Рентгенографию изображения сварного шва осуществляют на фотопленку 8, предварительно наложенную на контролируемый шов.
Контроль качества кольцевых сварных швов трубопроводов по предлагаемому способу осуществляется в следующей последовательности операций:
- при движении самоходного дефектоскопа внутри трубы 6, например, к контролируемому шву, импульсное рентгеновское излучение дистанционно управляемого командного аппарата 5 "Арина-1", установленного снаружи трубы, воздействует на детектор 3, расположенный на самоходной тележке 1, срабатывает электронная схема управления 4 и дефектоскоп останавливается;
- после остановки дефектоскопа командный аппарат "Арина-1" выключают с помощью выносного пульта управления 7;
- через определенную паузу после выключения командного аппарата "Арина-1" включают электронной схемой управления 4 излучатель 2 "Арина-05-2М", расположенный на самоходной тележке, и осуществляют рентгенографирование сварного шва на фотопленку 8;
- после автоматической отработки заданной заранее экспозиции электронная система управления обнуляется, и дефектоскоп ждет дальнейшей команды (сигнала) на движение "Вперед" или "Назад". Команда на движение подается повторным включением командного аппарата "Арина-1", а выбор направления движения задают выбором частоты следования импульсов рентгеновского излучения, которой задают два различных фиксированных значения, соответствующих командам перемещения дефектоскопа внутри трубы в прямом или обратном направлении, например "Вперед" - 10 Гц, "Назад" - 5 Гц.
Таким образом, воздействие сигналов командного аппарата на движущийся дефектоскоп - это сигнал на остановку, воздействие указанного аппарата на стоящий дефектоскоп - это сигнал на движение, а направление движения задают различной частотой следования импульсов рентгеновского излучения.
Таким образом, по сравнению с известным способом, в котором управление перемещением движения дефектоскопа осуществляют с помощью радиоактивного изотопа, предлагаемый способ контроля, использующий в качестве управляющего излучения импульсов рентгеновское излучение от дистанционно управляемого командного аппарата "Арина-1", более безопасен для обслуживающего персонала и достаточно прост в управлении.
Рентгеновский командный аппарат не требует перезарядки и специальных мест хранения, надежен и прост в эксплуатации: на пульте управления командного аппарата всего две кнопки "Пуск" и "Реверс".
Кроме того, предлагаемое техническое решение позволяет использовать рентгеновский командный аппарат "Арина-1" в качестве самостоятельного рентгеновского импульсного аппарата, например, для просвечивания труб малого диаметра через две стенки, а рентгеновский импульсный аппарат "Арина-05-2М" - для просвечивания труб большого диаметра через две стенки. Это значительно расширяет возможности контроля и повышает эффективность использования оборудования.
Источники информации, принятые во внимание
1. Изотопный испытательный мольх для строительства трубопроводов ГАММАМАТ, проспект Изотопная техника, Др. Зауэрвейн ГмбХ, Германия.
2. Проспект фирмы Oil Field Inspecnion Services Ltd (OIS), Англия, 1985 г.
3. JME Pipeline X-Ray Crawlers, проспект фирмы JME LTD, Англия
4. Авт.св-во РФ N 1436034, 1984 г., G 01 N 23/18 - прототип.

Claims (1)

  1. Способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов методом панорамного просвечивания изнутри трубы с помощью самоходного дефектоскопа, управление перемещением которого осуществляют сигналами проникающего излучения снаружи трубы, отличающийся тем, что в качестве управляющего проникающего излучения используют импульсное рентгеновское излучение, частота следования импульсов которого имеет два различных фиксированных значения, соответствующих командам перемещения дефектоскопа внутри трубы в прямом или обратном направлении.
RU97121555A 1997-12-23 1997-12-23 Способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов RU2123683C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97121555A RU2123683C1 (ru) 1997-12-23 1997-12-23 Способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97121555A RU2123683C1 (ru) 1997-12-23 1997-12-23 Способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов

Publications (2)

Publication Number Publication Date
RU2123683C1 true RU2123683C1 (ru) 1998-12-20
RU97121555A RU97121555A (ru) 1999-03-20

Family

ID=20200451

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97121555A RU2123683C1 (ru) 1997-12-23 1997-12-23 Способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов

Country Status (1)

Country Link
RU (1) RU2123683C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU180742U1 (ru) * 2018-01-09 2018-06-22 Общество с ограниченной ответственностью "Синтез НПФ" Блок излучателя переносного панорамного рентгеновского аппарата
CN114280085A (zh) * 2021-12-27 2022-04-05 中国核工业二四建设有限公司 焊缝射线检测自动化设备及检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fr 1598659 A, 1970. Fr 2172687 A, 1973. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU180742U1 (ru) * 2018-01-09 2018-06-22 Общество с ограниченной ответственностью "Синтез НПФ" Блок излучателя переносного панорамного рентгеновского аппарата
CN114280085A (zh) * 2021-12-27 2022-04-05 中国核工业二四建设有限公司 焊缝射线检测自动化设备及检测方法

Similar Documents

Publication Publication Date Title
CA2776000C (en) X-ray inspection apparatus for pipeline girth weld inspection
KR100997320B1 (ko) 배관 방사선 촬영을 위한 방사성동위원소 센터링장치
US8855268B1 (en) System for inspecting objects underwater
RU2285252C1 (ru) Внутритрубный крот для контроля качества сварных торцевых соединений
KR20190128335A (ko) 배관 비파괴 검사장치 및 방법
RU2123683C1 (ru) Способ неразрушающего контроля качества кольцевых сварных швов магистральных трубопроводов
CN104155318A (zh) 车载x射线管道实时成像检测系统
KR101286576B1 (ko) 피검체에 직접 부착되며, 회전 개폐에 의한 방사선 조사 장치
JPH06130001A (ja) 配管の検査装置
JP2651382B2 (ja) 構造物の検査装置
US3492477A (en) Method and apparatus for examining hollow bodies
KR101610357B1 (ko) 방사선 비파괴 검사 선원 제어 방법 및 이를 실행하는 장치
KR101318840B1 (ko) 피검체에 직접 부착되며 원격제어가 가능한 방사선 조사 장치
CN105758878A (zh) 一种用于现场管道探伤的可移动拍片装置
CN1180166A (zh) 钢管道内x射线探伤自动装置
CN105784739A (zh) 一种用于现场管道探伤的滚动拍片装置
CA1182587A (en) Radioactive source pigtail inspection apparatus and method
RU87021U1 (ru) Устройство неразрушающего рентгеновского контроля сварных кольцевых швов трубчатых элементов
CN2285469Y (zh) 钢管道内x射线探伤自动装置
RU2284512C1 (ru) Мобильный агрегат для диагностики качества сварных соединений магистральных трубопроводов при их монтаже
CN209607424U (zh) 核电厂钢制安全壳焊缝自动检查装置
CN105699405A (zh) 一种现场管道探伤装置
KR20220057736A (ko) 오비탈 레일 타입 디지털 방사선 검사 장치
KR102665523B1 (ko) 방사선 표시장치를 구비한 원격조작장치
KR20090091971A (ko) 감마선 동위원소를 이용한 트랙형 검사장치

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20021224