RU2122208C1 - Способ и устройство для измерения концентрации глюкозы в крови - Google Patents

Способ и устройство для измерения концентрации глюкозы в крови Download PDF

Info

Publication number
RU2122208C1
RU2122208C1 SU4831608A SU4831608A RU2122208C1 RU 2122208 C1 RU2122208 C1 RU 2122208C1 SU 4831608 A SU4831608 A SU 4831608A SU 4831608 A SU4831608 A SU 4831608A RU 2122208 C1 RU2122208 C1 RU 2122208C1
Authority
RU
Russia
Prior art keywords
blood
radiation
digital
analog
detector
Prior art date
Application number
SU4831608A
Other languages
English (en)
Inventor
Сак Янг Вон
Ок Ким Йюн
Original Assignee
Сак Янг Вон
Ок Ким Йюн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26628109&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2122208(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from KR1019890015584A external-priority patent/KR930011586B1/ko
Priority claimed from KR1019900011241A external-priority patent/KR920002091A/ko
Application filed by Сак Янг Вон, Ок Ким Йюн filed Critical Сак Янг Вон
Application granted granted Critical
Publication of RU2122208C1 publication Critical patent/RU2122208C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Способ и устройство неинвазивного измерения концентрации глюкозы в крови путем облучения кровеносных сосудов электромагнитным излучением с использованием лазерной спектроскопии с ближним инфракрасным излучением и диффузным отражением. Настоящее изобретение использует электромагнитное излучение с длиной волны в 1,3 - 1,9 мкм от полупроводникового диодного лазера. Когда такое электромагнитное излучение облучает кожу, последняя взаимодействует с гетерогенными компонентами крови. Затем происходит диффузионное отражение кровью света. Отраженный свет обнаруживают детектором после его интегрирования интегрирующей сферой. Отраженный свет посредством аналого-цифрового преобразователя подают как цифровой сигнал на однокристальный микрокомпьютер. Однокристальный микрокомпьютер вычисляет концентрацию глюкозы в крови, обращаясь к калибровочной кривой. Однокристальный микрокомпьютер обеспечивает воспроизведение вычисленной концентрации глюкозы в крови на экране. Способ и устройство позволяют повысить точность измерения концентрации глюкозы в крови с помощью неинвазивного измерения. 2 с. и 5 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к способу и устройству неинвазивного измерения концентрации глюкозы в крови и, в частности, касается способа и устройства инвазивного измерения концентрации глюкозы в крови, использующего лазерную спектроскопию с ближним инфракрасным излучением и диффузным отражением.
Обычно диабетики измеряют концентрацию глюкозы в крови от двух до восьми в день, используя портативное измерительное устройство, состоящее из инжектора (для получения пробы крови) и тестовой бумаги (для измерения количества глюкозы в крови). Это известно как "ферментный" способ или тест.
Ферментный тест для определения концентрации глюкозы нежелателен как потому, что он требует взятия крови, так и потому, что он является дорогим. Были представлены менее дорогие способы, основанные на тестовой бумаге, но они не такие точные и опять требуют взятия крови.
Известен также способ неинвазивного измерения концентрации глюкозы в крови, предусматривающий облучение кровеносных сосудов коллимированным излучением полупроводникового лазера с изменяемой длиной волны при постепенном увеличении подаваемого на него тока при постоянном напряжении и постоянном регулировании температуры.
Согласно известному способу используемое устройство содержит средство для регулирования тока в цепи источника питания и для обработки данных, соединенные последовательно с цифроаналоговым преобразователем, блок питания полупроводникового лазера, регулятор температуры, полупроводниковый лазерный источник излучения и оптическое средство.
Однако упомянутые способ и устройство не позволяют достичь желаемой точности при измерении концентрации глюкозы в крови и требуют взятия крови.
Поэтому задачей настоящего изобретения является повышение точности способа и устройства неинвазивного измерения концентрации глюкозы в крови и устранение необходимости взятия крови при таком измерении.
Другой задачей настоящего изобретения является создание удобного, недорогого, портативного, простого в эксплуатации устройства для измерения концентрации глюкозы в крови.
Согласно настоящему изобретению технический результат достигается за счет того, что в способе неинвазивного измерения концентрации глюкозы в крови регистрируют поглощенное, рассеянное и диффузионно отраженное кровью излучение через блок интеграции, при этом излучение преобразуют в электрический сигнал, а затем в цифровой код, причем последний сравнивают с тарировочной кривой и по результату сравнения определяют значение концентрации глюкозы с последующим воспроизведением значения на цифровом экране; длина волны лазерного излучения лежит в ближней инфракрасной области от 1,3 до 1,9 мкм, а предпочтительно от 1,4 до 1,8 мкм, при этом излучение воздействует на кровь через кожу одномоментно или многократно последовательно, причем напряжение источника питания составляет 4,5-9 В, а предпочтительно 6 В.
Согласно способу по настоящему изобретению устройство имеет блок интеграции, детектор, подключенный к аналого-цифровому преобразователю, причем аналого-цифровой преобразователь соединен со средством регулирования тока в цепи питания и для обработки данных, и дисплей, при этом блок интеграции выполнен сферической, овальной, полуовальной или любой другой формы; между блоком интеграции и детектором расположено оптическое волокно длиной от 100 до 1000 мм, а предпочтительно длиной 500 мм, а еще предпочтительнее длиной 300 мм, причем детектор представляет собой фотодиод для преобразования собранного блоком интеграции излучения в фототоки, причем в качестве детектора используют Ge-детектор, или предварительно Ge-детектор, соединенный с предусилителем, а цифроаналоговый преобразователь и аналого-цифровой преобразователь отделены от средства для регулирования тока в цепи питания и для обработки данных.
Настоящее изобретение использует лазерную спектроскопию с ближним инфракрасным излучением и диффузным отражением, которая измеряет концентрацию глюкозы в крови путем облучения кровеносных сосудов безвредным электромагнитным излучением. Это изобретение использует электромагнитное излучение с длиной волны, которую передают через кожу на измеряемую часть организма, например кровеносный сосуд. Так как кожа состоит в основном из воды (H2O), которая поглощает инфракрасное излучение почти по всему инфракрасному спектральному диапазону, через кожу будет передано излучение только определенной, узкой части инфракрасного спектрального диапазона, называемого "окном передачи воды".
До недавнего времени считалось, что окно передачи воды включает только длины волн от 3 до 5 мкм. Однако в соответствии с исследованиями, проведенными авторами настоящего изобретения, длина волны, которая способна достичь кровеносного сосуда через окно передачи воды, лежит в пределах от 1,3 до 1,9 мкм.
Соответственно настоящее изобретение использует электромагнитное излучение с длиной волны 1,3-1,9 мкм от полупроводникового диодного лазера. Когда электромагнитное излучение с такими длинами волны облучает кожу, через кожу к кровеносному сосуду передают свет, где он взаимодействует с гетерогенными компонентами крови. Затем происходит диффузионное отражение кровью света, который достигает крови. Отраженный свет будет смодулирован характерными вибрациями молекул, которые являются основными компонентами крови.
В настоящем изобретении описанный выше диффузионно отраженный свет интегрируют посредством интегрирующей сферы. Фотоны (hr), интегрированные как указано выше, преобразуют в величину электрического измерения при помощи детектора, и эту величину подают на средство обработки, такое как, например, однокристальный микрокомпьютер. Однокристальный микрокомпьютер подсчитывает концентрацию глюкозы в крови, используя способ точной калибровки. Ближнее инфракрасное излучение определяют в настоящем изобретении (в соответствии с определением Международного союза чистой и прикладной химии) следующим образом: частота около 1013 - 3,75 • 1014 Гц, энергия около 0,951 - 35,8 (ккал/моль), 0,0412 - 1,55 эВ, длина волны около 0,8 - 30 мкм. Настоящее изобретение основано на физических и химических принципах, описывающих колебательное движение молекул глюкозы в крови при измерении посредством лазерной спектроскопии с ближним инфракрасным излучением и диффузным отражением. Такое вибрационное движение включает как вращательное, так и поступательное движение, а также включает обертонные колебания и комбинационные колебания. Из этих колебаний доминирующими являются обертонные.
Метод анализа, применяемый в настоящем изобретении, включает математическую модель, основанную на многолинейном регрессивном анализе и многовариантном анализе, которые модифицированы авторами настоящего изобретения для определения концентрации глюкозы в крови.
Настоящее изобретение, относящееся к способу и устройству для измерения концентрации глюкозы в крови, обеспечивает преимущество в простоте использования и минимальных расходах для пациентов; не имеет расходных деталей и портативно, что позволяет проводить простое тестирование вне дома; более удобно, чем способы известного уровня техники. Кроме того, это изобретение не причинит возможного физического вреда, связанного с длительным использованием шприцев.
Измерительное устройство по настоящему изобретению может измерять концентрацию глюкозы в крови очень быстро и легко. Поэтому устройства известного уровня техники с их неудобностью и дороговизной оказываются устаревшими.
Технический результат настоящего изобретения достигается при измерении концентрации глюкозы в крови неинвазивным способом, когда электропитание, например, от батареи подают на однокристальный микрокомпьютер, цифровой экран, блок питания лазерного диода, детектор (по необходимости) и оптическое устройство (по необходимости) посредством переключателя электропитания. Однокристальный микрокомпьютер управляет блоком питания лазерного диода таким образом, что он постепенно подает ток при стабильном напряжении и стабильной температуре на лазерный диод, который испускает излучение с необходимыми длинами волн, посредством переключателя пуска/сброса. Однокристальный микрокомпьютер задействуют таким образом, что цифроаналоговый преобразователь, управляемый упомянутым однокристальным микрокомпьютером и возбуждающий упомянутый блок питания лазерного диода, преобразует цифровой управляющий сигнал в аналоговый управляющий сигнал.
Таким образом, блок питания лазерного диода принуждает лазерный диод к испусканию длины волны, пригодной для измерения. Свет из упомянутого лазерного диода коллимируют или другим путем контролируют оптически, разделяют и объединяют. Оптически управляемый свет используют для облучения кожи, расположенной по соседству с кровеносным сосудом. Поглощенный, рассеянный и диффузионно отраженный кровью обратно через кожу свет интегрируют интегрирующей сферой. Фотоны, собранные интегрирующей сферой, преобразуют в аналоговый электрический сигнал при помощи детектора. Аналоговый электрический сигнал передают на предусилитель, где аналоговый электрический сигнал усиливают. Усиленный аналоговый электрический сигнал подают на аналого-цифровой преобразователь, который преобразует усиленный аналоговый электрический сигнал в соответствующий цифровой сигнал и выдает цифровой сигнал однокристальному микрокомпьютеру. Однокристальный микрокомпьютер вычисляет из цифрового сигнала концентрацию глюкозы в крови, обращаясь к калибровочной кривой, хранимой в памяти однокристального микрокомпьютера. Однокристальный микрокомпьютер обеспечивает воспроизведение вычисленной концентрации глюкозы в крови на цифровом экране.
Устройство для измерения концентрации глюкозы в крови, использующее неинвазивный способ по настоящему изобретению, использует однокристальный микрокомпьютер, который управляет блоком питания лазерного диода так, что ток постепенно поступает на лазерный диод при стабильном напряжении и стабильной температуре. Однокристальный микрокомпьютер вычисляет концентрацию глюкозы в крови, сравнивая обнаруженную величину с калибровочной кривой, хранимой в памяти однокристального микрокомпьютера. Цифроаналоговый преобразователь преобразует цифровой управляющий сигнал, выдаваемый из упомянутого однокристального микрокомпьютера, в аналоговый управляющий сигнал для управления блоком питания лазерного диода, который подает питание на лазерный диод. Лазерный диод является источником света для измерения концентрации глюкозы в крови. Может быть множество лазерных диодов для испускания света с различными длинами волн или для испускания света с одинаковыми длинами волн в соответствии с током, обеспечиваемым блоком питания лазерного диода. Температурный контроллер для управления температурой лазерного диода подсоединен между блоком питания лазерного диода и лазерным диодом. Оптическое устройство коллимирует свет, испускаемый из лазерного диода, или оптически контролирует, разделяет и объединяет свет из лазерного диода. Интегрирующая сфера интегрирует рассеянный и диффузионно отраженный от крови свет, когда кровь освещают через кожу светом из оптического устройства. Детектор преобразует фотоны, собранные интегрирующей сферой, в аналоговую электрическую величину, которую затем усиливают в предусилителе. Аналого-цифровой преобразователь преобразует величину электрического аналогового измерения в цифровую величину. Цифровой экран воспроизводит концентрацию глюкозы в крови, вычисленную однокристальным микрокомпьютером.
Изобретение иллюстрируется чертежами, на которых изображено: на фиг. 1 - блок-схема устройства для измерения концентрации глюкозы в крови в соответствии с настоящим изобретением; на фиг. 2 - электрическая схема устройства, изображенного на фиг. 1.
Согласно фиг. 1 и 2 настоящее изобретение, представляющее способ неинвазивного измерения концентрации глюкозы в крови, предусматривает облучение кровеносных сосудов коллимированным излучением полупроводникового лазера с изменяемой длиной волны при постепенном увеличении подаваемого на него тока при постоянном напряжении и постоянном регулировании температуры, и осуществляют регистрацию поглощенного, рассеянного и диффузионно отраженного кровью излучения через блок интеграции, при этом излучение преобразуют в электрический сигнал, а затем в цифровой код, причем последний сравнивают с тарировочной кривой и по результату сравнения определяют значение концентрации глюкозы с последующим воспроизведением значения на цифровом экране; длина волны лазерного излучения лежит в ближней инфракрасной области от 1,3 до 1,9 мкм, а предпочтительно от 1,4 до 1,8 мкм, при этом излучение воздействует на кровь через кожу одномоментно или многократно последовательно; напряжение источника питания составляет 4,5-9 В, а предпочтительно 6 В.
Устройство для неинвазивного измерения концентрации глюкозы в крови содержит средство для регулирования тока в цепи источника питания и для обработки данных, соединенные последовательно с цифроаналоговым преобразователем блок питания полупроводникового лазера, регулятор температуры, полупроводниковый лазерный источник излучения и оптическое средство. Кроме того, устройство по изобретению имеет блок интеграции, детектор, подключенный к аналого-цифровому преобразователю, при этом аналого-цифровой преобразователь соединен со средством регулирования тока в цепи питания и для обработки данных, и дисплей, причем блок интеграции выполнен сферической, овальной, полуовальной или любой другой формы; между блоком интеграции и детектором расположено оптическое волокно длиной от 100 до 1000 мм, а предпочтительно длиной 500 мм, а еще предпочтительнее длиной 300 мм; детектор представляет собой фотодиод для преобразования собранного блоком интеграции излучения в фототоки, при этом в качестве детектора используют Ge-детектор, или предпочтительно Ge-детектор, соединенный с предусилителем, а цифроаналоговый преобразователь и аналого-цифровой преобразователь отделены от средства для регулирования тока в цепи питания и для обработки данных.
Подробное описание изобретения.
Ниже описано предпочтительное воплощение измерительного устройства по настоящему изобретению со ссылкой на прилагаемые чертежи.
Рассмотрим фиг. 1. Когда переключатель питания 1 находится во включенном положении, происходит подача электропитания от батареи (обычно от 4,5 до 9 В, среди прочих вариантов - от перезарядной батареи в 6 В) на однокристальный микрокомпьютер 2. В то же самое время электропитание подают на цифровой экран 3, блок питания лазерного диода 4 и оптическое устройство 5 (по необходимости).
Если затем переключатель пуска/сброса 6 устанавливают в положениe включения, блок питания лазерного диода 4 подает электропитание на лазерный диод 7 в соответствии с управляющим сигналом, обеспечиваемым однокристальным микрокомпьютером 2. В результате ток лазерного диода постепенно увеличивается, если ток превосходит пороговый ток (приблизительно 20 мА). Таким образом, лазерный диод 7 начинает испускать свет.
Лазерный диод 7 испускает свет (например, свет, имеющий длину волны 1,3 - 1,9 мкм, или свет, имеющий длину волны 1,4 - 1,8 мкм, среди всего прочего) с длиной волны, необходимой для измерения концентрации глюкозы в крови. Этой длины волны достигают путем постепенного увеличения тока, подаваемого в диапазоне приблизительно от 20 до 200 мА при стабильном напряжении и стабильной температуре в соответствии с характеристиками лазерного диода. В настоящем изобретении лазерный диод 7 составляют от 1 до 30 диодов, и каждый из них может испускать свет с различной длиной волны или с одинаковой длиной волны.
Свет, испускаемый коллективными диодами в лазерном диоде 7, можно испускать диодами одновременно или последовательно каждым диодом. В случае одновременной работы длина будет выбрана, например, путем преобразования Фурье.
Свет, выдаваемый коллективными диодами лазерного диода 7, подают на оптическое устройство 5 и коллимируют или его оптически контролируют, разделяют и объединяют. После этого свет пропускают через интегрирующую сферу 8 и делят на одно или более направлений.
Свет, который проходит через интегрирующую сферу 8, последовательно облучает кожу человека или последовательно облучает эталонный проход, который был заранее подготовлен, в зависимости от конкретного случая. Здесь эталонный проход необязателен.
Поглощенный, рассеянный и диффузионно отраженный от крови свет обнаруживают детектором 9 после его интегрирования при помощи интегрирующей сферы 8. Интегрирующая сфера имеет форму шара или похожую на него форму. Здесь размер интегрирующей сферы 8, которая интегрирует рассеянный и отраженный от крови свет, имеет ширину, длину и высоту до 2,56 см, подходящим является размер до 1,28 см, а в частных случаях - и до 0,64 см.
Величину электрического аналогового измерения, обнаруженную, как показано выше, усиливают при помощи предусилителя, соединенного с детектором 9. После этого величину электрического аналогового измерения преобразуют в цифровую величину измерения посредством аналого-цифрового преобразователя 10.
Затем однокристальный микрокомпьютер 2 вычисляют и подсчитывают измеренную величину путем сравнения сигнала, преобразованного в цифровую величину измерения аналого-цифровым преобразователем 10, с калибровочной кривой, хранимой в памяти однокристального микрокомпьютера 2. Получающуюся величину воспроизводят на цифровом экране 3.
Описанное выше измерительное устройство может иметь размеры: ширина х длина х высота - до 170 x 80 x 25 мм, среди всего прочего подходящими могут быть размеры до 150 x 75 x 22 мм, а в более частном случае - до 130 x 70 x 20 мм.
Фотодиод подходит в качестве детектора 9, им может быть Ge-детектор, а в более частном случае - Ge-детектор, соединенный с предусилителем. Более того, оптическое устройство 5 состоит из компонентов, которые создают свет, имеющий диаметр до 0,5 - 5 мм (включая 2 мм, помимо всего прочего), для параллельного конденсирования и рассеяния света.
Более того, настоящее изобретение не ограничено интегрирующей сферой 8, имеющей шарообразную или подобную форму, она может иметь овальную или полуовальную или любую другую форму.
В настоящем изобретении проход может быть отделен от вышеуказанного измерительного устройства. В этом случае свет, излученный из лазерного диода 7, может быть передан в проход через оптическое волокно, а расстояние между проходом и измерительным устройством составляет от 100 до 1000 мм, подходящей является величина в 500 мм, а в более частных случаях - 300 мм. Конечно, проход нельзя отделять от измерительного устройства.
Настоящее изобретение не ограничено однокристальным микрокомпьютером 2, отделенным от цифроаналогового преобразователя 11 и аналого-цифрового преобразователя 10, в него может входить однокристальный микрокомпьютер 2, включенный в цифроаналоговый преобразователь 11 и аналого-цифровой преобразователь 10.
Более того, в настоящем изобретении он может быть использован со вспомогательной схемой 12, которая состоит из запоминающего устройства с произвольной выборкой 121 и программируемого постоянного запоминающего устройства 122, для облегчения работы однокристального микрокомпьютера 2.
Настоящее изобретение не ограничено измерением концентрации глюкозы в крови, его можно применять, например, для измерения концентрации холестерола или концентрации алкоголя.
В соответствии с настоящим изобретением, как описано выше, представляются экономные способ и устройство для измерения концентрации глюкозы в крови неинвазивным методом, который может легко измерять концентрацию глюкозы в крови путем помещения прохода устройства на определенную часть человеческого тела в поле кровеносного сосуда без использования оборудования, такого как обычный инжектор.

Claims (7)

1. Способ неинвазивного измерения концентрации глюкозы в крови, предусматривающий облучение кровеносных сосудов коллимированным излучением полупроводникового лазера с изменяемой длиной волны при постепенном увеличении подаваемого на него тока при постоянном напряжении и постоянном регулировании температуры, отличающийся тем, что регистрируют поглощенное, рассеянное и диффузионно отраженное кровью излучение через блок интеграции, при этом излучение преобразуют в электрический сигнал, а затем в цифровой код, причем последний сравнивают с тарировочной кривой и по результату сравнения определяют значение концентрации глюкозы с последующим воспроизведением значения на цифровом экране.
2. Способ по п.1, отличающийся тем, что длина волны лазерного излучения лежит в ближней инфракрасной области от 1,3 до 1,9 мкм, а предпочтительно от 1,4 до 1,8 мкм, при этом излучение воздействует на кровь через кожу одномоментно или многократно последовательно.
3. Способ по п.1 или 2, отличающийся тем, что напряжение источника питания составляет 4,5 - 9 В, а предпочтительно 6 В.
4. Устройство для неинвазивного измерения концентрации глюкозы в крови, содержащее средство для регулирования тока в цепи источника питания и для обработки данных, соединенные последовательно с цифроаналоговым преобразователем, блок питания полупроводникового лазера, регулятор температуры, полупроводниковый лазерный источник излучения и оптическое средство, отличающееся тем, что имеет блок интеграции, детектор, подключенный к аналого-цифровому преобразователю, причем аналого-цифровой преобразователь соединен со средством регулирования тока в цепи питания и для обработки данных, и дисплей.
5. Устройство по п. 4, отличающееся тем, что блок интеграции выполнен сферической, овальной, полуовальной или любой другой формы.
6. Устройство по п.4 или 5, отличающееся тем, что между блоком интеграции и детектором расположено оптическое волокно длиной от 100 до 1000 мм, а предпочтительно длиной 500 мм, а еще предпочтительнее длиной 300 мм.
7. Устройство по любому из пп. 4 - 6, отличающееся тем, что детектор представляет собой фотодиод для преобразования собранного блоком интеграции излучения в фототоки, при этом в качестве детектора используют Ge-детектор, или предпочтительно Ge-детектор, соединенный с предусилителем, а цифроаналоговый преобразователь и аналого-цифровой преобразователь отделены от средства для регулирования тока в цепи питания и для обработки данных.
SU4831608A 1989-10-28 1990-10-26 Способ и устройство для измерения концентрации глюкозы в крови RU2122208C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1019890015584A KR930011586B1 (ko) 1989-10-28 1989-10-28 난-인베이시브 혈당농도 측정방법 및 그 장치
KR89-15584 1989-10-28
KR90-11241 1990-07-24
KR1019900011241A KR920002091A (ko) 1990-07-24 1990-07-24 난-인베이시브 혈당농도 측정방법 및 그 장치

Publications (1)

Publication Number Publication Date
RU2122208C1 true RU2122208C1 (ru) 1998-11-20

Family

ID=26628109

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4831608A RU2122208C1 (ru) 1989-10-28 1990-10-26 Способ и устройство для измерения концентрации глюкозы в крови

Country Status (9)

Country Link
US (1) US5267152A (ru)
EP (1) EP0426358B1 (ru)
JP (2) JPH03146032A (ru)
CN (1) CN1025410C (ru)
AT (1) ATE179874T1 (ru)
CA (1) CA2028261C (ru)
DE (1) DE69033104T2 (ru)
HU (1) HU213438B (ru)
RU (1) RU2122208C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045560A1 (fr) * 1999-12-21 2001-06-28 Valery Gennadievich Muzhikov Procede pour determiner des indices relatifs au sang et dispositif correspondant
DE112006003871T5 (de) 2006-10-31 2009-03-19 Valery Gennadievich Muzhiko Verfahren zur reflektorischen Korrektion der körperlichen Funktionsstörungen und Einrichtung zur Durchführung des Verfahrens
DE102010021861A1 (de) 2009-05-28 2010-12-02 Valery Gennadievich Muzhikov Einrichtung zur reflektorischen Korrektur körperlicher Funktionalstörungen
RU2489689C2 (ru) * 2008-01-25 2013-08-10 Нирлус Энджиниринг Аг Способ неинвазивного оптического определения температуры среды
DE202006021245U1 (de) 2006-10-31 2014-03-28 Valery Gennadievich Muzhikov Einrichtung zur reflektorischen Korrektion von körperlichen Funktionsstörungen
RU2562173C2 (ru) * 2010-09-15 2015-09-10 Глуковиста Инк. Способ для неинвазивного анализа концентрации вещества в теле
RU2574571C1 (ru) * 2014-12-22 2016-02-10 Эдвард Владимирович Крыжановский Способ неинвазивного определения концентрации глюкозы в крови
RU2718258C1 (ru) * 2019-07-02 2020-03-31 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Способ неинвазивного определения концентрации глюкозы в крови
WO2022035349A1 (ru) 2020-08-11 2022-02-17 Валерий Геннадьевич МУЖИКОВ Количественная оценка активности акупунктурных каналов

Families Citing this family (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237178A (en) * 1990-06-27 1993-08-17 Rosenthal Robert D Non-invasive near-infrared quantitative measurement instrument
US6066847A (en) * 1989-01-19 2000-05-23 Futrex Inc. Procedure for verifying the accuracy of non-invasive blood glucose measurement instruments
US5204532A (en) * 1989-01-19 1993-04-20 Futrex, Inc. Method for providing general calibration for near infrared instruments for measurement of blood glucose
US5362966A (en) * 1990-06-27 1994-11-08 Rosenthal Robert D Measurement of finger temperature in near-infrared quantitative measurement instrument
US5574283A (en) * 1990-06-27 1996-11-12 Futrex, Inc. Non-invasive near-infrared quantitative measurement instrument
US5324979A (en) * 1990-09-26 1994-06-28 Futrex, Inc. Method and means for generating synthetic spectra allowing quantitative measurement in near infrared measuring instruments
US5379774A (en) * 1990-10-23 1995-01-10 Sankyo Company Limited Measurement of arterial elasticity and the frequency characteristic of the compliance of an artery
FR2679337B1 (fr) * 1991-07-17 1994-08-12 Effets Biologiques Exercice Procede non invasif de determination in vivo du taux de saturation en oxygene du sang arteriel, et dispositif mettant en óoeuvre le procede.
JPH07508426A (ja) * 1991-10-17 1995-09-21 サイエンティフィック ジェネリクス リミテッド 血液検体測定装置及びその方法
IL107396A (en) * 1992-11-09 1997-02-18 Boehringer Mannheim Gmbh Method and apparatus for analytical determination of glucose in a biological matrix
US5447159A (en) * 1993-02-03 1995-09-05 Massachusetts Institute Of Technology Optical imaging for specimens having dispersive properties
DE4337570A1 (de) * 1993-11-04 1995-05-11 Boehringer Mannheim Gmbh Verfahren zur Analyse von Glucose in einer biologischen Matrix
US5492118A (en) * 1993-12-16 1996-02-20 Board Of Trustees Of The University Of Illinois Determining material concentrations in tissues
US5497769A (en) * 1993-12-16 1996-03-12 I.S.S. (Usa) Inc. Photosensor with multiple light sources
US5529755A (en) * 1994-02-22 1996-06-25 Minolta Co., Ltd. Apparatus for measuring a glucose concentration
TW275570B (ru) * 1994-05-05 1996-05-11 Boehringer Mannheim Gmbh
DE9417612U1 (de) * 1994-11-03 1995-01-05 Kloth Bernd Probenabnahmegerät
DE9418099U1 (de) * 1994-11-15 1995-01-05 Kloth Bernd Analysengerät
US5752512A (en) * 1995-05-10 1998-05-19 Massachusetts Institute Of Technology Apparatus and method for non-invasive blood analyte measurement
SG38866A1 (en) * 1995-07-31 1997-04-17 Instrumentation Metrics Inc Liquid correlation spectrometry
US6240306B1 (en) 1995-08-09 2001-05-29 Rio Grande Medical Technologies, Inc. Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
US6025597A (en) * 1995-10-17 2000-02-15 Optiscan Biomedical Corporation Non-invasive infrared absorption spectrometer for measuring glucose or other constituents in a human or other body
US6040578A (en) 1996-02-02 2000-03-21 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
US5747806A (en) * 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US5666956A (en) * 1996-05-20 1997-09-16 Buchert; Janusz Michal Instrument and method for non-invasive monitoring of human tissue analyte by measuring the body's infrared radiation
KR0165522B1 (ko) * 1996-05-23 1999-03-20 김광호 혈증성분 무혈진단을 위한 최적지점 검색장치및 이를 이용한 무혈진단기
US5903006A (en) * 1996-05-31 1999-05-11 Norihiro Kiuchi Liquid concentration detecting apparatus
US5871442A (en) 1996-09-10 1999-02-16 International Diagnostics Technologies, Inc. Photonic molecular probe
US6594510B2 (en) 1996-09-10 2003-07-15 Xoetronics Llc Photonic molecular probe
US5910109A (en) * 1997-02-20 1999-06-08 Emerging Technology Systems, Llc Non-invasive glucose measuring device and method for measuring blood glucose
US5961451A (en) * 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
US6628809B1 (en) 1999-10-08 2003-09-30 Lumidigm, Inc. Apparatus and method for identification of individuals by near-infrared spectrum
US7890158B2 (en) 2001-06-05 2011-02-15 Lumidigm, Inc. Apparatus and method of biometric determination using specialized optical spectroscopy systems
AU8031898A (en) * 1997-06-16 1999-01-04 Elan Medical Technologies Limited Methods of calibrating and testing a sensor for (in vivo) measurement of an analyte and devices for use in such methods
US6043492A (en) * 1997-10-27 2000-03-28 Industrial Technology Research Institute Non-invasive blood glucose meter
US6587705B1 (en) 1998-03-13 2003-07-01 Lynn Kim Biosensor, iontophoretic sampling system, and methods of use thereof
US7875440B2 (en) 1998-05-01 2011-01-25 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
ATE246356T1 (de) 1998-05-13 2003-08-15 Cygnus Therapeutic Systems Vorrichtung zum vorhersagen von physiologischen messwerten
CA2311487C (en) 1998-05-13 2004-02-10 Cygnus, Inc. Signal processing for measurement of physiological analytes
DK1053043T3 (da) 1998-05-13 2002-11-18 Cygnus Therapeutic Systems Opsamlingsenheder til transdermale prøveudtagningssystemer
ATE245937T1 (de) 1998-05-13 2003-08-15 Cygnus Therapeutic Systems Überwachung physiologischer analyte
US6097975A (en) * 1998-05-13 2000-08-01 Biosensor, Inc. Apparatus and method for noninvasive glucose measurement
US6424851B1 (en) 1998-10-13 2002-07-23 Medoptix, Inc. Infrared ATR glucose measurement system (II)
DE19923658A1 (de) * 1999-05-22 2000-11-23 Infralytic Gmbh Vorrichtung zum Messen des Organisationsgrades von Wasser in Säugetierkörpern
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6816605B2 (en) 1999-10-08 2004-11-09 Lumidigm, Inc. Methods and systems for biometric identification of individuals using linear optical spectroscopy
US6361960B1 (en) 1999-11-09 2002-03-26 Environmentally Sensitive Solutions, Inc. Method and test kit for measuring concentration of a cleaning agent in a wash liquor
DZ3338A1 (fr) * 2000-03-29 2001-10-04 Univ Virginia Méthode, systeme et programme d'ordinateur pour l'évaluation de régulation de glycemique du diabète à partir de données contrôllées automatiquement
US6549861B1 (en) 2000-08-10 2003-04-15 Euro-Celtique, S.A. Automated system and method for spectroscopic analysis
EP1311189A4 (en) 2000-08-21 2005-03-09 Euro Celtique Sa Near-BLOOD GLUCOSE MONITORING DEVICE
US6522903B1 (en) 2000-10-19 2003-02-18 Medoptix, Inc. Glucose measurement utilizing non-invasive assessment methods
JP2004523243A (ja) 2001-03-12 2004-08-05 カリフォルニア インスティチュート オブ テクノロジー 非同期性塩基伸長によってポリヌクレオチド配列を分析するための方法および装置
US7126682B2 (en) 2001-04-11 2006-10-24 Rio Grande Medical Technologies, Inc. Encoded variable filter spectrometer
US7043288B2 (en) 2002-04-04 2006-05-09 Inlight Solutions, Inc. Apparatus and method for spectroscopic analysis of tissue to detect diabetes in an individual
US6983176B2 (en) 2001-04-11 2006-01-03 Rio Grande Medical Technologies, Inc. Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy
US6865408B1 (en) 2001-04-11 2005-03-08 Inlight Solutions, Inc. System for non-invasive measurement of glucose in humans
US6574490B2 (en) 2001-04-11 2003-06-03 Rio Grande Medical Technologies, Inc. System for non-invasive measurement of glucose in humans
US6862091B2 (en) 2001-04-11 2005-03-01 Inlight Solutions, Inc. Illumination device and method for spectroscopic analysis
EP1271096A1 (en) * 2001-06-18 2003-01-02 Electronic Systems S.P.A. Process and device for contactless measurement of the thickness of non-metallic films by using an infrared semiconductor emitter
US6989891B2 (en) 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
ATE507766T1 (de) 2002-03-22 2011-05-15 Animas Technologies Llc Leistungsverbesserung einer analytenüberwachungsvorrichtung
US6654125B2 (en) 2002-04-04 2003-11-25 Inlight Solutions, Inc Method and apparatus for optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL) as an interferometer reference
US7027848B2 (en) 2002-04-04 2006-04-11 Inlight Solutions, Inc. Apparatus and method for non-invasive spectroscopic measurement of analytes in tissue using a matched reference analyte
US8175666B2 (en) * 2002-04-26 2012-05-08 Grove Instruments, Inc. Three diode optical bridge system
US7620212B1 (en) 2002-08-13 2009-11-17 Lumidigm, Inc. Electro-optical sensor
US8538703B2 (en) * 2002-08-13 2013-09-17 University Of Virginia Patent Foundation Method, system, and computer program product for the processing of self-monitoring blood glucose(SMBG)data to enhance diabetic self-management
US7233817B2 (en) * 2002-11-01 2007-06-19 Brian Yen Apparatus and method for pattern delivery of radiation and biological characteristic analysis
CN100406872C (zh) * 2002-11-04 2008-07-30 天津市先石光学技术有限公司 复合光谱测量方法及其光谱检测仪器
CN1308740C (zh) * 2002-11-22 2007-04-04 天津市先石光学技术有限公司 提高声光可调谐滤波器分光光学系统信噪比的方法及装置
US7174198B2 (en) * 2002-12-27 2007-02-06 Igor Trofimov Non-invasive detection of analytes in a complex matrix
CA2454894A1 (en) * 2003-01-07 2004-07-07 Intelligent Photonics Control Corp. Non-invasive blood monitor
US7347365B2 (en) 2003-04-04 2008-03-25 Lumidigm, Inc. Combined total-internal-reflectance and tissue imaging systems and methods
US7539330B2 (en) 2004-06-01 2009-05-26 Lumidigm, Inc. Multispectral liveness determination
US7394919B2 (en) 2004-06-01 2008-07-01 Lumidigm, Inc. Multispectral biometric imaging
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
ATE492001T1 (de) 2003-04-04 2011-01-15 Lumidigm Inc Multispektralbiometriesensor
US7751594B2 (en) 2003-04-04 2010-07-06 Lumidigm, Inc. White-light spectral biometric sensors
US7668350B2 (en) 2003-04-04 2010-02-23 Lumidigm, Inc. Comparative texture analysis of tissue for biometric spoof detection
US7545963B2 (en) 2003-04-04 2009-06-09 Lumidigm, Inc. Texture-biometrics sensor
US7627151B2 (en) 2003-04-04 2009-12-01 Lumidigm, Inc. Systems and methods for improved biometric feature definition
CN100427025C (zh) * 2003-04-10 2008-10-22 宇东科技股份有限公司 一种测量血糖浓度的方法
US7633621B2 (en) * 2003-04-11 2009-12-15 Thornton Robert L Method for measurement of analyte concentrations and semiconductor laser-pumped, small-cavity fiber lasers for such measurements and other applications
US7283242B2 (en) * 2003-04-11 2007-10-16 Thornton Robert L Optical spectroscopy apparatus and method for measurement of analyte concentrations or other such species in a specimen employing a semiconductor laser-pumped, small-cavity fiber laser
US6968222B2 (en) 2003-05-02 2005-11-22 Oculir, Inc. Methods and device for non-invasive analyte measurement
US6958039B2 (en) 2003-05-02 2005-10-25 Oculir, Inc. Method and instruments for non-invasive analyte measurement
US6975892B2 (en) * 2003-10-21 2005-12-13 Oculir, Inc. Methods for non-invasive analyte measurement from the conjunctiva
US20040225206A1 (en) * 2003-05-09 2004-11-11 Kouchnir Mikhail A. Non-invasive analyte measurement device having increased signal to noise ratios
WO2005007215A2 (en) * 2003-07-09 2005-01-27 Glucolight Corporation Method and apparatus for tissue oximetry
EP1653848A1 (en) 2003-08-15 2006-05-10 Animas Technologies LLC Microprocessors, devices, and methods for use in monitoring of physiological analytes
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US7263213B2 (en) 2003-12-11 2007-08-28 Lumidigm, Inc. Methods and systems for estimation of personal characteristics from biometric measurements
US20050137469A1 (en) * 2003-12-17 2005-06-23 Berman Herbert L. Single detector infrared ATR glucose measurement system
US7510849B2 (en) * 2004-01-29 2009-03-31 Glucolight Corporation OCT based method for diagnosis and therapy
JP3557425B1 (ja) * 2004-02-17 2004-08-25 株式会社日立製作所 血糖値測定装置
JP3557424B1 (ja) * 2004-02-17 2004-08-25 株式会社日立製作所 血糖値測定装置
WO2005080605A2 (en) 2004-02-19 2005-09-01 Helicos Biosciences Corporation Methods and kits for analyzing polynucleotide sequences
JP3590053B1 (ja) * 2004-02-24 2004-11-17 株式会社日立製作所 血糖値測定装置
JP3590054B1 (ja) * 2004-02-26 2004-11-17 株式会社日立製作所 血糖値測定装置
EP1568311A1 (en) * 2004-02-27 2005-08-31 Hitachi, Ltd. Blood sugar level measuring apparatus
WO2005086725A2 (en) * 2004-03-06 2005-09-22 Calisto Medical, Inc. Methods and devices for non-invasively measuring quantitative information of substances in living organisms
DE602005027700D1 (de) 2004-05-25 2011-06-09 Helicos Biosciences Corp Verfahren zur nukleinsäureimmobilisierung
US7476734B2 (en) 2005-12-06 2009-01-13 Helicos Biosciences Corporation Nucleotide analogs
US7508965B2 (en) 2004-06-01 2009-03-24 Lumidigm, Inc. System and method for robust fingerprint acquisition
US8229185B2 (en) 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
US20110163163A1 (en) * 2004-06-01 2011-07-07 Lumidigm, Inc. Multispectral barcode imaging
CN1297229C (zh) * 2004-07-27 2007-01-31 天津大学 脉搏阻抗谱血糖或其他血液成分的无创检测装置及其检测方法
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US8036727B2 (en) 2004-08-11 2011-10-11 Glt Acquisition Corp. Methods for noninvasively measuring analyte levels in a subject
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US8787630B2 (en) 2004-08-11 2014-07-22 Lumidigm, Inc. Multispectral barcode imaging
US20060253097A1 (en) * 2004-10-21 2006-11-09 Braig James R Methods of treating diabetes
US7220549B2 (en) 2004-12-30 2007-05-22 Helicos Biosciences Corporation Stabilizing a nucleic acid for nucleic acid sequencing
US7482120B2 (en) 2005-01-28 2009-01-27 Helicos Biosciences Corporation Methods and compositions for improving fidelity in a nucleic acid synthesis reaction
US7801338B2 (en) 2005-04-27 2010-09-21 Lumidigm, Inc. Multispectral biometric sensors
US7409239B2 (en) * 2005-05-05 2008-08-05 The Hong Kong Polytechnic University Method for predicting the blood glucose level of a person
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9238150B2 (en) 2005-07-22 2016-01-19 The Board Of Trustees Of The Leland Stanford Junior University Optical tissue interface method and apparatus for stimulating cells
US8906360B2 (en) 2005-07-22 2014-12-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US10052497B2 (en) * 2005-07-22 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
CN100342825C (zh) * 2005-11-28 2007-10-17 何宗彦 无创快速血糖检测方法及其检测仪
WO2007070642A2 (en) * 2005-12-15 2007-06-21 Helicos Biosciences Corporation Methods for increasing accuracy of nucleic acid sequencing
RU2477078C2 (ru) 2006-01-05 2013-03-10 Юниверсити Оф Вирджиния Пэйтент Фаундейшн Способ, система и компьютерный программный продукт для оценки изменчивости содержания глюкозы в крови при диабете по данным самоконтроля
US7397546B2 (en) 2006-03-08 2008-07-08 Helicos Biosciences Corporation Systems and methods for reducing detected intensity non-uniformity in a laser beam
US7995808B2 (en) 2006-07-19 2011-08-09 Lumidigm, Inc. Contactless multispectral biometric capture
WO2008100329A2 (en) 2006-07-19 2008-08-21 Lumidigm, Inc. Multibiometric multispectral imager
US8175346B2 (en) 2006-07-19 2012-05-08 Lumidigm, Inc. Whole-hand multispectral biometric imaging
US8355545B2 (en) 2007-04-10 2013-01-15 Lumidigm, Inc. Biometric detection using spatial, temporal, and/or spectral techniques
US7801339B2 (en) 2006-07-31 2010-09-21 Lumidigm, Inc. Biometrics with spatiospectral spoof detection
US7804984B2 (en) 2006-07-31 2010-09-28 Lumidigm, Inc. Spatial-spectral fingerprint spoof detection
WO2008029403A1 (en) * 2006-09-06 2008-03-13 Medingo Ltd. Fluid delivery system with optical sensing of analyte concentration levels
US20080154513A1 (en) 2006-12-21 2008-06-26 University Of Virginia Patent Foundation Systems, Methods and Computer Program Codes for Recognition of Patterns of Hyperglycemia and Hypoglycemia, Increased Glucose Variability, and Ineffective Self-Monitoring in Diabetes
WO2008086470A1 (en) 2007-01-10 2008-07-17 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8401609B2 (en) 2007-02-14 2013-03-19 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
WO2008106694A2 (en) 2007-03-01 2008-09-04 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
EP2120713A2 (en) 2007-03-21 2009-11-25 Lumidigm, Inc. Biometrics based on locally consistent features
US10035027B2 (en) 2007-10-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Device and method for ultrasonic neuromodulation via stereotactic frame based technique
US10434327B2 (en) 2007-10-31 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US8768423B2 (en) 2008-03-04 2014-07-01 Glt Acquisition Corp. Multispot monitoring for use in optical coherence tomography
MY169771A (en) 2008-04-23 2019-05-15 Univ Leland Stanford Junior Systems, methods and compositions for optical stimulation of target cells
EP2278914A1 (en) * 2008-05-19 2011-02-02 Koninklijke Philips Electronics N.V. Perfusion regulation device
CA2726128C (en) 2008-05-29 2016-10-18 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
MY162929A (en) 2008-06-17 2017-07-31 Univ Leland Stanford Junior Apparatus and methods for controlling cellular development
AU2009260029B2 (en) 2008-06-17 2016-03-17 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US9101759B2 (en) 2008-07-08 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
NZ602416A (en) 2008-11-14 2014-08-29 Univ Leland Stanford Junior Optically-based stimulation of target cells and modifications thereto
WO2010099313A1 (en) 2009-02-25 2010-09-02 University Of Virginia Patent Foundation Cgm-based prevention of hypoglycemia via hypoglycemia risk assessment and smooth reduction insulin delivery
US7896498B2 (en) * 2009-03-30 2011-03-01 Ottawa Hospital Research Institute Apparatus and method for optical measurements
US8731250B2 (en) 2009-08-26 2014-05-20 Lumidigm, Inc. Multiplexed biometric imaging
CN102018517A (zh) * 2009-09-17 2011-04-20 林紫谊 非侵入式血糖仪
US8570149B2 (en) 2010-03-16 2013-10-29 Lumidigm, Inc. Biometric imaging using an optical adaptive interface
AU2011227131B2 (en) 2010-03-17 2014-11-13 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
JP6002140B2 (ja) 2010-11-05 2016-10-05 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 安定化階段関数オプシンタンパク質及びその使用方法
AU2011323226B2 (en) 2010-11-05 2015-03-12 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
CA2816976C (en) 2010-11-05 2019-12-03 The Board Of Trustees Of The Leland Standford Junior University Optogenetic control of reward-related behaviors
CA2816968C (en) 2010-11-05 2019-11-26 The Board Of Trustees Of The Leland Stanford Junior University Optically-controlled cns dysfunction
CN110215614A (zh) 2010-11-05 2019-09-10 斯坦福大学托管董事会 用于光遗传学方法的光的上转换
CA2816972C (en) 2010-11-05 2019-12-03 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of memory function
US8696722B2 (en) 2010-11-22 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
JP6406581B2 (ja) 2011-12-16 2018-10-17 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー オプシンポリペプチドおよびその使用法
CA2865296A1 (en) 2012-02-21 2013-08-29 Karl A. DEISSEROTH Compositions and methods for treating neurogenic disorders of the pelvic floor
KR101487737B1 (ko) * 2012-03-21 2015-01-29 연세대학교 원주산학협력단 체내 직접 조사 가능한 레이저 침 시스템
CA2895969A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents
EP3184038B1 (en) 2012-12-31 2019-02-20 Omni MedSci, Inc. Mouth guard with short-wave infrared super-continuum lasers for early detection of dental caries
WO2014143276A2 (en) * 2012-12-31 2014-09-18 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
US9494567B2 (en) 2012-12-31 2016-11-15 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, HBA1C, and other blood constituents
US10660526B2 (en) 2012-12-31 2020-05-26 Omni Medsci, Inc. Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
ES2742492T3 (es) 2013-03-15 2020-02-14 Univ Leland Stanford Junior Control optogenético del estado conductual
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
CN105431046B (zh) 2013-04-29 2020-04-17 小利兰·斯坦福大学托管委员会 用于靶细胞中的动作电位的光遗传学调节的装置、系统和方法
DE202014011590U1 (de) * 2013-04-30 2023-01-10 Abbott Diabetes Care, Inc. Systeme und Vorrichtungen zur energieeffizienten Aktivierung elektrischer Vorrichtungen
CA2921221A1 (en) 2013-08-14 2015-02-19 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10441201B2 (en) * 2013-08-27 2019-10-15 The Trustees Of Princeton Univerisity Noninvasive mid-infrared in vivo glucose sensor
US10416079B2 (en) * 2014-01-07 2019-09-17 Opsolution Gmbh Device and method for determining a concentration in a sample
WO2015130332A1 (en) * 2014-02-28 2015-09-03 Tech4Life Enterprises Canada, Inc. Device and mechanism for facilitating non-invasive, non-piercing monitoring of blood glucose
CN104188664B (zh) * 2014-09-01 2016-03-30 苏州光环科技有限公司 血糖检测标定方法及系统
WO2016049080A1 (en) 2014-09-22 2016-03-31 Dexcom, Inc. System and method for mode switching
KR102390874B1 (ko) 2014-10-29 2022-04-26 삼성전자주식회사 혈당 측정기 및 그에 따른 혈당 측정 방법
CN104382605A (zh) * 2014-12-19 2015-03-04 新乡医学院 一种用于大鼠血糖无创快速测定的方法
SG11201705169UA (en) * 2014-12-22 2017-08-30 Edvard Vladimirovich Kryzhanovskii Method for noninvasively determining blood glucose concentration
CN104950104B (zh) * 2015-06-12 2017-03-01 广州睿博医疗科技有限公司 四合一生理参数测量仪
WO2016209654A1 (en) 2015-06-22 2016-12-29 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
CN105342574A (zh) * 2015-12-11 2016-02-24 无限极(中国)有限公司 一种自动寻肌筋膜扳机点光学仪
CN106859666B (zh) * 2017-02-15 2018-12-04 舒糖讯息科技(深圳)有限公司 一种血糖检测装置及其检测方法
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture
CN107174258A (zh) * 2017-06-02 2017-09-19 北京信息科技大学 血糖浓度预测方法
CN107505268A (zh) * 2017-08-04 2017-12-22 中国科学院半导体研究所 血糖检测方法及系统
US11071875B2 (en) 2018-02-20 2021-07-27 University Of Iowa Research Foundation Therapeutic systems using magnetic and electric fields
US11850440B2 (en) 2019-08-22 2023-12-26 University Of Iowa Research Foundation Therapeutic systems using magnetic fields
US11089981B2 (en) 2018-07-23 2021-08-17 Samsung Electronics Co., Ltd. Methods and systems for performing universal calibration to non-invasively determine blood glucose concentration
CN109846462B (zh) * 2019-04-03 2021-07-16 小甑科技(深圳)有限公司 一种测量血糖的方法及系统
CN112370607B (zh) * 2020-12-13 2022-08-05 李兴阳 一种胰岛素泵治疗仪
DE102021004609A1 (de) 2021-09-11 2023-03-16 Eques Consulting GmbH Vorrichtung und damit durchführbares Verfahren zur non-invasiven Konzentrationsbestimmung von Komponenten im menschlichen Blutkreislauf und Verwendung des Verfahrens.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU146906A1 (ru) * 1961-07-14 1961-11-30 В.А. Люхин Прибор дл фотоплетизмографии
US4679562A (en) * 1983-02-16 1987-07-14 Cardiac Pacemakers, Inc. Glucose sensor
US4685463A (en) * 1986-04-03 1987-08-11 Williams R Bruce Device for continuous in vivo measurement of blood glucose concentrations

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2606991A1 (de) * 1976-02-20 1977-08-25 Nils Dr Med Kaiser Geraet zur bestimmung des gehaltes von stoffwechselprodukten im blut
JPS57124239A (en) * 1981-01-26 1982-08-03 Aloka Co Ltd Biochemical component analysis apparatus by laser beam
ATE26485T1 (de) * 1981-09-15 1987-04-15 Mueller Arno Verfahren und vorrichtung zur quantitativen bestimmung geloester substanzen in ein- und mehrkomponentensystemen durch laserlichtstreuung.
DE3328862A1 (de) * 1982-09-16 1985-02-28 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zur gewebefotometrie, insbesondere zur quantitativen ermittlung der blut-sauerstoff-saettigung aus fotometrischen messwerten
JPH0737946B2 (ja) * 1983-08-05 1995-04-26 株式会社京都第一科学 体液成分を測定するとともにその検査データを保存管理する装置
JPS6075032A (ja) * 1983-09-30 1985-04-27 アロカ株式会社 レ−ザ光による生化学成分分析装置
US4570638A (en) * 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
DE3477991D1 (en) * 1984-05-04 1989-06-08 Kurashiki Boseki Kk Spectrophotometric apparatus for the non-invasive determination of glucose in body tissues
US4655225A (en) * 1985-04-18 1987-04-07 Kurabo Industries Ltd. Spectrophotometric method and apparatus for the non-invasive
US4759369A (en) * 1986-07-07 1988-07-26 Novametrix Medical Systems, Inc. Pulse oximeter
US4913150A (en) * 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
US4714080A (en) * 1986-10-06 1987-12-22 Nippon Colin Co., Ltd. Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation
GB8700061D0 (en) * 1987-01-05 1987-02-11 Whatman Reeve Angel Plc Light absorption analyser
JPH0827235B2 (ja) * 1987-11-17 1996-03-21 倉敷紡績株式会社 糖類濃度の分光学的測定法
US4800885A (en) * 1987-12-02 1989-01-31 The Boc Group, Inc. Blood constituent monitoring apparatus and methods with frequency division multiplexing
US4882492A (en) * 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US5028787A (en) * 1989-01-19 1991-07-02 Futrex, Inc. Non-invasive measurement of blood glucose
US5077476A (en) * 1990-06-27 1991-12-31 Futrex, Inc. Instrument for non-invasive measurement of blood glucose
US5187368A (en) * 1989-09-29 1993-02-16 Glaxo Inc. Detection method for liquids using near infrared spectra
US4977591A (en) * 1989-11-17 1990-12-11 Nynex Corporation Dual mode LMS nonlinear data echo canceller
US5070874A (en) * 1990-01-30 1991-12-10 Biocontrol Technology, Inc. Non-invasive determination of glucose concentration in body of patients
US5054487A (en) * 1990-02-02 1991-10-08 Boston Advanced Technologies, Inc. Laser systems for material analysis based on reflectance ratio detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU146906A1 (ru) * 1961-07-14 1961-11-30 В.А. Люхин Прибор дл фотоплетизмографии
US4679562A (en) * 1983-02-16 1987-07-14 Cardiac Pacemakers, Inc. Glucose sensor
US4685463A (en) * 1986-04-03 1987-08-11 Williams R Bruce Device for continuous in vivo measurement of blood glucose concentrations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
, A 61 B 5/00. 2. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045560A1 (fr) * 1999-12-21 2001-06-28 Valery Gennadievich Muzhikov Procede pour determiner des indices relatifs au sang et dispositif correspondant
DE112006003871T5 (de) 2006-10-31 2009-03-19 Valery Gennadievich Muzhiko Verfahren zur reflektorischen Korrektion der körperlichen Funktionsstörungen und Einrichtung zur Durchführung des Verfahrens
DE202006021245U1 (de) 2006-10-31 2014-03-28 Valery Gennadievich Muzhikov Einrichtung zur reflektorischen Korrektion von körperlichen Funktionsstörungen
RU2489689C2 (ru) * 2008-01-25 2013-08-10 Нирлус Энджиниринг Аг Способ неинвазивного оптического определения температуры среды
US11141082B2 (en) 2008-04-11 2021-10-12 Glucovista Inc. Method for non-invasive analysis of a substance concentration within a body
DE102010021861A1 (de) 2009-05-28 2010-12-02 Valery Gennadievich Muzhikov Einrichtung zur reflektorischen Korrektur körperlicher Funktionalstörungen
DE202010018135U1 (de) 2009-05-28 2014-05-08 Valery Gennadevich Muzhikov Einrichtung zur reflektorischen Korrektur körperlicher Funktionalstörungen
RU2562173C2 (ru) * 2010-09-15 2015-09-10 Глуковиста Инк. Способ для неинвазивного анализа концентрации вещества в теле
RU2574571C1 (ru) * 2014-12-22 2016-02-10 Эдвард Владимирович Крыжановский Способ неинвазивного определения концентрации глюкозы в крови
RU2718258C1 (ru) * 2019-07-02 2020-03-31 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Способ неинвазивного определения концентрации глюкозы в крови
WO2022035349A1 (ru) 2020-08-11 2022-02-17 Валерий Геннадьевич МУЖИКОВ Количественная оценка активности акупунктурных каналов

Also Published As

Publication number Publication date
DE69033104D1 (de) 1999-06-17
HU906914D0 (en) 1991-05-28
DE69033104T2 (de) 1999-10-28
CA2028261C (en) 1995-01-17
JPH10181U (ja) 1998-08-25
JPH03146032A (ja) 1991-06-21
HUT58145A (en) 1992-01-28
JPH0581253B2 (ru) 1993-11-12
CN1051297A (zh) 1991-05-15
CA2028261A1 (en) 1991-04-29
US5267152A (en) 1993-11-30
JP2588468Y2 (ja) 1999-01-13
EP0426358B1 (en) 1999-05-12
HU213438B (en) 1997-06-30
CN1025410C (zh) 1994-07-13
ATE179874T1 (de) 1999-05-15
EP0426358A1 (en) 1991-05-08

Similar Documents

Publication Publication Date Title
RU2122208C1 (ru) Способ и устройство для измерения концентрации глюкозы в крови
JP3875798B2 (ja) 血中成分濃度の無血測定装置の作動方法及び無血測定装置
US8886268B2 (en) Living body information measuring apparatus
EP0577684B1 (en) Method and apparatus for glucose concentration monitoring
JP3184521B2 (ja) 濃度を決定するための測定装置及び測定システム
US9037206B2 (en) Method and apparatus for the non-invasive sensing of glucose in a human subject
JP3643842B2 (ja) グルコース濃度検査装置
US5365066A (en) Low cost means for increasing measurement sensitivity in LED/IRED near-infrared instruments
AU749033B2 (en) Apparatus and method for noninvasive glucose measurement
IL94822A (en) Method and device for determining the properties of a liquid containing biological analyte
KR20150050523A (ko) 파이버리스 트랜스플렉턴스 프로브를 이용하는 분석물 농도의 비침습적 측정
JPH10189A (ja) 多波長同時無侵襲生化学計測装置
KR100300960B1 (ko) 혈중성분 농도의 무혈측정 방법 및 장치
JPS6157774B2 (ru)
JP2641575B2 (ja) グルコース無侵襲計測装置
KR100883153B1 (ko) 혈당치의 비침습 측정 장치
JPH11137538A (ja) 血液成分計測装置及び方法
KR930011586B1 (ko) 난-인베이시브 혈당농도 측정방법 및 그 장치
US20130267798A1 (en) Noninvasive measurement of analyte concentration using a fiberless transflectance probe
KR920002091A (ko) 난-인베이시브 혈당농도 측정방법 및 그 장치
KR920002092A (ko) 난-인베이시브 혈당농도 측정방법 및 그 장치
JP2003265443A (ja) 無侵襲生体計測装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20051027