RU2118367C1 - Фрагмент геномной днк, кодирующий устойчивость к доксорубицину (варианты), и способ его получения - Google Patents
Фрагмент геномной днк, кодирующий устойчивость к доксорубицину (варианты), и способ его получения Download PDFInfo
- Publication number
- RU2118367C1 RU2118367C1 SU4743220A SU4743220A RU2118367C1 RU 2118367 C1 RU2118367 C1 RU 2118367C1 SU 4743220 A SU4743220 A SU 4743220A SU 4743220 A SU4743220 A SU 4743220A RU 2118367 C1 RU2118367 C1 RU 2118367C1
- Authority
- RU
- Russia
- Prior art keywords
- doxorubicin
- resistance
- dna
- strain
- fragments
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/36—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/65—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/76—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
- C12P19/56—Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Saccharide Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Изобретение относится к биотехнологии. Получены фрагменты геномной ДНК, кодирующие устойчивость к доксорубицину, с установленными картами рестрикции. Фрагменты получены расщеплением ДНК штамма Streptomyces peucetius DSM 4592 или происходящих от него штаммов ферментом MboI. Полученные фрагменты фракционируют до размеров 4 kb - 6 kb, лигируют с линеаризованным вектором pIJ 702. Этой смесью трансформируют протопласты Streptomyces lividans TK 23, чувствительные к концентрации доксорубицина не более 30 мкг/мл. Клоны, устойчивые к доксорубицину, идентифицируют по росту в присутствии доксорубицина и выделяют из них указанный фрагмент. Клонирование биосинтетических генов позволяет изменять пути метаболизма, уровни устойчивости и тем самым повышать продуктивность штамма. 3 с.п.ф-лы, 2 ил.
Description
Изобретение относится к фрагментам ДНК, содержащим гены устойчивости к антрациклиновым антибиотикам, к рекомбинантным векторам, содержащим указанные фрагменты ДНК и к хозяевам, трансформированным указанными векторами.
Антрациклины группы даунорубицинов, такие, как доксорубицин, карминомицин и аклавиномицин, наряду с другими средствами широко используются в противоопухолевой терапии. Они являются поликетидами, полученными при помощи различных линий Streptomyces (S. peucetins, S.coeruleorubidus, S. galilaeus, S. griseus, S. griseorubes, S. Viridochromogenes, u S.bifurcus).
Доксорубицин получают только посредством S.percetius вид calsius. Тип линии S. percetius вид caesius LMRU 3920 (сокращенно "S. peucetius 3920") является доступным и описан в патенте США N 3590028. S. peucetius 3920 депонирован в Институте микробиологии университета Rutges, США, под номером IMRU 3920. Этот штамм и его мутанты, получаемые обычно с помощью классических методов мутагенеза, являются устойчивыми к высоким уровням доксорубицина.
Изучение механизмов, вызывающих устойчивость к указанным веществам, необходимо по двум основным причинам:
а) Имеется множество примеров, когда гены, вовлеченные в биосинтез вторичных метаболитов, образуют кластеры, по крайней мере, с одним геном устойчивости: например, к окситетрациклину (Rhodes P.M. Hunter I.S., Friend E.J. u Warren M., 1984, Trans. Biochem Soc.12, 586-587), эритромицину (Stanzak R. Matsushima P. , Baltz R. H. u Rao R.N, Biotechnology, Vol. 4, March 1986, 229-232), тилозину (Fayerman J.T., Biotechnology Vol. 4, Sept. 1986, 786-789) и тетраценомицину (Motamedi H. Hutchinson C.R.Proc. Natl. Acad. Sci. USA, Vol. 84, 4445-4449, 1987). Клонирование биосинтетических генов может быть полезно с точки зрения изменения путей метаболизма для получения разных молекул или для устранения препятствий на путях биосинтеза, что приводит, таким образом, к увеличению продуктивности штамма.
а) Имеется множество примеров, когда гены, вовлеченные в биосинтез вторичных метаболитов, образуют кластеры, по крайней мере, с одним геном устойчивости: например, к окситетрациклину (Rhodes P.M. Hunter I.S., Friend E.J. u Warren M., 1984, Trans. Biochem Soc.12, 586-587), эритромицину (Stanzak R. Matsushima P. , Baltz R. H. u Rao R.N, Biotechnology, Vol. 4, March 1986, 229-232), тилозину (Fayerman J.T., Biotechnology Vol. 4, Sept. 1986, 786-789) и тетраценомицину (Motamedi H. Hutchinson C.R.Proc. Natl. Acad. Sci. USA, Vol. 84, 4445-4449, 1987). Клонирование биосинтетических генов может быть полезно с точки зрения изменения путей метаболизма для получения разных молекул или для устранения препятствий на путях биосинтеза, что приводит, таким образом, к увеличению продуктивности штамма.
b) Устойчивость сама по себе подразумевается в регуляторных механизмах, и следовательно, изменяя уровни устойчивости (т.е. увеличивая число аллелей в генотипе), можно тем самым повысить продуктивность штамма. Этот факт давно известен специалистам и нашел свое воплощение в классических методах мутагенеза и произвольного скрининга, и при этом он вновь был положен в основу методов рДНК (Graveri R. и Davies J.E., The Journal of Antibiotics, Jan. 1986, 128-135).
В настоящем изобретении были выделены два сегмента ДНК, которые включают гены устойчивости к доксорубицину. Таким образом, настоящее изобретение обеспечивает фрагмент геномной ДНК, кодирующей устойчивость к доксорубицину, изолированный из штаммf Streptomyces peucetius DSM 4592 или происходящих от него штаммов, содержащий рестрикционные сайты, показанные на фиг.1 или 2.
В дальнейшем, для удобства, ДНК-сегменты, показанные на фиг.1 и 2, будут называться ДНК-вставкой. Настоящее изобретение также относится: к рекомбинантным векторам, обладающим способностью трансформировать клетку-хозяина и содержащим ДНК-вставку или происходящий от нее фрагмент рестрикции, содержащий ген устойчивости к доксорубицину; и к клеткам - хозяевам, трансформированным указанными векторами.
На фиг. 1 представлен анализ рестрикционной карты первой ДНК настоящего изобретения. Она является вставкой в рекомбинантную плазмиду FICE 1 (Rec l). Эта вставка имеет Sau 3AI - концы и вводится в Bgl II - сайт плазмиды pIJ 702. Один Bgl II - сайт восстанавливается после лигирования; на фиг. 2 - анализ рестрикционной карты второй ДНК настоящего изобретения. Она является вставкой в рекомбинантную плазмиду FICE 2 (Rec 2). Эта вставка имеет Sau 3АI концы и вводится в Bgl II - сайт плазмиды pIJ 702. Один сайт Bgl II восстанавливается после лигирования.
Карты, изображенные на фиг. 1 и 2, дают достаточное количество рестриктирующих сайтов для точного распознавания сегментов.
ДНК-вставки и рестрикционные фрагменты настоящего изобретения содержат ген, кодирующий устойчивость к доксорубицину. Для экспрессии такого гена ДНК может иметь свою собственную последовательность регулирования транскрипции и, в частности, свой собственный промотор, который является непосредственно связанным с геном и который распознается РНК-полимеразой клетки-хозяина альтернативно, ДНК- вставка или рестрикционный фрагмент могут быть лигированы к другой последовательности регуляции транскрипции правильным образом или клонированы в вектор у сайта рестрикции, расположенного соответственно рядом с последовательностью регуляции транскрипции в векторе.
ДНК-вставка или фрагмент рестрикции, несущие ген устойчивости к доксорубицину, могут быть клонированы в векторе клонирования рекомбинантной ДНК. Может быть использован любой реплицирующий и интегрирующий и интегрирующий агент, содержащий молекулу ДНК, к которой могут быть добавлены один или более дополнительных сегментов ДНК. Однако обычно вектором является плазмида. Предпочтительной плазмидой является плазмида с большим числом копий pIJ 702 (Katz et al. , J. Gen Microbiol, 1983, 129, 2703-2714). Для введения ДНК-вставки или ее рестрикционного фрагмента в вектор может быть использована любая подходящая техника. Указанное введение может быть осуществлено путем лигирования ДНК в линеаризованный вектор у соответствующего сайта рестрикции. Для этого могут быть использованы прямая комбинация "липких концов" или гомополимерных концов или молекула линкера или адаптора.
Рекомбинантный вектор используют для трансформации соответствующей клетки-хозяина, при этом обычно используют клетки, обладающие способностью проявлять устойчивость доксорубицину. Клетки-хозяева могут быть доксорубицин-восприимчивыми, т.е. не могут расти в присутствии доксорубицина, или доксорубицин-устойчивыми, но при этом могли бы быть полезными вследствие более высокой устойчивости к доксорубицину. Хозяином может быть микроорганизм. Поэтому могут быть трансформированы штаммы S. pencetins, а в частности S. pencetins вид calsins, которые продуцируют доксорубицин, или другие штаммы Streptomyces, которые продуцируют антрациклины. Устойчивость, или повышенная устойчивость к доксорубину дает возможность продуцировать больше доксорубицина клетками указанных штаммов. Таким образом может быть достигнута устойчивость к более высоким концентрациям доксорубицина. Трансформанты штаммов S. pencetins обычно получают путем трансформации протопластов. Таким образом, доксорубицин может быть получен путем культивирования трансформированного штамма S. pencetins с последующим выделением таким образом полученного доксорубицина.
ДНК - вставки получают из геномной ДНК S. pencetins М76. S. pencetins М76 является мутантом штамма S. pencetins 3920, который способен превращать даунорубицин в доксорубицин при высоких уровнях. S. pencetins М76 депонирован в Немецкой коллекции микроорганизмов (Dentsche Sammlung von Microorganismen (DSM), ФРГ, 11 мая 1988 г. под номером допуска D.S.M. 4592. При этом можно также использовать штамм, происходящий из S. pencetins М76, который, как правило, также будет способен превращать даунорубицин в доксорубицин. Таким образом, ДНК - вставки могут быть получены путем: (a) получения библиотеки геномной ДНК S. pencetins М76, или происходящего из него штамма; (b) скрининга этой библиотеки на устойчивость к доксорубицину; (c) получения ДНК-вставки из рекомбинантного вектора, который является частью указанной библиотеки и который при скрининге отобран как положительный на устойчивость к доксорубицину, и (d) необязательно, получения из ДНК-вставки рестрицкционного фрагмента, содержащего ген, кодирующий устойчивость к доксорубицину.
В стадии (a) библиотека может быть получена путем частичного переваривания геномной ДНК штамма S. pencetins М76 или происходящего из него штамма. Предпочтительно использовать рестриктирующий фермент Mb 01. Полученные таким образом фрагменты могут быть фракционированы по размерам. Предпочтительными являются фрагменты размером от 4 до 6 kb. Эти фрагменты лигируют в линеаризованный вектор, такое как pIJ 702. Хозяйские клетки трансформируют смесью для лигирования. Обычно клетки-хозяева являются доксорубицин-восприимчивыми, например, восприимчивыми при концентрации 50 мкг или менее, или, предпочтительно, 30 мкг или менее на 1 мл. Могут быть также трансформированы, например, протопласты S. lividans ТК 23.
В стадии (b) полученные описанным выше способом трансформанты скринируют на устойчивость к доксорубицину. Доксорубицин-устойчивые клоны идентифицируют путем культивирования в среде, содержащей доксорубицин. Указанные клоны выделяют, а рекомбинантные векторы, содержащиеся в них, экстрагируют. После переваривания рекомбинантных векторов соответствующими рестриктирующими ферментами в стадии (c), ДНК штамма S. pencetins М76, вставленная в каждый вектор, может быть идентифицирована. Классифицирована по размерам и картирована. Таким образом, может быть проконтролировано, что вектор содержит ДНК-вставку настоящего изобретения.
Далее две или несколько перекрывающихся вставок, которые целиком или частично охвачены ДНК настоящего изобретения, могут быть выделены. Они могут быть сплавлены вместе путем расщепления в общем рестриктирующем сайте и последовательного легирования с целью получения ДНК настоящего изобретения, сокращенной в длину, с использованием соответствующих рестриктаз, если это необходимо. Рестрикционные фрагменты ДНК-вставки, которая содержит ген, кодирующий устойчивость к доксорубицину, могут быть получены в стадии (d) также путем расщепления ДНК-вставки соответствующим рестриктирующим ферментом.
И, наконец, ДНК настоящего изобретения может быть мутирована способом, не воздействующим на ее способность к приобретению устойчивости к доксорубицину. Это может быть достигнуто, например, путем сайт-направленного мутагенеза. Указанная мутированная ДНК также входит в объем настоящего изобретения.
Приведенный ниже пример иллюстрирует осуществление настоящего изобретения. В указанном примере обозначения TSR, DoxoR и DoxoS означают тиострептон-устойчивый, доксорубицин-устойчивый и доксорубицин-восприимчивый фенотипы, соответственно.
Пример 1. Материалы и методы
Бактериальные штаммы и плазмиды:
Streptomyces pencetins М76, нитеобразный стрептомицет, продуцирующий даунорубицин и доксорубицин и устойчивый к доксорубицину (MIC 250 мкг/мл), и некоторые биосинтетические мутанты, восприимчивые к доксорубицину; S. lividans ТК 23, восприимчивый к доксорубицину.
Бактериальные штаммы и плазмиды:
Streptomyces pencetins М76, нитеобразный стрептомицет, продуцирующий даунорубицин и доксорубицин и устойчивый к доксорубицину (MIC 250 мкг/мл), и некоторые биосинтетические мутанты, восприимчивые к доксорубицину; S. lividans ТК 23, восприимчивый к доксорубицину.
Плазмида pIJ 702 с большим числом копий была получена из Коллекции культур Джона Иннеса, Норидж, Великобритания.
Среды и буферы
TSB, содержащий 30 г триптического соевого бульона (DIFCO) на литр дистиллированной воды; среда JЕМЕ, содержащая 5 г дрожжевого экстракта (DIFCO), 10 г экстракта солода (DJFCO), 340 г сахарозы, 5 мМ MgCl2 • 6H2O и различные концентрации глицина на литр дистиллированной воды.
TSB, содержащий 30 г триптического соевого бульона (DIFCO) на литр дистиллированной воды; среда JЕМЕ, содержащая 5 г дрожжевого экстракта (DIFCO), 10 г экстракта солода (DJFCO), 340 г сахарозы, 5 мМ MgCl2 • 6H2O и различные концентрации глицина на литр дистиллированной воды.
Восстановительная среда R2JE описана Chater K.F., Hopwood D.A., Kieser J. и Thompson C.J. (1982) в работе "Gene cloning in streptomyces" 69-95, P. H. Hofschneides and W. Goebbel (ed) "Gene cloning in Organisms other than E. coli", Springer-Verlag, Berlin. Эта среда была получена при следующем составе:
сахароза - 103 г;
смесь микроэлементов - 2 мл;
2,5% K2SO4 - 10 мл;
0,5% KH2PO4 - 10 мл;
MgCl2 • 6H2O - 10,1 г;
1M CaCl2 - 20 мл;
глюкоза - 10 г;
пролин - 3 г;
казаминокислоты 0,1 г;
0,25M TES pH 7,2 - 100 мл;
агар - 22 г;
10% дрожжевой экстракт - 50 мл.
сахароза - 103 г;
смесь микроэлементов - 2 мл;
2,5% K2SO4 - 10 мл;
0,5% KH2PO4 - 10 мл;
MgCl2 • 6H2O - 10,1 г;
1M CaCl2 - 20 мл;
глюкоза - 10 г;
пролин - 3 г;
казаминокислоты 0,1 г;
0,25M TES pH 7,2 - 100 мл;
агар - 22 г;
10% дрожжевой экстракт - 50 мл.
Среда P описана Baltz R.H., J. Gen Microbiol. 107: 93-102 (1978).
Стрептомицеты поддерживались на твердой среде, описанной в патенте США N 3590028, пример 2.
Условия культивирования: для жидких культур оба вида Streptomyces культивировали в 50 мл JЕМЕ + TSB (1 : 1) при 28oC на роторном шейкере при 280 об/мин. Питательную среду засевали гомогенизированными мицелиями. Гомогенизацию осуществляли путем перемешивания мицелиев в пробирке, содержащей стеклянные шарики.
Трансформация протопласта
Мицелии выделяли из 35 мл жидкой культуры (дополненной 0,5% гицином) путем центрифугирования (10 мин, 1500 • г), дважды промывали 10,3% сахарозой, ресуспендированной в 10 мл среды P, содержащей 1 мг/мл лизоцима (SIGMA), и инкубировали в течение 60 мин при 30oC при реципрокном встряхивании (230 об/мин). После образования протопласта суспензию фильтровали через вату, один раз промывали средой P и ресуспендировали в 1 мл среды P. В основном, получали 108 протопластов.
Мицелии выделяли из 35 мл жидкой культуры (дополненной 0,5% гицином) путем центрифугирования (10 мин, 1500 • г), дважды промывали 10,3% сахарозой, ресуспендированной в 10 мл среды P, содержащей 1 мг/мл лизоцима (SIGMA), и инкубировали в течение 60 мин при 30oC при реципрокном встряхивании (230 об/мин). После образования протопласта суспензию фильтровали через вату, один раз промывали средой P и ресуспендировали в 1 мл среды P. В основном, получали 108 протопластов.
Для каждой трансформации, 200 мкл среды P, содержащей около 2 • 107 протопластов, смешивали с 10 мкл необходимого количества ДНК в Te (Трис-HCl, 10 мМ; ЭДТК, 1 мМ, pH 8,0), и с 800 мкл 25% полиэтиленгликоля (PEG) 1000 в среде P. Протопласты осаждали при помощи центрифугирования, ресуспендировали в 1 мл среды P и высевали на R2JE. После инкубирования в течение 24 ч при 28oC трансформанты отбирались путем полива пластинок с протопластами 3 мл мягким буфером NA (8 г питательного бульона DIFCO и 5 г агара на литр), содержащим антибиотик. Число трансформантов составляло около 1 • 104 - 1 • 107 на мкг ДНК, в соответствии с используемыми штаммами.
Выделение плазмиды и геномной ДНК
Выделение плазмиды и геномной ДНК из стрептомицетов осуществлялось с использованием техники, описанной Hepwood D. A. et al., 1985, "Genetic Manipulation of Streptomyces a laboratory Manual." The John Innes Foundation".
Выделение плазмиды и геномной ДНК из стрептомицетов осуществлялось с использованием техники, описанной Hepwood D. A. et al., 1985, "Genetic Manipulation of Streptomyces a laboratory Manual." The John Innes Foundation".
Получение геномной библиотеки S. pencetins М76
Все рестриктирующие ферменты, щелочная фосфатаза телячьей вилочковой железы и лигаза Т4 были получены из BRL (Bethesda, MD) и использовались в соответствии с инструкциями производителя. Геномную ДНК S. pencetins М76 частично переваривали Mbol, и фрагменты размером в пределах от 4 до 6 kb выделяли путем электроэлюирования из агарозного геля. Эти фрагменты лигировали к pIJ 702, линеаризованной Bgl II и обрабатывали фосфатазой. Смесь для лигирования использовали для трансформации S. lividans ТК 23-протопластов, восприимчивых к 30 мгк/мл доксорубицина.
Все рестриктирующие ферменты, щелочная фосфатаза телячьей вилочковой железы и лигаза Т4 были получены из BRL (Bethesda, MD) и использовались в соответствии с инструкциями производителя. Геномную ДНК S. pencetins М76 частично переваривали Mbol, и фрагменты размером в пределах от 4 до 6 kb выделяли путем электроэлюирования из агарозного геля. Эти фрагменты лигировали к pIJ 702, линеаризованной Bgl II и обрабатывали фосфатазой. Смесь для лигирования использовали для трансформации S. lividans ТК 23-протопластов, восприимчивых к 30 мгк/мл доксорубицина.
2. Результаты
Клонирование фрагментов ДНК, имеющих устойчивость к доксорубицину в восприимчивых штамма Streptomyces.
Клонирование фрагментов ДНК, имеющих устойчивость к доксорубицину в восприимчивых штамма Streptomyces.
Частично Mb 01-переваренную геномную ДНК S. pencetins М76 вставляли в Bgl II-сайт pIJ 702. Смесь для лигирования использовали для трансформации протопластов S. lividans ТК 23. Трансформанты выбирали yf тиострептон-устойчивость и белый цвет, свидетельствующий о инсерционной инактивации гена меланина pIJ 702.
Затем тиострептон-устойчивые белые колонии скринировали на устойчивость к доксорубицину (100 мкг/мл). После чего их высевали на среду R2JE, инкубировали в течение 24 часов при 28oC в присутствии мягкого NA, содержащего 500 мкг/мл доксорубицина; а полученные таким образом два клона TSR и DoxoR идентифицировали.
Экстракция плазмидной ДНК из указанных двух клонов обнаружила присутствие вставок длиной 5,7 kb и 4,4 kb. Эти две рекомбинантные плазмиды, обозначенные, соответственно, FICE 1 и FICE 2, снова использовались для трансформации протопластов S. lividans ТК 23. В обоих случаях трансформация показала, что DoxoR - признак наряду с DoxoR - признаком сообщается с высокой степенью эффективности.
Экспрессия DoxoR-признака в DoxoS-мутантах S.pencetins
Затем две рекомбинантные плазмиды вводили в некоторые производные от S. pencetins М76, являющихся DoxoS-мутантами (MIC 50 мкг/мл). Эти трансформанты показали комплементацию DoxoS -признака. Они могли быть культивированы на доксорубицине при 1500 мкг/мл, что представляет собой уровень устойчивости к доксорубицину, превышающий уровень родительского штамма S.pencetins М76, донора клонированных генов (MIC 250 мкг/мл). Повышенный уровень устойчивости в тансформантах можно объяснить большим числом копий рекомбинантных плазмид (pIJ 101-репликон, Katz et al., 1983).
Затем две рекомбинантные плазмиды вводили в некоторые производные от S. pencetins М76, являющихся DoxoS-мутантами (MIC 50 мкг/мл). Эти трансформанты показали комплементацию DoxoS -признака. Они могли быть культивированы на доксорубицине при 1500 мкг/мл, что представляет собой уровень устойчивости к доксорубицину, превышающий уровень родительского штамма S.pencetins М76, донора клонированных генов (MIC 250 мкг/мл). Повышенный уровень устойчивости в тансформантах можно объяснить большим числом копий рекомбинантных плазмид (pIJ 101-репликон, Katz et al., 1983).
Рестрикционно-ферментный анализ клонированных фрагментов
Поскольку фенотип, сообщенный двумя клонированными фрагментами, был один и тот же, то проводили исследования для того, чтобы определить: одна или две различные функции способны передавать DoxoR-признак. На рисунках 1 и 2 изображены рестрикционные карты происходящих от S. pencetins М76 вставок FICE 1 и FICE 2. Большая часть каждой карты имеет размеры фрагментов, полученных путем однократного и двойного переваривания с использованием различных комбинаций ферментов. Длины интервалов между соседними сайтами получали путем непосредственного измерения соответствующих фрагментов при двойном и однократном переваривании.
Поскольку фенотип, сообщенный двумя клонированными фрагментами, был один и тот же, то проводили исследования для того, чтобы определить: одна или две различные функции способны передавать DoxoR-признак. На рисунках 1 и 2 изображены рестрикционные карты происходящих от S. pencetins М76 вставок FICE 1 и FICE 2. Большая часть каждой карты имеет размеры фрагментов, полученных путем однократного и двойного переваривания с использованием различных комбинаций ферментов. Длины интервалов между соседними сайтами получали путем непосредственного измерения соответствующих фрагментов при двойном и однократном переваривании.
Отсутствие видимого соответствия между картами и двумя клонированными фрагментами позволяет предположить, что устойчивость передается двумя различными генами.
Claims (1)
- \ \\1 1. Фрагмент геномной ДНК, кодирующий устойчивость к доксорубицину, выделенный из штамма Streptomyces peucetius DSM 4592 или происходящих из него штаммов с картой рестрикации: I \\\6 ЫЫЫ1 \\\2 2. Фрагмент геномной ДНК, кодирующий устойчивость к доксорубицину, выделенный из штамма Streptomyces peucetius DSM 4592 или происходящих от него штаммов с картой рестрикции: II \ \ \6 ЫЫЫ2 \\\2 3. Способ получения фрагмента геномной ДНК, кодирующего устойчивость к доксорубицину, по п.1 или 2, отличающийся тем, что геномную ДНК штамма Streptomyces peucetius DSM 4592 или происходящих от него штаммов частично расщепляют ферментом MboI, полученные фрагменты фракционируют до размеров 4kb - 6kb, лигируют с линеаризованным вектором pIJ 702, полученной смесью трансформируют протопласты Streptomyces lividans TK 23, чувствительные к концентрации доксорубицина не более 30 мкг/мл, клоны, устойчивые к доксорубицину, идентифицируют по росту в присутствии доксорубицина и выделяют из них указанный фрагмент.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8812697.4 | 1988-05-27 | ||
GB888812697A GB8812697D0 (en) | 1988-05-27 | 1988-05-27 | Isolation & characterisation of genes resistant to anthracycline antibiotics |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2118367C1 true RU2118367C1 (ru) | 1998-08-27 |
Family
ID=10637720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU4743220A RU2118367C1 (ru) | 1988-05-27 | 1989-05-26 | Фрагмент геномной днк, кодирующий устойчивость к доксорубицину (варианты), и способ его получения |
Country Status (19)
Country | Link |
---|---|
EP (1) | EP0371112B1 (ru) |
JP (1) | JP3240052B2 (ru) |
KR (1) | KR970010761B1 (ru) |
AT (1) | ATE115627T1 (ru) |
AU (1) | AU610411B2 (ru) |
CA (1) | CA1335575C (ru) |
DE (1) | DE68920007T2 (ru) |
DK (1) | DK175446B1 (ru) |
FI (1) | FI97728C (ru) |
GB (1) | GB8812697D0 (ru) |
GR (1) | GR1002049B (ru) |
HU (2) | HU217210B (ru) |
IE (1) | IE66718B1 (ru) |
IL (1) | IL90386A (ru) |
NZ (1) | NZ229237A (ru) |
PT (1) | PT90667B (ru) |
RU (1) | RU2118367C1 (ru) |
WO (1) | WO1989011532A1 (ru) |
ZA (1) | ZA893979B (ru) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPN799596A0 (en) * | 1996-02-09 | 1996-03-07 | Northern Sydney Area Health Service | Chemotherapy resistance gene |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3590028A (en) * | 1967-04-18 | 1971-06-29 | Farmaceutici Italia | Adriamycin derivatives |
EP0173327B1 (en) * | 1984-08-30 | 1991-11-06 | Meiji Seika Kabushiki Kaisha | Bialaphos producing gene |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4935340A (en) * | 1985-06-07 | 1990-06-19 | Eli Lilly And Company | Method of isolating antibiotic biosynthetic genes |
-
1988
- 1988-05-27 GB GB888812697A patent/GB8812697D0/en active Pending
-
1989
- 1989-05-08 CA CA000598991A patent/CA1335575C/en not_active Expired - Fee Related
- 1989-05-23 GR GR890100339A patent/GR1002049B/el not_active IP Right Cessation
- 1989-05-23 NZ NZ229237A patent/NZ229237A/en unknown
- 1989-05-23 IL IL9038689A patent/IL90386A/en not_active IP Right Cessation
- 1989-05-24 PT PT90667A patent/PT90667B/pt not_active IP Right Cessation
- 1989-05-25 ZA ZA893979A patent/ZA893979B/xx unknown
- 1989-05-26 WO PCT/EP1989/000588 patent/WO1989011532A1/en active IP Right Grant
- 1989-05-26 HU HU264/89A patent/HU217210B/hu unknown
- 1989-05-26 HU HU893264A patent/HUT52818A/hu not_active IP Right Cessation
- 1989-05-26 JP JP50550789A patent/JP3240052B2/ja not_active Expired - Fee Related
- 1989-05-26 DE DE68920007T patent/DE68920007T2/de not_active Expired - Fee Related
- 1989-05-26 RU SU4743220A patent/RU2118367C1/ru not_active IP Right Cessation
- 1989-05-26 EP EP89906078A patent/EP0371112B1/en not_active Expired - Lifetime
- 1989-05-26 AT AT89906078T patent/ATE115627T1/de not_active IP Right Cessation
- 1989-05-26 AU AU36927/89A patent/AU610411B2/en not_active Ceased
- 1989-05-26 KR KR1019900700134A patent/KR970010761B1/ko not_active IP Right Cessation
- 1989-06-12 IE IE173089A patent/IE66718B1/en not_active IP Right Cessation
-
1990
- 1990-01-24 FI FI900359A patent/FI97728C/fi not_active IP Right Cessation
- 1990-01-26 DK DK199000218A patent/DK175446B1/da not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3590028A (en) * | 1967-04-18 | 1971-06-29 | Farmaceutici Italia | Adriamycin derivatives |
EP0173327B1 (en) * | 1984-08-30 | 1991-11-06 | Meiji Seika Kabushiki Kaisha | Bialaphos producing gene |
Also Published As
Publication number | Publication date |
---|---|
PT90667A (pt) | 1989-11-30 |
WO1989011532A1 (en) | 1989-11-30 |
DK21890A (da) | 1990-01-26 |
DK175446B1 (da) | 2004-10-25 |
DE68920007T2 (de) | 1995-04-27 |
AU610411B2 (en) | 1991-05-16 |
NZ229237A (en) | 1992-05-26 |
EP0371112B1 (en) | 1994-12-14 |
DE68920007D1 (de) | 1995-01-26 |
FI97728B (fi) | 1996-10-31 |
ZA893979B (en) | 1990-02-28 |
EP0371112A1 (en) | 1990-06-06 |
IE66718B1 (en) | 1996-01-24 |
JPH02504470A (ja) | 1990-12-20 |
PT90667B (pt) | 1994-10-31 |
AU3692789A (en) | 1989-12-12 |
HU893264D0 (en) | 1990-07-28 |
KR900702024A (ko) | 1990-12-05 |
GB8812697D0 (en) | 1988-06-29 |
IE891730L (en) | 1989-11-27 |
GR1002049B (en) | 1995-11-16 |
IL90386A0 (en) | 1989-12-15 |
HUT52818A (en) | 1990-08-28 |
FI900359A0 (fi) | 1990-01-24 |
DK21890D0 (da) | 1990-01-26 |
FI97728C (fi) | 1997-02-10 |
ATE115627T1 (de) | 1994-12-15 |
HU217210B (hu) | 1999-12-28 |
CA1335575C (en) | 1995-05-16 |
IL90386A (en) | 1995-12-31 |
GR890100339A (el) | 1990-03-12 |
KR970010761B1 (ko) | 1997-06-30 |
JP3240052B2 (ja) | 2001-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Otten et al. | Cloning and expression of daunorubicin biosynthesis genes from Streptomyces peucetius and S. peucetius subsp. caesius | |
Chater et al. | Mutational cloning in Streptomyces and the isolation of antibiotic production genes | |
EP0346000A2 (en) | Macrolide biosynthetic genes for use in streptomyces and other organisms | |
Hopwood et al. | Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans | |
US4626504A (en) | DNA transfer vector for gram-negative bacteria | |
US4680264A (en) | Class II mobilizable gram-negative plasmid | |
US4332900A (en) | Construction of co-integrate plasmids from plasmids of Streptomyces and Escherichia | |
Romero et al. | Discrete amplifiable regions (amplicons) in the symbiotic plasmid of Rhizobium etli CFN42 | |
US4338400A (en) | Co-integrate plasmids and their construction from plasmids of Escherichia and Streptomyces | |
US4340674A (en) | Cointegrate plasmids and their construction from plasmids of Escherichia and Streptomyces | |
Rostas et al. | Transposon mutagenesis of Rhizobium japonicum | |
US4717666A (en) | Cloned streptomycete lividans excretable β-galactosidase gene | |
Omer et al. | Site-specific insertion of biologically functional adventitious genes into the Streptomyces lividans chromosome | |
US5665564A (en) | Isolation and characterisation of genes resistant to anthracycline antibiotics | |
Bassam et al. | Macroptilium atropurpureum (siratro) host specificity genes are linked to a nodD-like gene in the broad host range Rhizobium strain NGR234 | |
RU2118367C1 (ru) | Фрагмент геномной днк, кодирующий устойчивость к доксорубицину (варианты), и способ его получения | |
HU197354B (en) | Process for selecting streptomyces containing recombinant dna | |
EP0213898B1 (en) | A host-vector system | |
US4880746A (en) | Streptomycetes plasmid PSG5, a process for obtaining it, and its use | |
EP0035914A2 (en) | Plasmid vectors, plasmids and their preparation, and cloning processes using them | |
EP0288200A1 (en) | Spiramycin resistance-conferring cloning vectors | |
Finlay et al. | Characterization of conjugative plasmid EDP208 | |
US4401761A (en) | Process for stabilizing plasmids by deletion of DNA | |
US4686184A (en) | Gene transfer vector | |
CA1203185A (en) | Cloned streptomycete gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20070527 |
|
REG | Reference to a code of a succession state |
Ref country code: RU Ref legal event code: MM4A Effective date: 20070527 |