RU2116576C1 - Термоэлемент радиатора - Google Patents

Термоэлемент радиатора Download PDF

Info

Publication number
RU2116576C1
RU2116576C1 RU96118354A RU96118354A RU2116576C1 RU 2116576 C1 RU2116576 C1 RU 2116576C1 RU 96118354 A RU96118354 A RU 96118354A RU 96118354 A RU96118354 A RU 96118354A RU 2116576 C1 RU2116576 C1 RU 2116576C1
Authority
RU
Russia
Prior art keywords
piston
spring
tube
thermocouple
corrugated tube
Prior art date
Application number
RU96118354A
Other languages
English (en)
Other versions
RU96118354A (ru
Inventor
Бьярне Фредериксен
Стиг Грен Персон
Мортен Посх Ниссен
Эрик Хорбо Андерсен
Арне Маркварт
Original Assignee
Данфосс А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Данфосс А/С filed Critical Данфосс А/С
Application granted granted Critical
Publication of RU2116576C1 publication Critical patent/RU2116576C1/ru
Publication of RU96118354A publication Critical patent/RU96118354A/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/12Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid
    • G05D23/125Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid the sensing element being placed outside a regulating fluid flow

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Device Packages (AREA)
  • Measuring Fluid Pressure (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Thermally Actuated Switches (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

Изобретение предназначено для использования в системах отопления. Термоэлемент радиатора содержит корпус и выполненную в нем камеру давления, которая окружена капсулой и в которую выступает рифленая трубка, смещенная под действием пружины. Внутри рифленой трубки установлен поршень, находящийся под воздействием пружины и одним концом упирающийся в основание рифленой трубки, причем между другим концом поршня и пружиной зажат стопорный элемент, размещенный в гнезде корпусного элемента. 10 з.п. ф-лы, 4 ил.

Description

Изобретение относится к термоэлементу радиатора, включающему корпус и выполненную в нем камеру давления, которая окружена капсулой и в которую выступает рифленая трубка, смещенная под действием пружины.
Такие термоэлементы могут быть выполнены в виде элементов для дистанционного управления или размещены непосредственно на радиаторе. Как правило, они имеют защитное устройство, которое при повышении температуры предотвращает соответствующее повышение давления в камере давления, могущее привести к повреждению регулирующего вентиля или термостатического элемента. Такая ситуация может, например, возникнуть, когда вентиль на радиаторе уже полностью закрыт, а температура в помещении продолжает повышаться по иным причинам.
В известном термоэлементе вышеуказанного типа (см. заявку на Европейский патент ЕР 0552157 B1) рифленая трубка может сжиматься против усилия пружины, которая зажата между ее торцом и капсулой. Таким образом, объем камеры давления увеличивается, и тепловое расширение текучей среды, находящейся внутри нее, не приводит к повреждению конструкции.
Однако монтаж таких термоэлементов зачастую является сравнительно сложным и поэтому дорогостоящим. Такие операции, как загибание кромки или пайка занимают много времени, что также приводит к удорожанию изделия. Более того, с этими двумя процессами обработки деталей связана опасность сравнительно высокого уровня выбраковки. Из практики известно, что при пайке возможно перемещение соединяемых металлических деталей друг от друга в результате их нагрева, что приводит к дополнительным нежелательным отклонениям, которые впоследствии требуют компенсации.
Задачей изобретения является создание защитного устройства для термоэлемента радиатора, удобного при монтаже и не вызывающего существенных нежелательных отклонений.
В термоэлементе, упомянутом выше, эта проблема решена путем размещения в рифленой трубке поршня, на который воздействует пружина и который одним концом опирается в основание рифленой трубки, а также путем установки стопорного элемента, зажатого между другим концом поршня и пружиной и размещенного в специальном гнезде, выполненном в корпусном элементе.
Таким образом, при использовании данной конструкции может быть обеспечено удобство монтажа защитного устройства, которое может быть без затруднения заменено и потому не вызывает существенных нежелательных отклонений. Стопорный элемент зажат между концом поршня и пружиной, вследствие чего испытывает воздействие с обеих сторон. Если повышается давление в камере давления, рифленая трубка может быть сжата, при этом пружина воздействует на стопорный элемент. В этом случае может быть осуществлено перемещение поршня с отводом его от стопорного элемента, который при этом вдавливается в гнездо корпусного элемента. Если затем давление снова ослабевает, пружина отжимает поршень назад в исходное положение, в котором он снова упирается своим концом в стопорный элемент. В таком положении рифленая трубка снова растягивается до своей нормальной длины. Таким образом, несмотря на наличие пружины перемещение поршня ограничено. Даже в нормальном состоянии, когда в использовании защитного устройства нет необходимости, стопорный элемент остается в гнезде корпусного элемента, так как в камере давления всегда поддерживается определенное давление, которое посредством рифленой трубки воздействует на пружину. Пружина же даже в этом состоянии обеспечивает требуемое усилие и вдавливает опорный элемент в гнездо. Установка производится просто путем ввода стопорного элемента между пружиной и концом поршня. Для этого требуется лишь временное сжатие пружины. Как только пружину снова отпускают, стопорный элемент оказывается зажат. Для того чтобы снизить возможность нежелательных отклонений, регулирующая пластина и поршень должны быть просто хорошо подогнанными друг к другу, что относительно несложно обеспечить.
Корпусной элемент предпочтительно выполнен с возможностью перемещения в направлении действия пружины. Он может быть выполнен, например, в виде регулирующей пластины, при помощи которой задается желаемый объем термоэлемента. В этом случае защитное устройство в то же время служит и для задания объема камеры давления. Когда корпусной элемент смещается по направлению к камере давления, рифленая трубка вытягивается внутрь нее и наоборот. В каждом случае защитный эффект устройства сохраняется.
Поршень предпочтительно выполнен в форме трубки, в которой установлена пружина. С одной стороны, таким образом обеспечена защита рифленой трубки, которая своей внутренней поверхностью может упираться в поршень. С другой стороны, пружина направлена так, что возможность повреждения трубки очень мала. Однако, такая возможность все же может возникнуть, в частности, во время монтажа. Поршень также защищает рифленую трубку от воздействия пружины и во время работы устройства, способствуя таким образом увеличению срока его службы.
Стопорный элемент предпочтительно имеет форму штифта, проходящего сквозь поршень. Такие штифты могут быть произведены в массовом количестве с относительно высокой степенью точности. Ввод штифта в поршень не вызывает затруднений и не является дорогостоящей операцией с точки зрения монтажа.
В данном случае особенно важно, чтобы поршень имел паз для ввода штифта, проходящий в осевом направлении на заданную длину. Таким образом, смещение поршня относительно штифта ограничено по двум направлениям и, более того, штифт служит в качестве направляющей для поршня.
Тот конец поршня, в который входит стопорный элемент, предпочтительно имеет увеличенный наружный диаметр. Тогда поршень может упираться в корпусной элемент с той стороны, которая удалена от камеры давления, и таким образом надежно там удерживаться.
Увеличение внешнего диаметра в этом случае целесообразно выполнить в форме кругового выступа, который может быть без затруднения получен путем обработки давлением.
Поршень и пружина как правило выступают из рифленой трубки. Это облегчает сборку.
Поршень и/или корпусной элемент наиболее целесообразно изготавливать из пластмассы. Пластмассовые детали могут производиться в массовом количестве с желаемой точностью, например, методом литья под давлением. Требования точности имеют существенное значение в связи с тем, что все детали подвергаются одним и тем же нежелательным отклонениям. Кроме того, использование пластмасс для изготовления этих деталей имеет то преимущество, что теплопроводность поршня или корпуса сравнительно мала, так как в общем случае полимерные материалы являются худшими проводниками тепла, чем металлы.
Гнездо предпочтительно выполнено в виде канавки. В этом случае стопорный элемент, в особенности если он выполнен в виде штифта, зафиксирован в корпусном элементе и против боковых усилий, возникновение которых при работе маловероятно, но во время транспортировки или монтажа вполне возможно. Пружина вдавливает стопорный элемент в паз, и конструкция таким образом обладает свойством самоблокировки.
На фиг.1 изображено продольное сечение предлагаемого термоэлемента, выполненного в виде устройства с дистанционной передачей регулирующего воздействия; на фиг. 2 - термоэлемент с приведенным в действие защитным устройством; на фиг. 3 - защитное устройство; на фиг.4 - вид сверху защитного устройства на фиг.3.
На фиг. 1 и 2 показан элемент 1 для дистанционного управления, который при помощи капиллярной трубки (не показана) связан с верхней частью радиаторного вентиля, содержащей исполнительное устройство (также не показано). Элемент 1 выполнен в виде термоэлемента. Поэтому он имеет камеру 2 давления, окруженную капсулой 3, в свою очередь установленной в корпусе, который содержит основание 4, вращающуюся ручку 5 с передаточным элементом 6 и регулирующую пластину 7, которая установлена в основании корпуса без возможности поворота, но с возможностью осевого смещения. Пластина 7 имеет резьбу 9, взаимодействующую с ответной обратной резьбой 9 передаточного элемента. Таким образом, при повороте головки 5 пластина 7 смещается относительно капсулы 3, то есть удаляется от нее.
Дополнительно имеется крышка 10, окружающая корпус.
Рифленая трубка 11 выступает в камеру 2 давления, которая ограничена капсулой 3, имеющей основание 12 и рифленую трубку 11. Объем камеры 2 может изменяться при большем или меньшем удлинении трубки 11 в камере 2.
В трубке 11 установлен поршень 13, проходящий до основания 14 трубки 11. Поршень 13 выполнен в форме трубки с частично закрытым основанием, в которой установлена пружина 15, выполненная в виде пружины сжатия и упирающаяся в основание трубки.
Поршень 13 и пружина 15 выведены за пределы рифленой трубки. На выведенном конце поршня выполнен круговой выступ 16 увеличенного диаметра. Вблизи выступа 16 в стенке поршня 13 выполнен паз 17, через который пропущен штифт 18. Штифт 18 установлен с натягом или зажат между пластиной 7 и пружиной 15 и размещен в канавке 19 регулирующей пластины 7.
Пластина 7 и поршень 13 изготовлены из пластмассы. Они могут быть, например, выполнены методом литья под давлением, который позволяет обеспечить требуемое постоянство параметров при их воспроизведении. Таким образом, обеспечена низкая возможность появления нежелательных отклонений. Кроме того, теплопередача через поршень 13 и трубку 11 в камеру 2 относительно невелика.
Рифленая трубка 11 может упираться в поршень 13 своей внутренней поверхностью и основанием 14, так что она довольно надежно защищена.
Монтаж защитного устройства, более подробно изображенного на фиг.3, сравнительно прост. Пружину 15 просто вставляют в поршень 13. Затем ее необходимо немного сжать для ввода штифта 18 в паз. Тем не менее, это не вызывает затруднений, так как вблизи штифта внутри поршня нет никаких иных элементов, кроме пружины 15. После ввода штифта 18 в поршень все устройство целиком может быть установлено на пластину 7 и вместе с ней в элемент 1, при этом поршень 13 выступает внутрь трубки 11.
При работе путем поворота головки 5 изменяют расстояние между пластиной 7 и капсулой 3, так что благодаря поршню 13 и трубке 11 изменяется и объем камеры 2 для задания требуемой (желаемой) величины.
Если давление в камере 2 возрастает настолько, что превышает усилие пружины 15, трубка 11 сжимается и смещается вниз. В этом случае и поршень 13 смещается вниз по направлению к пластине 7. Затем, как показано на фиг.2, он может освободиться от штифта 18 и, таким образом, стать подвижным. В свою очередь штифт 18 оказывается еще сильнее прижат к плите 7 пружиной 15, которая теперь сжата более сильно. Объем камеры 2 увеличивается. Давление снижается.
Даже без создания избыточного давления в камере 2 штифт 18 надежно удерживается в пластине 7. В боковом направлении он удерживается благодаря канавке 19, а в осевом направлении вдавлен в пластину 7 под действием давления в камере 2.
Так как во время сборки требуется произвести лишь несколько операций, а поршень 13 и пластина 7 выполнены из пластмассы, то расстояние A (фиг.3) может поддерживаться постоянным с очень малой вероятностью нежелательных отклонений даже при довольно большом количестве деталей. Так как расстояние А может быть измерено, перед монтажом термоэлемента может быть произведена его предварительная регулировка.

Claims (11)

1. Термоэлемент радиатора, содержащий корпус и выполненную в нем камеру давления, которая окружена капсулой и в которую выступает рифленая трубка, смещенная под действием пружины, отличающийся тем, что внутри рифленой трубки (11) установлен поршень (13), находящийся под воздействием пружины (15) и одним концом упирающийся в основание (14) рифленой трубки (11), причем между другим концом поршня (13) и пружиной (15) зажат стопорный элемент (18), размещенный в гнезде корпусного элемента (7).
2. Термоэлемент по п.1, отличающийся тем, что корпусной элемент (7) выполнен с возможностью перемещения в направлении действия пружины (15).
3. Термоэлемент по п. 1 или 2, отличающийся тем, что поршень (13) выполнен в виде трубки, в которой установлена пружина (15).
4. Термоэлемент по пп. 1 - 3, отличающийся тем, что стопорный элемент (18) выполнен в виде штифта, продетого через поршень (13).
5. Термоэлемент по п.4, отличающийся тем, что для ввода штифта (18) поршень снабжен пазом (17), проходящим по оси на заданное расстояние.
6. Термоэлемент по пп. 1 - 5, отличающийся тем, что поршень (13) на конце, на котором в него входит стопорный элемент (18), имеет увеличенный наружный диаметр (16).
7. Термоэлемент по п.6, отличающийся тем, что указанное увеличение наружного диаметра (16) выполнено в форме кругового выступа.
8. Термоэлемент по пп.1 - 7, отличающийся тем, что поршень (13) и пружина (15) выступают из рифленой трубки (11).
9. Термоэлемент по пп.1 - 8, отличающийся тем, что поршень (13) выполнен из пластмассы.
10. Термоэлемент по пп.1 - 9, отличающийся тем, что корпусной элемент (7) выполнен из пластмассы.
11. Термоэлемент по пп. 1 - 10, отличающийся тем, что гнездо (19) выполнено в виде канавки.
RU96118354A 1995-09-15 1996-09-13 Термоэлемент радиатора RU2116576C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19534186.1 1995-09-15
DE19534186A DE19534186A1 (de) 1995-09-15 1995-09-15 Heizkörper-Thermostatelement

Publications (2)

Publication Number Publication Date
RU2116576C1 true RU2116576C1 (ru) 1998-07-27
RU96118354A RU96118354A (ru) 1998-12-20

Family

ID=7772223

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96118354A RU2116576C1 (ru) 1995-09-15 1996-09-13 Термоэлемент радиатора

Country Status (8)

Country Link
EP (1) EP0763681B1 (ru)
CN (1) CN1097720C (ru)
AT (1) ATE193761T1 (ru)
CZ (1) CZ286968B6 (ru)
DE (2) DE19534186A1 (ru)
PL (1) PL180345B1 (ru)
RU (1) RU2116576C1 (ru)
UA (1) UA28042C2 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909096C2 (de) * 1999-03-02 2002-02-07 Danfoss As Heizeinrichtungs-Thermostatventilaufsatz
DE10162606B4 (de) * 2001-12-20 2005-02-17 Danfoss A/S Thermostatventilaufsatz
DE102004032517B4 (de) * 2004-05-18 2006-09-07 F.W. Oventrop Gmbh & Co. Kg Thermostat
EP1950476B1 (de) * 2006-09-20 2018-08-01 Fr. Sauter AG Ventilantrieb

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1127120B (de) * 1958-02-06 1962-04-05 Danfoss Ved Ingenior Mads Clau Thermostatisches Regelventil
DE2613991C2 (de) * 1976-04-01 1977-10-27 Danfoss A/S, Nordborg (Danemark) Therniostatische Betätigungsvorrichtung für ein Heizmittelventil
DE4032285C1 (ru) * 1990-10-11 1992-01-02 Buchta, Alfred, 6104 Seeheim, De
DE4223217C1 (de) * 1992-07-15 1993-12-02 Heimeier Gmbh Metall Theodor Sicherheitsfederanordnung für Thermostatventil-Köpfe
DE4319814C1 (de) * 1993-06-15 1995-02-16 Danfoss As Heizkörper-Thermostatventil

Also Published As

Publication number Publication date
UA28042C2 (ru) 2000-10-16
DE69608753D1 (de) 2000-07-13
PL180345B1 (pl) 2001-01-31
ATE193761T1 (de) 2000-06-15
CN1158410A (zh) 1997-09-03
DE19534186A1 (de) 1997-03-27
CZ286968B6 (en) 2000-08-16
EP0763681A1 (en) 1997-03-19
PL315893A1 (en) 1997-03-17
DE69608753T2 (de) 2000-11-23
EP0763681B1 (en) 2000-06-07
CZ270596A3 (en) 1997-04-16
CN1097720C (zh) 2003-01-01

Similar Documents

Publication Publication Date Title
KR890005334B1 (ko) 증분 조절 가능한 전자식 팽창밸브를 구비한· 냉동시스템
US4508262A (en) Thermostat attachment for a valve
US7345572B2 (en) Temperature sensor
JP2002178741A (ja) 加熱装置
JP2922328B2 (ja) 直線移動ユニット用係止装置
RU2116576C1 (ru) Термоэлемент радиатора
RU2112270C1 (ru) Термостатический клапан для радиатора
PL111429B1 (en) Pressure control valve
US20230095309A1 (en) Temperature sensor
US7687819B2 (en) Optical semiconductor package with compressible adjustment means
ATE352721T1 (de) Feststellvorrichtung
US4508263A (en) Thermostatic valve
RU2182998C2 (ru) Термостатическая насадка для вентиля отопления
RU2177095C2 (ru) Насадка для вентиля, в частности вентиля отопления
US5706853A (en) Valve, especially a thermostatic expansion valve
US5576683A (en) Thermostat with thermal insulator for protection against overheating
RU96118354A (ru) Термоэлемент радиатора
US5810340A (en) Precision clamping device with digitally programmable load
US20040099227A1 (en) Reservoir for liquid and/or gaseous media and cooling system for an internal combustion engine
CN114992333B (zh) 一种回路水温控制阀
GB2056677A (en) Thermally-responsive actuators
JP4838023B2 (ja) 温度表示器
UA58619C2 (ru) Клапан, в частности, термостатический клапан для систем отопления
GB1590074A (en) Thermostatic valves
GB2398621A (en) Thermostat valve cap