RU2116377C1 - Деталь газотурбинного двигателя и способ ее изготовления - Google Patents

Деталь газотурбинного двигателя и способ ее изготовления Download PDF

Info

Publication number
RU2116377C1
RU2116377C1 RU96113525A RU96113525A RU2116377C1 RU 2116377 C1 RU2116377 C1 RU 2116377C1 RU 96113525 A RU96113525 A RU 96113525A RU 96113525 A RU96113525 A RU 96113525A RU 2116377 C1 RU2116377 C1 RU 2116377C1
Authority
RU
Russia
Prior art keywords
layer
coating
ceramic
metal layer
layers
Prior art date
Application number
RU96113525A
Other languages
English (en)
Other versions
RU96113525A (ru
Inventor
Г.Г. Шамарина
Original Assignee
Акционерное общество открытого типа "Моторостроитель"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "Моторостроитель" filed Critical Акционерное общество открытого типа "Моторостроитель"
Priority to RU96113525A priority Critical patent/RU2116377C1/ru
Application granted granted Critical
Publication of RU2116377C1 publication Critical patent/RU2116377C1/ru
Publication of RU96113525A publication Critical patent/RU96113525A/ru

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Сущность изобретения: деталь газотурбинного двигателя содержит покрытие из металлического слоя, расположенного на детали, и керамического покрытия на основе оксида циркония толщиной 70-600 мкм, причем последнее выполнено трехслойным с первым и последним слоями, толщиной 1-20 мкм каждый, обладающими беспористой структурой, и вторым слоем пористостью 5-16%. Способ включает напыление металлического слоя и поэтапное образование трех керамических слоев, причем последний слой образуют термоупрочнением поверхности второго слоя. Изобретение позволяет повысить стойкость покрытия, а следовательно и деталей, при работе в агрессивных средах при температурах свыше 1000oC. 2 с. и 4 з.п. ф-лы, 9 ил.

Description

Изобретение относится к изготовлению деталей газотурбинных двигателей, преимущественно авиационных, и может быть использовано для образования теплозащитных покрытий на деталях горячего тракта турбины.
Известна деталь ГТД, например лопатка, с металлическим покрытием из сплава никель-хром-кобальт-алюминий-иттрий, нанесенный электронно-лучевым методом на деталь из никелевого сплава.
Благодаря содержанию кобальта в составе покрытия, последнее хорошо согласуется по термическому коэффициенту линейного расширения (ТКЛР) с основой детали и предохраняет ее от растрескивания и осколков. Однако такая деталь при работе в агрессивной среде и при высокой температуре порядка 1000oC имеет низкую стойкость к коррозии и эрозии, а следовательно и ресурс.
Известна деталь - лопатка турбины с основой из никелевого сплава, содержащая теплозащитное покрытие из двух слоев:
1 - многокомпонентный сплав на никелевой основе с содержанием хрома, алюминия, иттрия;
2 - керамический, стабилизированный Y2O3.
Покрытие получают плазменным напылением на воздухе известным способом.
Керамический слой такого покрытия хорошо защищает деталь при работе в агрессивной среде в режиме высоких температур.
Однако такое покрытие имеет открытую пористость порядка 12% и является прозрачным для ионов кислорода, вредных примесей и диффузионных процессов на границе керамика-металлический слой. Это отрицательно сказывается на работе лопатки в агрессивных средах при высоких температурах порядка 1000oC. Кроме того, ввиду различий по ТКЛР материала основы и металлического слоя возможно отслаивание металлического слоя, а также появление трещин, осколков на покрытиях.
Расслоение в теплозащитном покрытии связано с состоянием поверхности раздела и диффузионными процессами на границе раздела. Трещины зарождаются в зонах концентратов напряжений, которыми являются острые выступы и впадины микронеровностей поверхности раздела (см. фиг. 8).
Задачей изобретения является устранение указанных недостатков и повышение стойкости покрытия, а следовательно, и деталей ГТД, обеспечивая при этом способность работать в агрессивных средах при повышенных температурах (более 1000oC).
Эта задача решается за счет того, что деталь ГТД с металлическим и вторым керамическим слоями согласно изобретению содержит два дополнительных керамических слоя - внешний и внутренний, нанесенный на металлический слой, причем толщина каждого дополнительного керамического слоя 1,0...20 мкм при общей толщине керамических слоев 70...600 мкм.
При этом первый и второй керамические слои образуют плазменным методом соответственно в два этапа, меняя дозировку вводимого порошка оксида, а именно первый этап до полного проплавления порошка оксида, а второй этап при увеличенной дозировке порошка до получения структуры пористостью 5,0...16%. Далее поверхность обрабатывают виброшлифованием, а затем получают третий (внешний) керамический слой методом термоупрочнения поверхности второго керамического слоя.
При решении указанной задачи создается технический результат - образуется защитное 3-слойное керамическое покрытие, имеющее 1 и 3 слои с плотной беспористой структурой, а 2-й (толстый) слой имеет пористость 5,0...16%. Структура первого слоя хорошо согласуется с металлическим слоем по ТКЛР, который, в свою очередь имея в своем составе кобальт, также хорошо согласуется с основой детали.
Металлический слой имеет достаточно гладкую поверхность с оптимальной шероховатостью Ra≥6. Первый керамический слой плотно заполняет микронеровности, прочно сцепляясь с металлом по всей поверхности, а следовательно, имеет повышенную адгезионную прочность на границе металл-керамика. Кроме того, этот керамический слой является барьером, препятствующим проникновению оксидов извне.
Внешний третий слой, также благодаря плотной беспористой структуре, надежно защищает средний более толстый керамический слой, а значит и саму деталь от воздействия агрессивной среды, тем более при высоких температурах порядка 1000oC и выше.
Два тонких керамических слоя (1-й и 3-й) имеют толщину порядка 1,0...20 мкм. Такая толщина может быть проплавлена на весь объем слоя. При больших толщинах полное проплавление слоя не гарантировано, т.е. возможно наличие пор, которые снижают защитные свойства покрытия. При меньших толщинах тонких керамических слоев теряются их защитные свойства.
В зависимости от объема порошка, подаваемого в единицу времени, можно получить керамические слои разной толщины, т.е. такой способ образования покрытия становится регулируемым. Следовательно, можно регулировать свойства покрытия, например пористость слоев.
Внешний тонкий керамический слой можно получить плазменным методом, а также электронно-лучевым, лазерным и с помощью высокотемпературной импульсной плазмы.
На фиг. 1 представлена микроструктура предлагаемой лопатки с покрытием по предлагаемому способу, внешний слой см. фиг. 2; на фиг. 2 - микроструктура лопатки с термоупрочненной наружной поверхностью (третьего) керамического слоя, изготовленной по предлагаемому способу, фото растровым микроскопом; на фиг. 3 - внешний вид лопатки, изготовленной по предлагаемому способу, после термоциклических испытаний; на фиг. 4 - микроструктура лопатки, изготовленной по предлагаемому способу, после термоциклических испытаний N= 20 циклов; на фиг. 5 - внешний вид лопатки с однослойным металлическим покрытием после термоциклических испытаний N=20 циклов; на фиг. 6 - микроструктура лопатки с однослойным металлическим покрытием после термоциклических испытаний N= 20 циклов; на фиг. 7 - внешний вид лопатки с двумя металлическими слоями покрытия после термоциклических испытаний N=20 циклов; на фиг. 8 - микроструктура лопатки с металлическим и одним керамическим слоем без плотных (тонких) керамических слоев, видны пустоты в керамическом слое, ухудшающие адгезию; на фиг. 9 - внешний вид сопловой секции 2-й ступени, все тонкие внутренние керамические слои и все толстые керамические слои получены плазменным путем; на лопатках 1, 2 внешние тонкие керамические слои получены высокотемпературной импульсной плазмой, а на лопатке 3 получены плазмой.
Пример. На лопатку турбины 2-й ступени из жаропрочного сплава типа ЖС наносилось плазменным методом покрытие: металлический слой из сплава на никелевой основе, легированной кобальтом в количестве 20-24%, а также содержащий хром 16-19%, алюминий 11-13,8%, иттрий 0,3-0,8%. Толщина этого слоя по поверхности в пределах 100-250 мкм.
Далее наносился плазменным методом первый керамический (тонкий) слой на основе ZrO2, стабилизированного Y2O3 - 8%. Толщина этого слоя 7-10 мкм. Дозирование порошка оксида циркония 2-3 г/мин. J = 450+20A, U=75+5B.
Затем также плазменным методом наносился второй керамический слой при увеличенном дозировании порошка 5-8 г/мин. Толщина слоя 250 - 350 мкм, J = 450+20A, U=75+5B.
Затем проводилось виброшлифование байколитом в течение 30 мин.
Далее лопатку подвергали термоупрочнению плазменным методом J=500+50A, U=85+2B с образованием третьего (тонкого) слоя толщиной 8-10 мкм.
Полученная по такому способу лопатка испытывалась в окислительной среде по жесткому режиму. Нагрев до температуры 1050oC за время цикла 20 мин с последующим мгновенным охлаждением в проточную воду. Количество таких циклов 20.
После каждого цикла лопатка контролировалась по состоянию покрытия. Замечаний к покрытию не было (см. фиг. 3, 4).
Такому же испытанию подвергались детали турбины с однослойным и двухслойным покрытием (металлическими). После 2-х циклов деталь с однослойным покрытием имела очаговые разрушения глубокого внутреннего окисления. Деталь с двухслойным металлическим покрытием имела такие разрушения после 5-ти циклов, а после 20 циклов покрытие полностью было разрушено (см. фиг. 5, 6, 7).
По результатам испытаний установлено, что стойкость теплозащитного покрытия по предлагаемому способу выше по сравнению с другими способами нанесения покрытий.

Claims (6)

1. Деталь газотурбинного двигателя, выполненная с покрытием из металлического слоя, расположенного на детали, и керамического на основе оксида циркония, отличающаяся тем, что керамическое покрытие выполнено трехслойным, первый слой, расположенный на металлическом слое, и третий слой, внешний, выполнены с плотной беспористой структурой, толщиной 1,0 - 20 мкм каждый, а второй слой выполнен с пористостью 5 - 16%, при этом общая толщина керамических слоев составляет 70 - 600 мкм.
2. Способ изготовления детали газотурбинного двигателя, включающий напыление металлического слоя и керамического на основе оксида циркония, отличающийся тем, что керамическое покрытие образуют из трех слоев, при этом первый слой наносят на металлический слой при дозировке порошка оксида циркония, позволяющей полностью его проплавить, второй слой наносят при дозировке оксида циркония, позволяющей получить пористость 5 - 16%, после чего поверхность обрабатывают виброшлифованием и образуют третий слой путем термоупрочнения поверхности второго слоя.
3. Способ по п. 2, отличающийся тем, что термоупрочнение осуществляют плазменным методом.
4. Способ по п. 2, отличающийся тем, что термоупрочнение осуществляют электронно-лучевым методом.
5. Способ по п. 2, отличающийся тем, что термоупрочнение осуществляют методом высокотемпературной импульсной плазмы.
6. Способ по п. 2, отличающийся тем, что термоупрочнение осуществляют лазерным методом.
RU96113525A 1996-06-25 1996-06-25 Деталь газотурбинного двигателя и способ ее изготовления RU2116377C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96113525A RU2116377C1 (ru) 1996-06-25 1996-06-25 Деталь газотурбинного двигателя и способ ее изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96113525A RU2116377C1 (ru) 1996-06-25 1996-06-25 Деталь газотурбинного двигателя и способ ее изготовления

Publications (2)

Publication Number Publication Date
RU2116377C1 true RU2116377C1 (ru) 1998-07-27
RU96113525A RU96113525A (ru) 1998-11-27

Family

ID=20182815

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96113525A RU2116377C1 (ru) 1996-06-25 1996-06-25 Деталь газотурбинного двигателя и способ ее изготовления

Country Status (1)

Country Link
RU (1) RU2116377C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326470B2 (en) 2004-04-28 2008-02-05 United Technologies Corporation Thin 7YSZ, interfacial layer as cyclic durability (spallation) life enhancement for low conductivity TBCs
US9051652B2 (en) 2009-12-07 2015-06-09 United Technologies Corporation Article having thermal barrier coating
RU2559099C2 (ru) * 2010-06-03 2015-08-10 СНЕКМА Сосьете аноним Измерение повреждения термического барьера лопатки турбины
CN110325666A (zh) * 2017-02-21 2019-10-11 西门子股份公司 用于燃气涡轮发动机的翼型的涂层和施加涂层的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326470B2 (en) 2004-04-28 2008-02-05 United Technologies Corporation Thin 7YSZ, interfacial layer as cyclic durability (spallation) life enhancement for low conductivity TBCs
EP1591550B1 (en) 2004-04-28 2019-11-13 United Technologies Corporation Thermal barrier coating having an interfacial layer for spallation life enhancement and low conductivity
EP1591550B2 (en) 2004-04-28 2023-06-07 Raytheon Technologies Corporation Thermal barrier coating having an interfacial layer for spallation life enhancement and low conductivity
US9051652B2 (en) 2009-12-07 2015-06-09 United Technologies Corporation Article having thermal barrier coating
RU2559099C2 (ru) * 2010-06-03 2015-08-10 СНЕКМА Сосьете аноним Измерение повреждения термического барьера лопатки турбины
CN110325666A (zh) * 2017-02-21 2019-10-11 西门子股份公司 用于燃气涡轮发动机的翼型的涂层和施加涂层的方法

Similar Documents

Publication Publication Date Title
RU2414547C2 (ru) Способ обработки вершины турбинной лопатки, а также обработанная таким способом турбинная лопатка
US10323326B2 (en) Compliant layer for ceramic components and methods of forming the same
RU2442846C2 (ru) Способ защиты детали от высокотемпературной коррозии и деталь, защищенная указанным способом
JP3258599B2 (ja) 断熱バリヤコーティングシステム
JP6908973B2 (ja) 遮熱コーティング、タービン部材、ガスタービン、ならびに遮熱コーティングの製造方法
JPS6037788B2 (ja) セラミツク表面被覆された構造体及びその製造方法
JPH0116962B2 (ru)
JP3872632B2 (ja) 遮熱コーティング材、それを適用したガスタービン部材およびガスタービン
JP2003129210A (ja) 遮熱コーティング材及びガスタービン部材並びにガスタービン
RU2116377C1 (ru) Деталь газотурбинного двигателя и способ ее изготовления
JP2003342751A (ja) 耐熱構造部材およびその製造方法
JP7169077B2 (ja) 遮熱コーティング、タービン部材、ガスタービン及び遮熱コーティングの製造方法
JP2001329358A (ja) 遮熱部材、遮熱部材の製造方法、タービン翼、及び、ガスタービン
EP0508731A2 (en) Use of an oxide coating to enhance the resistance to oxidation and corrosion of a silicon nitride based gas turbine blade
RU2078148C1 (ru) Способ нанесения покрытия на лопатку турбины
JPH0563555B2 (ru)
JPS62210329A (ja) セラミツク被覆耐熱部材及びその製造方法
RU2065505C1 (ru) Лопатка турбины и способ ее изготовления
JPH06101064A (ja) ウィスカーで固定された断熱被覆
JP7275306B2 (ja) 密封システムの安定化ジルコニア
JPH09195067A (ja) 耐熱部品
JPS62211389A (ja) セラミツク被覆タ−ボチヤ−ジヤ−及びその製造方法
JP2008303438A (ja) 遮熱コーティング部材とその製造方法
JPH0978257A (ja) 遮熱被覆材料
WO2021200634A1 (ja) セラミックスコーティング、タービン部材及びガスタービン

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080626

PD4A Correction of name of patent owner
PD4A Correction of name of patent owner
NF4A Reinstatement of patent

Effective date: 20110110

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150626