RU2110590C1 - Способ переработки карбидных отходов твердых сплавов - Google Patents

Способ переработки карбидных отходов твердых сплавов Download PDF

Info

Publication number
RU2110590C1
RU2110590C1 RU96114262A RU96114262A RU2110590C1 RU 2110590 C1 RU2110590 C1 RU 2110590C1 RU 96114262 A RU96114262 A RU 96114262A RU 96114262 A RU96114262 A RU 96114262A RU 2110590 C1 RU2110590 C1 RU 2110590C1
Authority
RU
Russia
Prior art keywords
tungsten
cobalt
electrolyte
electrolysis
carbide
Prior art date
Application number
RU96114262A
Other languages
English (en)
Other versions
RU96114262A (ru
Inventor
А.А. Палант
А.М. Левин
В.А. Брюквин
Original Assignee
Институт металлургии им.А.А.Байкова РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт металлургии им.А.А.Байкова РАН filed Critical Институт металлургии им.А.А.Байкова РАН
Priority to RU96114262A priority Critical patent/RU2110590C1/ru
Application granted granted Critical
Publication of RU2110590C1 publication Critical patent/RU2110590C1/ru
Publication of RU96114262A publication Critical patent/RU96114262A/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Способ переработки карбидных отходов твердых сплавов заключается в их селективном электрохимическом растворении в кислых средах с переходом вольфрама в нерастворимый осадок и переводом кобальта в раствор. Электролиз проводят при 20-25oС с использованием реверсивного переменного тока промышленной частоты. В качестве электролита используют 5-6 М раствор азотной кислоты. Применение реверсивного тока позволяет осуществлять практически полное окисление карбида вольфрама до вольфрамовой кислоты, устраняет негативные явления, связанные с анодной поляризацией и пассивацией электродов, значительно упрощает конструктивное оформление электролиза. 4 табл.

Description

Изобретение относится к регенерации вторичного сырья, в частности, содержащего редкие тугоплавкие металлы.
Производство и потребление твердых сплавов связано с образованием значительного количества отходов, содержащих редкие металлы, причем до 70% и более таких материалов может быть переработано с целью их регенерации.
Наиболее применяемый способ переработки различных марок отходов твердых сплавов (ВК, ТК, ТТК) основан на процессе сплавления с селитрой [1]. Метод характеризуется весьма высокой производительностью и универсальностью. Однако с экологической точки зрения он не отвечает современным требованиям (выделение нитрозных газов). Следует также подчеркнуть и необходимость последующей многостадийной переработки образующегося спека (водное выщелачивание вольфрама, конверсия растворов вольфрама натрия в аммонийные, кислотное разложение кека выщелачивания с извлечением кобальта и т.п.), что серьезно увеличивает затраты на передел и ухудшает качество товарной продукции.
Из других известных методов переработки подобного вида вторичного сырья необходимо отметить так называемый цинковый способ и окислительный процесс [2, 3]. В экологическом отношении эти методы достаточно приемлемы, но низкая производительность, необходимость тщательной сортировки (предварительной) перерабатываемого сырья, а также ограничения, связанные с дальнейшим использованием регенерированных продуктов в соответственных деталях, лимитируют их широкое использование в промышленной практике.
Наиболее близким техническим решением является метод переработки отходов твердых сплавов, основанный на их селективном электрохимическом растворении в кислых электролитах. При этом кобальт переходит в кислый раствор, а вольфрам в виде карбида (WC) накапливается в нерастворимом анодном шламе [4]. Достоинством данного экологически чистого способа является сравнительная простота аппаратурной схемы, низкие капитальные и энергетические затраты.
Недостаток - необходимость последующего обжига карбида вольфрама для получения оксида (WC3).
Образование карбида вольфрама связано с тем, что в процессе электрохимической переработки карбид не успевает окисляться до вольфрамовой кислоты и выпадает в анодный шлам.
Указанный недостаток устраняется, если анодное растворение твердого сплава проводить в режиме переменного (реверсного) тока промышленной частоты, а в качестве электролита использовать растворы азотной кислоты. Применение реверсного тока позволяет не только осуществить практически полное окисление карбида вольфрама до вольфрамовой кислоты (содержание углерода в анодном шламе, представляющего собой вольфрамовую кислоты, не превышает 0,65%), но и существенно повысить выход по току (табл. 1).
Оптимальный режим процесса анодного растворения карбидных отходов твердых сплавов под действием переменного тока промышленной частоты следующий: температура 20-25oC, сила тока до 40 A, состав электролита - 5-6 M раствора азотной кислоты.
Применение в данном случае переменного тока позволяет устранить негативные явления, связанные с анодной поляризацией и пассивацией электродов, использовать вместо выпрямителей обычные автотрансформаторы и значительно упростить конструктивное оформление электролиза.
При прохождении переменного тока перенапряжение катодных и анодных реакций во всех случаях уменьшается, причем энергетические уровни окислительных электродных процессов при переменном токе ниже по сравнению с окислением при постоянном токе. Кроме того, по сравнению с электролизом при постоянном токе электрохимическим реакциям в режиме переменного тока не свойственны диффузионные затруднения.
Таким образом, физико-химическая сущность действия переменного тока заключается в снижении энергии активации электродных реакций за счет изменения самого электродного акта. Применительно к таким металлам, как вольфрам, образующим в растворе сложные полимерные комплексы, уменьшение кажущейся энергии активации электрохимического окисления при переменном токе определяется не только уменьшением диффузионного сопротивления, но и перестройкой гидратной и координационной сфер разряжаемого иона, а также взаимодействием реорганизованной частицы с электродом в его поле.
Оптимальный режим процесса электрохимической переработки карбидных отходов в азотнокислом электролите связан не только с оптимизацией такого важного показателя, как выход по току (табл. 2), но и направлен на предотвращение выделения нитрозных газов.
Известно, что образование оксидов азота зависит от условий процесса (концентрация кислоты, продолжительность, температура) и может протекать с получением оксидов с различной степенью окисления, в пределе до образования молекулярного азота или даже аммиака. Для образования закиси азота и молекулярного в общем случае необходимо применять достаточно разбавленные растворы и невысокие температуры. Поэтому использование электролита, содержащего > 6 M HNO3 нежелательно. С этим же связаны и температурные ограничения процесса - до 25oC (табл. 2).
В предложенном режиме происходит растворение каталитически активной поверхности металла с выделением водорода, который сорбируется на поверхности электрода и восстанавливает оксиды азота, образующиеся при взаимодействии азотной кислоты с оксидной пленкой, растворяемого образца. В результате этого содержание водорода в газовой фазе над электролитом незначительно и нижний предел взрываемости водородно-воздушной смеси не достигается.
В процессе электрохимической переработки карбидных отходов твердых сплавов образуются азотнокислые растворы, содержащие кобальт (табл. 3), и вольфрамовая кислота, переходящая в анодный шлам. Содержание углерода в этом осадке 0,65%, т.е. конверсия карбида вольфрама в вольфрамовую кислоту достигает > 90%.
Кислые кобальтовые растворы содержат до 0,6-0,7 г/л железа, от которого необходима очистка для получения товарного оксида кобальта. Наличие железа в этих растворах определяется его накоплением в электролите при растворении карбидных отходов, содержащих в среднем до 0,025% железа, что иллюстрируется в табл. 3.
Потери вольфрама с кислым электролитом незначительны (табл. 3) и составляют <0,1%. Очистку азотнокислых растворов от железа осуществляли гидролитическим методом, нейтрализацией аммиачной водой до pH 3,5-4,0. После фильтрации пульпы из очищенного раствора осаждали оксалат кобальта по стандартной методике, добавлением оксалата аммония. Расход осадителя: 3 г оксалата на 1 г Co. Осадок прокаливали до оксида кобальта с получением товарного оксида, отвечающего требованиям ТУ, для производства твердых сплавов (табл. 4).
Осадок вольфрамовой кислоты после его промывки также является товарным продуктов для нужд твердосплавного производства или других целей. При анодном растворении отходов твердых сплавов марок ТК и ТТК вместе с вольфрамом в анодный шлам переходит и диоксид титана. Поэтому в этом случае проводили перекристаллизацию вольфрамовой кислоты по общепринятой схеме: растворение в аммиачной воде - упарка - осаждение кристаллов паравольфрамата аммония (ПВА).
При переработке танталсодержащих отходов (марки ТТК) после аммиачного выщелачивания вольфрама из анодного шлама, в кеке концентрация тантала повышается до 10-50% (остальное титан) в зависимости от марки твердого сплава. Извлечение тантала из такого богатого концентрата не представляет сложностей и может быть основано на его разложении плавиковой кислотой с последующим осаждением технического осадка тантала из раствора аммиаком или другим подобным реагентом.
Пример 1. На электрохимическую переработку поступает сплав марки ВК-6, содержащий 94% карбида вольфрама и 6% кобальта. Режим электролиза: переменный ток 50 Гц, напряжение 2 B, сила тока 2 A, продолжительность 12 ч, электролит - 5 M раствор азотной кислоты, температура 23,5oC.
Выход по току составил 87%. Полученные раствор кобальта и вольфрамовая кислота переработаны по вышеописанной методике с получением товарных продуктов.
Пример 2. На переработку поступает сплав марки TT10K8, содержащий 82% карбида вольфрама, 3% карбида титана и 8% кобальта.
Режим электролиза: переменный ток 50 Гц, напряжение 8 B, сила тока 4 A, продолжительность 8 ч, температура 22oC, электролит - 6 M раствор азотной кислоты.
Выход по току составил 72,5%. Из кислого раствора после очистки от железа (табл. 3) осажден оксалат кобальта. Осадок прокаливали с получением товарного оксида кобальта (табл. 4).
Анодный шлам выщелачивали аммиаком и осаждали ПВА методом упарки. После прокалки был получен оксид вольфрама следующего качества (в %): железо < 0,01; медь 0,0045; молибден < 0,01; натрий < 0,001; кальций 0,01; марганец < 0,006; магний < 0,01; кремний 0,006.
Кек выщелачивания содержал > 10% Ta, около 0,5% вольфрама, 0,01% кобальта, 0,01% железа, основа - диоксид титана. Извлечение Ta из данного концентрата проводили разложением фтористоводородной кислотой и последующим осаждением технического оксида тантала аммиачной водой.
Список литературы:
1. New process for reclaiming tunsten scrap / Brooker Kenneth J.A. // Int. J. Refract. Metals and Hard Mater. - 1990. - 9. N 3 - C 121-122.
2. Переработка отходов твердосплавного производства "цинковым методом / Чистяков В.А., Попов В.А. // Цв. металлы.- 1991. - N 2. - С. 47-48.
3. Способ регенерации карбидсодержащих отходов твердых сплавов: А.С. 778285. МКИ C 22 B 7/00, B 22 F 1/00 / Дейнека С.С., Доронькин Е.Д. и др. - N 2333024/02. Заявл. 09.03.76. Опубл. Б.И. N 25 от 23.06.91.
4. Reclamation of cementeed carbide scrap by selective electrolytic dissolution process / Dai Enzhong // Recyol. Metalliferaus Mater. Pap. Mater Conf., Birmingham, 23-25 Apr., 1990.- London.- C. 67-73.

Claims (1)

  1. Способ переработки карбидных отходов твердых сплавов селективным электрическим растворением в кислых средах с переводом вольфрама в нерастворимый осадок и переходом кобальта в раствор, отличающийся тем, что в качестве электролита используют 5 - 6 М растворы азотной кислоты, а электролиз проводят при 20 - 25oС с применением реверсного тока промышленной частоты.
RU96114262A 1996-07-11 1996-07-11 Способ переработки карбидных отходов твердых сплавов RU2110590C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96114262A RU2110590C1 (ru) 1996-07-11 1996-07-11 Способ переработки карбидных отходов твердых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96114262A RU2110590C1 (ru) 1996-07-11 1996-07-11 Способ переработки карбидных отходов твердых сплавов

Publications (2)

Publication Number Publication Date
RU2110590C1 true RU2110590C1 (ru) 1998-05-10
RU96114262A RU96114262A (ru) 1998-10-10

Family

ID=20183276

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96114262A RU2110590C1 (ru) 1996-07-11 1996-07-11 Способ переработки карбидных отходов твердых сплавов

Country Status (1)

Country Link
RU (1) RU2110590C1 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312686A3 (de) * 2001-11-14 2003-10-08 H.C. Starck GmbH Verfahren zum elektrochemischen Aufschluss von Superlegierungsschrotten
CN1314818C (zh) * 2005-08-31 2007-05-09 段立成 从废旧硬质合金中提取稀有金属的方法
CN1332045C (zh) * 2006-03-22 2007-08-15 成都汉基投资有限公司 一种水热法从废旧硬质合金中回收金属的方法
RU2447165C2 (ru) * 2006-06-30 2012-04-10 Х.К. Штарк Гмбх Способ рекуперации ценных металлов из суперсплавов (варианты)
CN102808086A (zh) * 2012-08-31 2012-12-05 北京工业大学 一种水热法回收废旧硬质合金制备超细氧化钨纳米粉末的方法
RU2479652C1 (ru) * 2011-12-21 2013-04-20 Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН Способ электрохимической переработки металлических отходов сплавов вольфрам-медь
RU2480529C1 (ru) * 2012-03-05 2013-04-27 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов
RU2484159C1 (ru) * 2012-04-12 2013-06-10 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук Способ электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы
RU2489504C2 (ru) * 2011-10-24 2013-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУВПО "КнАГТУ") Способ утилизации отходов твердых сплавов, содержащих карбид вольфрама и кобальт в качестве связующего
RU2542182C1 (ru) * 2013-10-11 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ) Способ извлечения никеля при электрохимической переработке жаропрочных никелевых сплавов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Reclamation of cementeed carbide scrap by selective electrolytic dissolution process (Pai Enzhong) Recyol. Metalliferaus Mater. Pap Recyol. Metalliferaus Mater. Conf. Birminghanu. 23 - 25 Anp. 1990, London, c. 67 - 73. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312686A3 (de) * 2001-11-14 2003-10-08 H.C. Starck GmbH Verfahren zum elektrochemischen Aufschluss von Superlegierungsschrotten
CN1314818C (zh) * 2005-08-31 2007-05-09 段立成 从废旧硬质合金中提取稀有金属的方法
CN1332045C (zh) * 2006-03-22 2007-08-15 成都汉基投资有限公司 一种水热法从废旧硬质合金中回收金属的方法
RU2447165C2 (ru) * 2006-06-30 2012-04-10 Х.К. Штарк Гмбх Способ рекуперации ценных металлов из суперсплавов (варианты)
RU2489504C2 (ru) * 2011-10-24 2013-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУВПО "КнАГТУ") Способ утилизации отходов твердых сплавов, содержащих карбид вольфрама и кобальт в качестве связующего
RU2479652C1 (ru) * 2011-12-21 2013-04-20 Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН Способ электрохимической переработки металлических отходов сплавов вольфрам-медь
RU2480529C1 (ru) * 2012-03-05 2013-04-27 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов
RU2484159C1 (ru) * 2012-04-12 2013-06-10 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук Способ электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы
CN102808086A (zh) * 2012-08-31 2012-12-05 北京工业大学 一种水热法回收废旧硬质合金制备超细氧化钨纳米粉末的方法
CN102808086B (zh) * 2012-08-31 2014-07-16 北京工业大学 一种水热法回收废旧硬质合金制备超细氧化钨纳米粉末的方法
RU2542182C1 (ru) * 2013-10-11 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ) Способ извлечения никеля при электрохимической переработке жаропрочных никелевых сплавов

Similar Documents

Publication Publication Date Title
JP5469157B2 (ja) 鉄リッチ硫酸塩廃棄物、採鉱残留物、および酸洗い液から金属鉄および硫酸の有価分を回収するための電気化学プロセス
RU2110590C1 (ru) Способ переработки карбидных отходов твердых сплавов
CN111278997A (zh) 由各种供给材料生产钴及相关氧化物的方法
CN101109043A (zh) 一种处理铜钴合金的方法
JP2021070843A (ja) 廃リチウムイオン電池からの銅、ニッケル、コバルトの回収方法
JP5568977B2 (ja) 電池からのマンガンの回収方法
JP4506002B2 (ja) 使用済みニッケル水素二次電池からの有価金属回収方法
CN111477986A (zh) 一种电解硫酸钠废液制备三元锂离子电池前驱体的方法
JP6314730B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
US11566333B2 (en) Method for cleanly extracting metallic silver
JP4215547B2 (ja) コバルトの回収方法
US3983018A (en) Purification of nickel electrolyte by electrolytic oxidation
CN112624486A (zh) 含砷污酸废水的氧化处理工艺
RO132597B1 (ro) Procedeu de recuperare a metalelor preţioase din deşeuri electrice şi electronice prin dizolvare anodică în lichide ionice
KR100686985B1 (ko) 니켈폐액 및 수산니켈슬러지에서 니켈 회수방법
RU2167213C1 (ru) Способ совместного извлечения платины и рения из отработанных платинорениевых катализаторов
SE540566C2 (en) Purification of tungsten carbide compositions
CN114875252A (zh) 一种含钨废料的回收方法
CN113621835A (zh) 一种基于萃取-沉淀结合高效除钼的方法
RU2146720C1 (ru) Способ переработки вторичных материалов
FI66920B (fi) Framstaellning av klorfria koboltelektrolyter
CN111286615B (zh) 一种从Fe-PGMs合金中分离PGMs的方法
JP3504813B2 (ja) ニッケル水素二次電池からの有価金属回収方法
CN114702017B (zh) 一种提锂渣制取磷酸铁的方法
RU2778336C1 (ru) Способ извлечения платиновых металлов из катализаторов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060712