RU2102818C1 - Полевой транзистор с p-n переходом и способ его изготовления - Google Patents

Полевой транзистор с p-n переходом и способ его изготовления Download PDF

Info

Publication number
RU2102818C1
RU2102818C1 SU5037580A RU2102818C1 RU 2102818 C1 RU2102818 C1 RU 2102818C1 SU 5037580 A SU5037580 A SU 5037580A RU 2102818 C1 RU2102818 C1 RU 2102818C1
Authority
RU
Russia
Prior art keywords
transistor
conductivity
source
gate
impurity
Prior art date
Application number
Other languages
English (en)
Inventor
Соломон Давидович Эдлин
Original Assignee
Соломон Давидович Эдлин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Соломон Давидович Эдлин filed Critical Соломон Давидович Эдлин
Priority to SU5037580 priority Critical patent/RU2102818C1/ru
Application granted granted Critical
Publication of RU2102818C1 publication Critical patent/RU2102818C1/ru

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Использование: микроэлектроника, вертикальные полевые транзисторы с р-п переходом и технология их изготовления. Сущность изобретения: в полевом транзисторе с р-n переходом эпитаксиальный слой лигирован примесям первого или первого и второго типов проводимости. Электрод истока сформирован анизотропным травлением слоя, расположенного поверх эпитаксиального слоя и выполненного из проводящего материала, содержащего примесь первого типа проводимости. Затвор сформирован имплантацией примеси второго типа проводимости в окно электрода истока, канал сформирован с помощью имплантации примеси первого типа проводимости в то же окно и боковой диффузии. Изоляция сформирована на боковых поверхностях электрода истока. 2 с. и 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к микроэлектронике, а именно к вертикальным полевым транзисторам с р-n переходом.
Известен полевой транзистор с р-n переходом, содержащий подложку с электродом стока, эпитаксиальный слой, электроды затвора и исток, сформированные в эпитаксиальном слое затвор, исток и канал. Транзистор имеет триодные характеристики. Недостатками этого транзистора являются малая крутизна, низкая предельная частота. Желательно увеличение максимального тока транзистора.
Известен полевой транзистор с р-n переходом, содержащий затвор и сток, имплантацией примесей. Недостатками этого транзистора являются малая крутизна, предельная частота и максимальный ток, а также большая зависимость параметров от точности литографии.
Известен полупроводниковый прибор, который может работать как полевой транзистор с р-n переходом или как биполярный транзистор с обедненной базой. Он имеет те же недостатки, что связано с небольшой концентрацией примесей в канале, большой толщиной канала, большой длиной канала и отсутствием градиента концентраций примеси поперек канала.
Наиболее близким устройством к предлагаемому является полевой транзистор с р-n переходом, содержащий подложку первого типа проводимости с электродом стока, затвор и дополнительный затвор, сформированные с помощью имплантации ионов индия в окна в слое окисла кремния, исток, сформированный диффузией фосфора в окно в слое окисла кремния, и расположенный над дополнительным затвором, канал, электроды истока и затвора. Недостатками данного транзистора также являются недостаточные крутизна, предельная частота и максимальный ток, а также большая зависимость параметров от точности литографии.
Известен способ изготовления горизонтального р-n-р транзистора с самосовмещенным эмиттером, включающий диффузию донорной и акцепторной примесей в окно маски. Распределение примеси в р-n-р транзисторе в горизонтальном сечении аналогично распределению примеси в некоторых вариантах предлагаемого полевого транзистора. Недостатками способа является то, что он не позволяет провести дальнейшее существенное увеличение градиента концентрации примеси, уменьшение толщины базы, увеличение предельной частоты и уменьшение площади структуры по сравнению с приведенными в работе параметрами (при заданной разрешающей способности литографии).
Наиболее близкий к предлагаемому способ изготовления полевого транзистора с р-n переходом включает формирование слоя окисла кремния, образование затвора и дополнительного затвора с помощью имплантации ионов индия, маскирование затвора, формирование истока, канала, и дополнительного затвора с помощью диффузии фосфора, металлизацию. Недостатками данного способа является то, что он не позволяет провести дальнейшее существенное повышение концентрации примеси в канале, уменьшение толщины и длины канала, увеличение крутизны, предельной частоты и максимального тока транзистора, а также большая зависимость параметров транзистора от точности литографии.
Примечание. Так как данный патент включает несколько вариантов транзистора и способа изготовления транзистора, описан прототип транзистора и способа изготовления для относительно "сложного" транзистора с дополнительным затвором, а в формуле изобретения описаны не все варианты.
Результатом данного технического решения является возможность изготовить транзистор, имеющий высокую концентрацию примеси в канале, малые длину и толщину канала, высокие крутизну, предельную частоту и максимальный ток, а также уменьшить зависимость параметров транзистора от точности литографии и количество технологических операций, в частности, литографий.
Технический результат достигается тем, что в полевом транзисторе с р-n переходом, содержащем подложку первого типа проводимости с электродом стока, электроды истока и затвора, изоляцию, сформированные в кремнии исток, канал и затвор, причем затвор сформирован имплантацией примеси второго типа проводимости в окно маски, на подложке расположен эпитаксиальный слой, легированный примесью первого типа проводимости, электрод истока сформирован анизотропным травлением проводящего слоя, расположенного поверх эпитаксиального слоя, на боковых поверхностях электрода истока сформирована изоляция.
Технический результат достигается тем, что эпитаксиальный слой легирован примесями первого и второго типов проводимости, под истоком транзистора расположен дополнительный затвор, а канал транзистора сформирован имплантацией примеси первого типа проводимости в то же окно маски и боковой диффузией.
Технический результат достигается тем, что в способе изготовления полевого транзистора с р-n переходом, включающем формирование маски поверх монокристалического кремния, формирование затвора имплантацией примеси второго типа проводимости в окно маски, формирование истока и канала, металлизацию, на подложку наращивают эпитаксиальный слой, легированный примесью первого типа проводимости, поверх эпитаксиального слоя наращивают проводящий слой, состоящий из одного или двух различных материалов, формируют электрод истока анизотропным травлением слоя из проводящего материала, наносят изолирующий окисел, травят изолирующий окисел, оставляя его на боковых поверхностях электрода истока, а исток формируют термообработкой.
Технический результат достигается тем, что канал транзистора формируют с помощью имплантации примеси первого типа проводимости в то же окно маски и боковой диффузии.
В основе предлагаемого способа изготовление транзистора лежат следующие факторы:
электрод истока транзистора служит маской для формирования транзистора и может являться источником примеси для формирования истока транзистора;
имплантированная в аморфную подложку через окно маски с вертикальными краями легирующая примесь занимает в нулевом приближении одинаковую область при одинаковой средней глубине независимо от вида имплантируемых ионов;
область, занимаемая каждой из примесей, может быть изменена за счет разориентации подложки, каналирования, совместной диффузии.
В первом приближении следует учитывать отклонения от кривой Гаусса, различные для легких и тяжелых ионов, различия нормальных и поперечных дисперсий, взаимозависимости скорости диффузии при совместной диффузии донорной и акцепторной примесей, изменение скорости диффузии при быстром термическом отжиге. Имплантацией примесей при различных энергиях и дозах можно скорректировать форму областей затвора и канала и оптимизировать параметры транзисторов.
Для изготовления полевого транзистора с n-каналом используют, например, в качестве легирующей примеси индий или бор для затвора, фосфор или мышьяк для канала. Для изготовления р-канального транзистора используют, например, в качестве легирующей примеси мышьяк или фосфор для затвора, бор или алюминий для канала. Параметры транзистора в значительной степени зависят от количества примеси в канале, особенно на границе со слаболегированной областью стока. Параметры транзистора могут быть улучшены, если при формировании затвора использовать каналирование. Концентрацию примеси в дополнительном затворе выбирают значительно меньшей концентрации примеси в канале, так что она слабо влияет на количество примеси в канале и пороговое напряжение транзистора. Влияние потенциала дополнительного затвора на ток, протекающей по каналу, невелико. Предлагаемый способ позволяет изготовить транзистор с толщиной канала около 0,1 мкм. Пороговое напряжение транзистора может быть сделано равным, например, 0,6 В. В этом случае термостабильная точка находится вблизи нуля. Температурный коэффициент порогового напряжения около 2 мВ/град. Для улучшения параметров транзистора следует уменьшить сопротивление проводящего слоя за счет использования тугоплавких металлов, несмотря на некоторое усложнение технологии. Для формирования электродов транзистора могут использоваться, например, легированный поликремний, вольфрам, силицид вольфрама, борид иттрия, нитрид вольфрама, борид иттрия-молибден (Между боридом иттрия и молибденом следует разместить слой окисла кремния со средней толщиной 2 нм. При этом ток будет протекать в тех местах, где толщина слоя окисла кремния 1 нм и меньше).
Сопоставительный анализ полевого транзистора с р-n переходом с прототипом показывает, что он отличается тем, что на подложке расположен эпитаксиальный слой, легированный примесью первого типа проводимости, электрод истока сформирован анизотропным травлением проводящего слоя, расположенного поверх эпитаксиального слоя, на боковых поверхностях электрода истока сформирована изоляция.
Сопоставительный анализ показывает, что полевой транзистор с р-n переходом отличается тем, что эпитаксильный слой легирован примесями первого и второго типов проводимости, под истоком транзистора расположен дополнительный затвор, а канал транзистора сформирован имплантацией примеси первого типа проводимости в то же окно маски и боковой диффузией.
Сопоставительный анализ способа изготовления полевого транзистора с р-n переходом с прототипом показывает, что он отличается тем, что на подложку наращивают эпитаксиальный слой, легированный примесью первого типа проводимости, поверх эпитаксиального слоя наращивают проводящий слой, состоящий из одного или двух различных материалов, формируют электрод истока анизатропным травлением слоя из проводящего материала, наносят изолирующий окисел, травят изолирующий окисел, оставляя его на боковых поверхностях электрода истока, а исток формируют термообработкой.
Сопоставительный анализ способа изготовления полевого транзистора с р-n переходом с прототипом показывает, что он отличается тем, что канал транзистора формируют с помощью имплантации примеси первого типа проводимости в то же окно маски и боковой диффузии.
Таким образом, заявленные полевой транзистор с р-n переходом и способ его изготовления (варианты) соответствуют критерию "новизна".
Не подтверждена известность влияния отличительных признаков на технический результат, что подтверждает критерий "изобретательский уровень".
В материалах заявки указано назначение изобретения, указаны средства и методы для его осуществления, возможна реализация назначения, что говорит о промышленной применимости.
На фигуре 1 представлена структура полевого транзистора с р-n переходом; на фигуре 2 топология транзистора с электродами гребенчатой формы; на фигуре 3 топология "многозатворного" транзистора.
Полевой транзистор с р-n переходом содержит подложку 1 с электродом стока 2, эпитаксиальный слой 3 (слаболегированная область стока) дополнительный затвор 4, поликремниевую часть электрода истока 5, затвор 6, канал 7, исток 8, изолирующий окисел 9, силицидную часть электрода истока 1, электрод затвора 11.
12 месторасположение вывода истока транзистора с гребенчатыми электродами.
13 месторасположение вывода затвора транзистора с гребенчатыми электродами.
14 затвор "многозатворного" транзистора.
15 места расположения выводов истока "многозатворного" транзистора.
n канальный полевой транзистор с р-n переходом может быть сформирован, например, следующим образом: в качестве подложки используется монокристаллический кремний ЭКЭС-0,01, легированный сурьмой с удельным сопротивлением 0,01 Ом•см. Проводится "собственное геттерирование", для чего проводится отжиг при температуре 1050oC в атмосфере азота, а затем при температуре 800oC. На поверхность наращивается эпитаксиальный слой 3 n-типа разложением силана при температуре 1000oC. Скорость роста 0,7 мкм/мин. Концентрация примесей 1016 см-3. Легирующий газ фосфин PH3. Толщина слоя 4 мкм. Эпитаксиальный слой легируется имплантацией индия для образования р-слоя с концентрацией порядка 1017 см-3 с энергией 1,2 МэВ 700 КэВ дозой 1013 см-2 и 5•1012 см-2 соответственно. На поверхность эпитаксиального слоя наращивается слой поликристаллического кремния 5, легированного фосфором при температуре 650oC.
Концентрация примеси 1020 см-3. Толщина слоя 0,8 мкм. С помощью фотолитографии формируется электрод истока 5 транзистора гребенчатой формы с помощью сухого анизотропного травления в плазме С2F6- CL2. Проводится предаморфизация имплантацией индия с энергией 150 кэв. Доза 1014 см-2. Формируется затвор 6 имплантацией индия с энергией 1,0 МэВ, 600 кэв, 350 кэв. Концентрация примеси в центрах областей 3•1019см-3. Имплантируется фосфор с энергией 200 кэв, 330 кэв. Концентрация примеси в центрах областей 1019см-3 и 5•1018 см-3. соответственно. На поверхность наращивается слой окисла разложением тетраэтоксисилана при температуре 750oC. Толщина слоя 0,3 мкм. Формирует канал 7 и исток 8 при температуре 1050oC. Время обработки около 30 мин. С помощью сухого анизатропного травления в плазме CHF3 формируется изолирующий окисел 9 на боковой поверхности электрода истока. Наращивается слой вольфрама с помощью разложения WF6 в среде H2 при температуре 350oC для формирования электродов истока 10 и затвора 11.
Примечание. Введя небольшие изменения в технологию, можно изготовить "многозатворный" транзистор, параметры которого лучше, чем параметры транзистора с гребенчатыми электродами.
Предлагаемый транзистор может быть изготовлен как на современном, так и на относительно устаревшем, широкораспространенном оборудовании.

Claims (4)

1. Полевой транзистор с p-n-переходом, содержащий подложку первого типа проводимости с электродом стока, электроды истока и затвора, изоляцию, сформированные в кремнии исток, канал и затвор, причем затвор сформирован имплантацией примеси второго типа проводимости в окно маски, отличающийся тем, что на подложке расположен эпитаксиальный слой, легированный примесью первого типа проводимости, электрод истока сформирован анизотропным травлением проводящего слоя, расположенного поверх эпитаксиального слоя, на боковых поверхностях электрода истока сформирована изоляция.
2. Транзистор по п.1, отличающийся тем, что эпитаксиальный слой легирован примесями первого и второго типов проводимости, под истоком транзистора расположен дополнительный затвор, а канал транзистора сформирован имплантацией примеси первого типа проводимости в то же окно маски и боковой диффузией.
3. Способ изготовления полевого транзистора с p-nпереходом, включающий формирование маски поверх монокристаллического кремния, формирование затвора имплантацией примеси второго типа проводимости в окно маски, формирование истока и канала, металлизацию, отличающийся тем, что на подложку наращивают эпитаксиальный слой, легированный примесью первого типа проводимости, поверх эпитаксиального слоя наращивают проводящий слой, состоящий из одного или двух различных материалов, формируют электрод истока анизотропным травлением слоя из проводящего материала, наносят изолирующий окисел, травят изолирующий окисел, оставляя его на боковых поверхностях электрода истока, а исток формируют термообработкой.
4. Способ по п.3, отличающийся тем, что канал транзистора формируют с помощью имплантации примеси первого типа проводимости в то же окно маски и боковой диффузии.
SU5037580 1992-04-15 1992-04-15 Полевой транзистор с p-n переходом и способ его изготовления RU2102818C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5037580 RU2102818C1 (ru) 1992-04-15 1992-04-15 Полевой транзистор с p-n переходом и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5037580 RU2102818C1 (ru) 1992-04-15 1992-04-15 Полевой транзистор с p-n переходом и способ его изготовления

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
SU05026412 Addition 1991-11-13

Publications (1)

Publication Number Publication Date
RU2102818C1 true RU2102818C1 (ru) 1998-01-20

Family

ID=21601982

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5037580 RU2102818C1 (ru) 1992-04-15 1992-04-15 Полевой транзистор с p-n переходом и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2102818C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757177C1 (ru) * 2021-02-15 2021-10-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Способ изготовления силицидных контактов из вольфрама

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Блихер А. Физика силовых биполярных и полевых транзисторов. - Л.: Энергоатомиздат, 1986, с.174. 2. Кремлев В.Я. и др. Взаимосвязь конструктивных и технологических параметров нормальнозакрытого полевого транзистора с управляющим р-n переходом. Электронная техника. Сер. 3. Микроэлектроника, 1986, вып.2. 3. J.M.Stork at all. Small geometry depleted base bipolar transistor (BSIT) VLSI devices JEEE Transactions on electron devices. ЕД-28, 1981, N 11, p.1354. 4. *
5. Безбородков Б.А. и др. Экспериментальное исследование горизонтальных p-n-p транзисторов с самосовмещенным эмиттером. Электронная техника. Сер.3. Микроэлектроника, 1981, вып.2, с.3. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757177C1 (ru) * 2021-02-15 2021-10-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Способ изготовления силицидных контактов из вольфрама

Similar Documents

Publication Publication Date Title
US9735270B2 (en) Semiconductor transistor having a stressed channel
JP3032138B2 (ja) 高密度mos型電力装置の製造方法およびこの方法により製造された高密度mos型電力装置
JP3704164B2 (ja) 浅い半導体接合の形成方法
US4749441A (en) Semiconductor mushroom structure fabrication
EP0198335B1 (en) Graded extended drain concept for reduced hot electron effect
US5668021A (en) Process for fabricating a semiconductor device having a segmented channel region
US4038107A (en) Method for making transistor structures
US5472888A (en) Depletion mode power MOSFET with refractory gate and method of making same
EP0137645A2 (en) Method of forming a shallow N-type region
US4841347A (en) MOS VLSI device having shallow junctions and method of making same
JPS6336147B2 (ru)
US5227315A (en) Process of introduction and diffusion of platinum ions in a slice of silicon
EP0229362A2 (en) Semiconductor device and method of fabrication
US4546375A (en) Vertical IGFET with internal gate and method for making same
JPH05251709A (ja) ソース・ベース間短絡部を有する電力用mos−fetおよびその製造方法
EP0459398A2 (en) Manufacturing method of a channel in MOS semiconductor devices
US6593640B1 (en) Bipolar transistor and methods of forming bipolar transistors
US4362574A (en) Integrated circuit and manufacturing method
JP2633873B2 (ja) 半導体BiCMOS装置の製造方法
KR100650901B1 (ko) 매립 게이트를 갖는 금속 산화물 반도체 트랜지스터
JPS5893279A (ja) 半導体装置の製造方法
RU2102818C1 (ru) Полевой транзистор с p-n переходом и способ его изготовления
JPH09219520A (ja) トランジスタ及びその製造方法
JPH0766146A (ja) 半導体装置の製造方法
JPH08321603A (ja) 電界効果型半導体装置およびその製造方法