RU2089283C1 - Био-, гемосовместимые сорбенты на основе сверхсшитых полимеров стирола с модифицированной поверхностью, способ их получения (варианты) и способ получения матрицы сорбента - Google Patents

Био-, гемосовместимые сорбенты на основе сверхсшитых полимеров стирола с модифицированной поверхностью, способ их получения (варианты) и способ получения матрицы сорбента Download PDF

Info

Publication number
RU2089283C1
RU2089283C1 RU9696104844A RU96104844A RU2089283C1 RU 2089283 C1 RU2089283 C1 RU 2089283C1 RU 9696104844 A RU9696104844 A RU 9696104844A RU 96104844 A RU96104844 A RU 96104844A RU 2089283 C1 RU2089283 C1 RU 2089283C1
Authority
RU
Russia
Prior art keywords
polymer
granules
microporous
hypercrosslinked
matrix
Prior art date
Application number
RU9696104844A
Other languages
English (en)
Other versions
RU96104844A (ru
Inventor
В.А. Даванков
М.П. Цюрупа
Л.А. Павлова
Д.Р. Тур
Original Assignee
Научно-исследовательская фирма "Ультрасан"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27170473&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2089283(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Научно-исследовательская фирма "Ультрасан" filed Critical Научно-исследовательская фирма "Ультрасан"
Priority to RU9696104844A priority Critical patent/RU2089283C1/ru
Priority to US08/756,445 priority patent/US5773384A/en
Priority to EP97918683A priority patent/EP0888178A4/en
Priority to PCT/US1997/006377 priority patent/WO1997035660A1/en
Application granted granted Critical
Publication of RU2089283C1 publication Critical patent/RU2089283C1/ru
Priority to CA002217139A priority patent/CA2217139A1/en
Publication of RU96104844A publication Critical patent/RU96104844A/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3225Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating involving a post-treatment of the coated or impregnated product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3251Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3679Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by absorption

Abstract

Изобретение относится к области синтеза сорбентов, которые могут быть использованы в медицине для экстракорпональной очистки крови, плазмы и других биологических жидкостей от эндогенных и экзогенных токсинов. Предложены био-, гемосовместимые сорбенты на основе сверхсшитых полимеров стирола с модифицированной поверхностью, содержащие микропористые или биопористые гранулы матрицы - сверхсшитого полистирола с удельной площадью поверхности 1400 - 1900 м2/г и модификатор, выбранный из группы: поли (N-трифторалкокси) фосфазен, хитозан, гепарин, полиэтиленгликоль и биолипидные фрагменты. Предложен способ получения полимерной матрицы - сверхсшитого полистирола с удельной поверхностью 1400 - 1900 м2/г. Предложено пять способов получения биогемосовместимых сорбентов путем поверхностной модификации полученной матрицы. 7 с. и 7 з.п. ф-лы.

Description

Изобретение относится к синтезу сорбентов, которые могут быть использованы в медицине для экстракорпоральной очистки крови, плазмы и других биологических жидкостей от эндогенных и экзогенных токсинов.
Известен способ получения гемосовместимых сорбентов на основе угля с полупроницаемым покрытием, полученным полимеразацией различных гидрофильных мономеров, в частности 2-оксиэтилметакрилата и акриламида. Способ предполагает включение в покрытие гепарина для снижения агрегации тромбоцитов [1] Недостатком способа является то, что тонкие гидрофильные покрытия оказываются непрочными, а толстые замедляют диффузию и ухудшают сорбционные свойства угля.
Наиболее близким по технической сущности и достигаемому результату являются полимерные сорбенты на основе сверхсшитого полистирола, способ получения матрицы сорбента и способы модификации, предусматривающие щелочной гидролиз всех имеющихся хлорметильных групп или замещение полиэтиленгликольными цепями методом переэтерификации, а также нанесение полимерного покрытия (полиоксиэтилметакрилат или ацетат целлюлозы, или коллодий, или альбумин) [2]
Недостатком полученного материала является относительно невысокая площадь поверхности, она не достигает 1400 м2/г, а главным недостатком способа получения сорбентов является ступенчатый нагрев, что приводит к падению скорости реакции и в результате дает снижение величины удельной поверхности, а также делает процесс нетехнологичным.
Задачей изобретения является разработка биогемосовместимых сорбентов на основе сверхсшитого полистирола с более развитой площадью поверхности и способов их получения и модификации, позволяющих производить сорбенты с площадью поверхности до 1900 м2/г, обладающие пониженной неспецифической сорбцией белков без заметного изменения доступности адсорбционной поверхности сорбента для малых и средних молекул токсинов.
Поставленная задача решается описываемыми био-, гемосовместимыми сорбентами на основе сверхсшитых полимеров стирола с модифицированной поверхностью, при этом в качестве основы они содержат гранулы микропористого или бипористого сверхсшитого полистирола с удельной поверхностью 1400 1900 м2/г, а в качестве модификатора они содержат поли(N-трифторалкокси)фозфазен или хитозан, или гепарин, или полиэтиленгликоль, или биолипидные фрагменты.
Поставленная задача решается также описываемыми способами их получения. Способы предусматривают получение био-, гемосовместимых сорбентов на основе матрицы сверхсшитых полимеров стирольного типа, включающее обработку гранул микропористого или бипористого полимера с внутренней поверхностью 1400 1900 м2/г модифицирующими химическими реагентами.
Модификация поверхности гранул включает пять принципиально различных подходов повышения гемосовместимости полимерного материала.
Первый способ предусматривает обработку гранул сверхсшитого микропористого или бипористого полимера полистирольного типа раствором поли-(N-трифторалкокси)фосфазена в органическом растворителе с последующим испарением растворителя.
Второй способ предусматривает обработку гранул микропористого или бипористого сверхсшитого полимера полистирольного типа раствором хитозана с хлорметильными группами полистирола.
Третий способ предусматривает обработку гранул микропористого или бипористого сверхсшитого полимера полистерольного типа 2-этаноламином, протонирование полученного производного и электростатического связывание гепарина из его водного раствора с получением ионного комплекса полимера с гепарином. Кроме того, ионный комплекс полимера с гепарином можно дополнительно обработать глутаровым альдегидом, а затем Л-аспарагиновой кислотой.
Помимо этого, ионный комплекс полимера с гепарином может быть подвергнут взаимодействию с гексаметилендиизоцианатом, а затем с трис-триметилсилил-Л-аспаргиновой кислотой и водой.
Четвертый способ получения гемосовместимых сорбентов включает модификацию гранул микропористого или бипористого сверхсшитого полимера полистирольного типа путем ковалентного связывания гибкого гидрофильного полимера типа полиэтиленгликоля.
При этом ковалентное связывание гидрофильного полимера возможно осуществить следующими путями:
последовательной обработкой гранул 2-этаноламином, глутаровым альдегидом и полиэтиленгликолем;
последовательной обработкой гранул 2-этаноламином, гексаметилендиизоцианатом и полиэтиленгликолем;
последовательной обработкой гранул этиленгликолем, гексаметилендиизоцианатом и полиэтиленгликолем;
последовательной обработкой гранул этиленгликолем, глутаровым альдегидом и полиэтиленгликолем;
путем обработки гранул алкоголятами полиэтиленгликоля.
Пятый способ получения включает обработку гранул микропористого или бипористого сверхсшитого полимера полистирольного типа реагентами, вводящим 2-этаноламинные или этиленгликольные остатки, активирование хлорокисью фосфора и иммобилизацию специфических биолипидных фрагментов, выбранных из группы: Л-серин, 2-этаноламин.
Поставленная задача решается также описываемым способом получения матрицы сорбентов, включающим набухание стиролдивинилбензольных сополимеров в хлорсодержащем органическом растворителе, добавление бифункциональных соединений, взаимодействующих по реакции Фриделя-Крафтса, нагрев реакционной смеси, фильтрацию и промывку полимера, при этом бифункциональные соединения берут при их молярном соотношении с сополимером стирола (0,5 1) 1, а нагрев ведут в изотермическом режиме при температуре, выбранной в интервале 70 140oC, в течение 6 11 ч.
Следующие примеры иллюстрируют получение матрицы сорбентов гранул сверхсшитого полистирола путем интенсивного сшивания соответствующих стиролдивинильных сополимеров с использованием дихлорида ксилилена или монохлордиметилового эфира в качестве бифункциональных реагентов, либо путем обычного хлорметилирования сополимеров и их последующего сшивания. Содержание остаточных реакционноспособных хлорметильных групп в полистирольных частиц достигает 0,5 1,0 Сl для микропористого и до 7,0 С1 для бипористого материалов, удельная площадь поверхности составляет 1400 1900 м2/г.
Пример 7 и последующие примеры иллюстрируют поверхностную модификацию полученных как описано в примерах 1 6 гранул матрицы сорбента.
Пример 1. К раствору 87,6 г дихлорида ксилилена (0,5 моль) в 600 мл сухого этиленхлорида добавили 104 г (1 моль) сополимера стирола с 0,5 дивинилбензола, суспензию перемешивали в течении 1 ч, а затем добавили раствор 116,8 мл тетрахлорида олова (1 моль) в 100 мл этилендихлорида. Затем реакционную смесь нагревали при 70oC в течении 11 ч, полимер отфильтровали и тщательно промывали ацетоном, смесью ацетона с 0,5 н. НСl, 0,5 н. HCl и водой до тех пор, пока в фильтрате перестали обнаруживаться ионы хлора.
Продукт, высушенный в вакууме, представлял собой микропористый сверхсшитый полистирол. Он содержит 0,65 остаточного хлора и имел удельную площадь поверхности 1400 м2/г.
Пример 2. К раствору 175 г дихлорида ксилилена (1 моль) в 800 мл сухого этилендихлорида добавили 104 г (1 моль) сополимера стирола с 4,0 дивинилбензола, суспензию обрабатывали, как описано в примере 1.
Продукт, высушенный в вакууме, представлял собой микропористый сверхсшитый полистирол. Он содержал 0,99 остаточного хлора и имел удельную площадь поверхности 1900 м2/г.
Пример 3. К суспензии 104 г (1 моль) макропористого сополимера стирола с 4 дивинилбензола в 500 мл сухого тетрахлорэтана прибавили раствор 38 мл (0,5 моль) монохлордиметилового эфира и 116,8 мл (1 моль) тетрахлорида олова в 100 мл тетрахлорэтана. Затем смесь нагревали при 140oC в течение 6 ч, полимер отфильтровали и тщательно промыли ацетоном, смесью ацетона с 0,5 н. НСl, 0,5 н. HCl и водой до тех пор, пока в фильтрате не перестают обнаруживать ионы хлора.
Высушенный в вакууме продукт представлял собой бипористый сверхсшитый полистирол и содержал 6,98 остаточного хлора, удельная площадь поверхности 1760 м2/г.
Пример 4. К суспензии 104 г (1 моль) макропористого сополимера стирола с 8 дивинилбензола в 600 мл сухого пропилендихлорида (1,3) прибавили раствор 76 мл (1 моль) монохлордиметилового эфира и 116,8 мл (1 моль) тетрахлорида олова в 100 мл пропилендихлорида (1,3). Смесь нагревали при 100oC в течение 8 ч. Далее обрабатывали, как описано в примере 3.
Высушенный в вакууме продукт представлял собой бипористый сверхсшитый полистирол и содержал 5,88 остаточного хлора и имел удельную площадь поверхности 1880 м2/г.
Пример 5. 152 г (1 моль) хлорметилированного сополимера стирола с 3 дивинилбензола с содержанием хлора 23 залили 400 мл сухого этиленхлорида, добавили 116,8 мл (1 моль) тетрахлорида олова в 100 мл этилендихлорида, далее обрабатывали, как описано в примере 1.
Высушенный в вакууме продукт представлял собой микропористый свехрсшитый полистирол, содержал 1,0 остаточного Сl и имел удельную площадь поверхности 1570 м2/г.
Пример 6. 152 г (1 моль) макропористого хлорметилированного сополимера стирола с 4 дивинилбензола с содержанием хлора 21,6 залили 250 мл сухого этилендихлорида, добавили 116,8 мл (1 моль) тетрахлорида олова в 100 мл этиленгдихлорида, далее обрабатывали, как описано в примере 1.
Высушенный в вакууме продукт представлял собой бипористый сверхсшитый полистирол, содержал 7,0 остаточного Сl и имел удельную площадь поверхности 1640 м2/г.
Пример 7. Раствор 0,0009 г поли(N- трифторэтокси)фосфазена (мол. м. 10 000000) в 8 мл этилацетата быстро прилили к 3 г сухого бипористого полимера площадью 1760 м2/г, полученного по примеру 3, и встряхивали до тех пор, пока весь растворитель полностью не поглотился гранулами полимера.
Продукт высушивали в вакууме и промывали этанолом.
Микропористый сверхсшитый полимер с площадью поверхности 1400 м2/г, полученный по примеру 1, модифицировали по точно такой же методике.
Пример 8. 0,2 г Хитозана растворили в 6 мл концентрированной уксусной кислоты и добавили к 2 г сухого бипористого полимера с площадью поверхности 1880 м2/г, полученного по примеру 4. Спустя 2 ч 10 мл холодного 30 раствора NaOH медленно прибавляли к полученной смеси. Полимер отфильтровали, промывали водой, затем метанолом, сушили и затем нагревали при 80oC в 10 мл раствора 0,1 г NaI в смеси диоксанметанол (5 1 объем/объем) в течение 8 ч, чтобы осуществить алкилирование аминогрупп хитозана хлорметильными группами полимера. Конечный продукт промывали водным раствором уксусной кислоты, а затем этанолом.
Микропористый сверхсшитый полимер с площадью поверхности 1570 м2, полученный по примеру 5, модифицировали по точно такой же методике.
Пример 9. К дисперсии 10 г бипористого полимера с площадью поверхности 1640 м2, полученного по примеру 6, в 30 мл смеси диоксан метанол (5 1 объем/объем) прибавили 1 г NaI и 6 мл 2-этаноламина в 10 мл того же смешанного растворителя и нагревали при 80oC 9 ч. Полимер отфильтровали и 2 г отобранного продукта промывали 0,5 л 0,1 н. НСl и водой, добавляли 5 мл водного раствора гепарина (5000 ед./мл) и оставляли на 15 ч при комнатной температуре, а затем на 4 ч при 5oC. Полимер с адсорбированным за счет ионного взаимодействия гепарином отфильтровали от избыточного раствора гепарина и хранили в этаноле при 5oC до использования.
Микропористый сверхсшитый полимер с площадью поверхности 1900 м2, полученный по примеру 2, модифицировали по такой же методике.
Пример 10. Гепарин, адсорбированный на бипористом полимере с площадью поверхности 1760 м2 по методике примера 9, связывали ковалентно обработкой полимера водным раствором глутарового диальдегида в течение 4 ч (2 мл 25 раствора на 1 г влажного полимера). Непрореагировавшие альдегидные группы подвергали взаимодействию с Л-аспарагиновой кислотой (0,2 г Л-Асп в 3 мл 1 н. NaOH на 1 г полимера) в течение 14 ч. Полимер, промытый 0,1 н. NaOH, и водой хранили в этаноле при 5oC до его использования.
Микропористый сверхсшитый полимер с площадью поверхности 1900 м2, полученный по примеру 2, модифицировали по такой же методике.
Пример 11. Гепарин, адсорбированный на бипористом полимере с площадью поверхности 1760 м2/г, как указано в примере 9, после промывки полимера 500 мл сухого метанола, 200 мл сухого диоксана ковалентно связывали с полимером обработкой в течение 5 ч раствором 0,1 г гексаметилендиизоцианата в 3 мл диоксана на 1 г полимера. Полимер отфильтровали, промывали диоксаном и оставшиеся подвешенные изоцианатные группы подвергали взаимодействию с раствором 1 г трис-триметилсилильного производного Л-аспарагиновой кислоты в 3 мл сухого гептана в течение 15 ч при комнатной температуре. Полимер промывали гептаном, метанолом, 0,1 н. NaOH и водой и хранили в этаноле при 5oC до его использования.
Микропористый сверхсшитый полимер с площадью поверхности 1570 м2/г, полученный по примеру 5, модифицировали по точно такой же методике.
Пример 12. К дисперсии 10 г бипористого полимера с площадью поверхности 1880 м2/г, полученного по примеру 4, в 30 мл смеси диоксан метанол (5 10 объем/объем), прибавили раствор 1 г NaI и 6 мл 2-этаноламинна в 10 мл того же смешанного растворителя и нагревали при 80oC в течение 9 ч. Полимер отфильтровали, промыли смесью диоксан-метанол, метанолом и водой. Отобрали 1 г полученного продукта и обработали его 4 мл 25 водного раствора глутарового диальдегида в течение 5 ч при комнатной температуре. Затем избыток реагента отмывали водой и к активированному полимеру добавляли 2,5 мл раствора гепарина (5000 ед./г), выдерживали в течение 15 ч при комнатной температуре. Полимер отфильтровали и промывали водой.
Микропористый сверхсшитый полимер площадью 1900 м2/г, полученный по примеру 2, модифицировали по точно такой же методике.
Пример 13. К 1 г продукта взаимодействия исходного бипористого полимера с площадью поверхности 1880 м2/г с 2-этаноламмином, полученного, как описано в примере 12, промытого метанолом, высушенного в вакууме и подвергнутого набуханию в диоксане, добавили раствор 0,1 г гексаметилендиизоцианата в 3 мл диоксана. Спустя 10 ч продукт промыли сухим диоксаном и диметилсульфоксидом и, добавив 2,5 мл водного раствора гепарина (5000 ед./мл), оставили на трое суток. Избыток гепарина удалили фильтрацией и промывкой водой. Полимер хранили в этаноле при 5oC до его использования.
Микропористый сверхсшитый полимер с площадью поверхности 1900 м2/г, полученный по примеру 2, модифицировали по точно такой же методике.
Пример 14. 1 г продукта взаимодействия исходного бипористого полимера с площадью поверхности 1880 м2/г с этаноламином, активированного глутаровым альдегидом, как описано в примере 12, залили 2 мл водного раствора 0,16 г полиэтиленгликоля (мол. м. 20000) и оставили на трое суток при комнатной температуре, а затем тщательно промывали водой.
Микропористый сверхсшитый полимер с площадью поверхности 1900 м2/г, полученный по примеру 2, модифицировали по такой же методике.
Пример 15. 1 г продукта взаимодействия исходного бипористого полимера с площадью поверхности 1880 м2/г с 2-этаноламином, активированного гексаметилендиизоцианатом, как описано в примере 13, залили 2 мл водного раствора 0,16 г полиэтиленгликоля (мол. м. 20 000) и оставили на трое суток при комнатной температуре, затем тщательно промыли водой.
Микропористый сверхсшитый полимер с площадью поверхности 1900 м2/г, полученный по примеру 2, модифицировали по такой же методике.
Пример 16. 4 г бипористого сверхсшитого полимера с площадью поверхности 1880 м2/г, полученного по примеру 4, подвергли набуханию 16 мл 8 раствора NaOH в этиленгликоле, а затем нагревали при 180oC в течение 5 ч для введения алкоксильного остатка. Полимер промывали этанолом, водой, ацетоном и сушили в вакууме. К 2 г сухого полимера, активированного гексаметилендиизоцианатом после набухания в сухом диоксане, как описано в примере 13, и промытого затем сухим диоксаном, добавили раствор 1,2 г полиэтиленгликоля (мол. м. 40000) в 10 мл сухого диметилсульфоксида, вели реакцию при 80oC в течение 6 ч, затем промывали полимер этанолом и водой.
Микропористый сверхсшитый полимер с площадью поверхности 1900 м2/г, полученный по примеру 2, модифицировали по такой же методике.
Пример 17. 2 г бипористого полимера с площадью поверхности 1880 м2/г, модифицированного этиленгликолем, как описано в примере 16, активировали глутаровым диальдегидом по методике примера 12 и обрабатывали раствором 1,2 г полиэтиленгликоля (мол. м. 40000) в 10 мл воды в течение суток при комнатной температуре. Затем полимер промывали этанолом и водой.
Микропористый сверхсшитый полимер с площадью поверхности 1400 м2/г, полученный по примеру 1, модифицировали по такой же методике.
Пример 18. К 3 г сухого бипористого полимера с площадью поверхности 1880 м2/г, полученного по примеру 4, набухшего в сухом бензоле, добавили 15 мл раствора, содержащего 8 г алкоголята полиэтиленгликоля (мол. м. 12000) в сухом бензоле и смесь кипятили в атмосфере аргона, внося маленькие кусочки металлического натрия по мере того, как последний растворялся в реакционной смеси (около 10 ч). После дополнительного выдерживания в течение 2 сут при комнатной температуре полимер тщательно промывали этанолом.
Микропористый сверхсшитый полимер с площадью поверхности 1400 м2, полученный по примеру 1, модифицировали по такой же методике.
Пример 19. В соответствии с процедурой, описанной в примере 18, 1 г бипористого полимера с площадью поверхности 1880 м2 обрабатывали 1 г алкоголята полиэтиленгликоля более низкой молекулярной массы (6000).
Пример 20. К раствору 0,2 г полиэтиленгликоля (мол. м. 12000) в 4 мл абс. бензола добавили сначала 0,1 мл гексаметилендиизоцианата, а через 2 ч 2 г сухого бипористого полимера с площадью поверхности 1880 м2, предварительно модифицированного этиленгликолем в соответствии с процедурой, описанной в примере 16.
Микропористый сверхсшитый полимер площадью 1640 м2, полученный по примеру 6, модифицировали по такой же методике.
Пример 21. Процедуру, описанную в примере 20, повторили с использованием полиэтиленгликоля более низкой молекулярной массы (6000).
Пример 22. 10 г бипористого полимера с площадью поверхности 1880 м2, обработанного 2-этаноламином, как описано в примере 12, промыли 1 л 0,1 н. НСl для протонирования вторичных аминогрупп, водой и 50 мл метанола. К высушенному в вакууме полимеру прибавили 25 мл сухого пиридина, а затем 1 мл POCl3 в 5 мл сухого пиридина. Реакционную смесь выдержали в течение 15 ч при комнатной температуре, профильтровали в течение 15 ч при комнатной температуре, профильтровали, полимер промыли сухим пиридином и залили раствором 1,4 г холинхлорида в 25 мл сухого диметилсульфоксида с температурой 40oC. Смесь нагревали при 60oC в течение 4 ч, выдерживали при комнатной температуре в течение 15 ч, затем добавляли 5 мл сухого пиридина и спустя 5 ч тщательно промывали водой и ополаскивали этанолом. Полимер хранили в этаноле при 5oC до его использования.
Микропористый сверхсшитый полимер с площадью поверхности 1900 м2/г, полученный по примеру 2, модифицировали по точно такой же методике.
Пример 23. 3 г бипористого полимера с площадью поверхности 1880 м2/г, модифицированного 2-этаноламином и активированного POC13, как описано в примере 22, обрабатывали раствором 0,3 г N-трет-бутилоксикарбонил-L-серина в 2 мл сухого пиридина при комнатной температуре в течении 15 ч, промывали этилацетатом, диоксаном, водой и метанолом, затем сушили. Защитную БОК-группу удаляли действием 5 мл трифторуксусной кислоты в течение 1 ч при комнатной температуре. Конечный продукт промывали эфиром, этанолом и водой.
Микропористый сверхсшитого полимера с площадью поверхности 1570 м2/г, полученный по примеру 5, модифицирован по такой же методике.
Пример 24. 4 г бипористого сверхсшитого полимера с площадью поверхности 1640 м2/г, полученный по примеру 6, подвергли набуханию в 16 мл 8-ного раствора NaOH в этиленгликоле и затем нагревали при 180oC в течение 5 ч для замещения хлора в хлорметильных остаточных группах на этиленгликольные группы. Полимер промыли этанолом, водой, ацетоном и сушили в вакууме. Высушенный полимер активировали POC13 и обрабатывали холинхлоридом, как описано в примере 22.
Микропористый сверхсшитый полимер с площадью поверхности 1570 м2/г, полученный по примеру 5, модифицировали по такой же методике.
Пример 25. 4 г бипористого сверхсшитого полимера с площадью поверхности 1640 м2/г модифицировали этиленгликолем, как описано в примере 24, активировали POC13, как описано в примере 22, и вводили в реакцию с 3 мл 2-этаноламина в растворе 3 мл ледяной уксусной кислоты при комнатной температуре в течение 3 сут. Продукт промывали пиридином, водой, этанолом.
Микропористый сверхсшитый полимер с площадью 1900 м2/г, полученный по примеру 1, модифицировали по такой же методике.
В общем, модифицированные сверхсшитые сорбенты полистирольного типа, составляющие предмет изобретения, созданы с целью замены всех видов активированных углей в процессе гемоперфузии и перфузии плазмы. Новый материал механически прочен, так что при его использовании не отщепляются пылеобразные частицы, вызывающие эмболию, он более гемосовместим, проявляет лучшие сорбционные свойства по отношению к широкому спектру токсикантов крови и может после регенерации быть использован вторично.
Адсорбционный спектр модифицированных сверхсшитых полистирольных сорбентов изобретения включает вещества мол. м. 100 20000 Дальтон. Наиболее эффективно сорбируются молекулы массой 300 1500 Дальтон, клинически идентифицируемые как "средние молекулы", которые присутствуют в завышенных количествах у больных уремией и многими другими заболеваниями и неполностью удаляются обычными процедурами гемодиализа. Такие соединения как креатин, барбитурат, фенобарбитал, салицилат натрия, амфетамины, сульфат морфина, мепробамат, глютетимид и т. п. могут быть быстро и эффективно удалены из крови при использовании как микропористого, так и бипористого сорбентов.
Помимо удаления малых и средних молекул бипористые сорбенты также показывают способность сорбировать бета-2-микроглобулин и миоглобин (их мол. м. около 20000 Дальтон), а также витамин В12.

Claims (14)

1. Био-, гемосовместимые сорбенты на основе матрицы-сверхсшитых полимеров стирола с модифицированной поверхностью, отличающиеся тем, что в качестве основы они содержат гранулы микропористого или бипористого сверхсшитого полистирола с удельной поверхностью 1400 1900 м2/г, а в качестве модификатора поверхности они содержат поли(N трифторалкокси) фосфазен, или хитозан, или гепарин, или полиэтиленгликоль, или биолипидные фрагменты.
2. Способ получения био-, гемосовместимых сорбентов на основе матрицы-сверхсшитых полимеров стирола с модифицированной поверхностью, включающий обработку сверхсшитого полимера стирольного типа химическими реагентами, отличающийся тем, что берут гранулы микропористого или бипористого полимера с внутренней поверхностью 1400 1900 м2/г, а обработку ведут раствором поли(N трифторалкокси) фосфазена в органическом растворителе с последующим испарением растворителя.
3. Способ получения био-, гемосовместимых сорбентов на основе матрицы-сверхсшитых полимеров стирола с модифицированной поверхностью, включающий обработку сверхсшитого полимера стирольного типа химическими реагентами, отличающийся тем, что гранулы микропористого или бипористого полимера с внутренней поверхностью 1400 1900 м2/г обрабатывают раствором хитозана до взаимодействия аминогрупп хитозана с хлорметильными группами полимера.
4. Способ получения био-, гемосовместимых сорбентов на основе матрицы-сверхсшитых полимеров стирола с модифицированной поверхностью, включающий обработку сверхсшитого полимера стирольного типа химическими реагентами, отличающийся тем, что гранулы микропористого или биопористого полимера с внутренней поверхностью 1400 1900 м2/г обрабатывают 2-этаноламином, протонируют полученное производное с последующим электростатическим связыванием гепарина из его водного раствора и выделяют в виде ионного комплекса полимера с гепарином.
5. Способ по п.4, отличающийся тем, что ионный комплекс полимера с гепарином дополнительно обрабатывают глутаровым альдегидом, а затем Л-аспарагиновой кислотой.
6. Способ по п.4, отличающийся тем, что ионный комплекс полимера с гепарином подвергают взаимодействию с гексаметилендиизоцианатом, затем с трис-триметилсилил-Л-аспарагиновой кислотой, а затем с водой.
7. Способ получения био-, гемосовместимых сорбентов на основе матрицы-сверхсшитых полимеров стирола с модифицированной поверхностью, включающий обработку сверхсшитого полимера стирольного типа химическими реагентами, отличающийся тем, что гранулы микропористого или биопористого полимера с внутренней поверхностью 1400 1900 м2/г модифицируют путем ковалентного связывания гидрофильного полимера типа полиэтиленгликоля.
8. Способ по п.7, отличающийся тем, что ковалентное связывание гидрофильного полимера ведут путем последовательной обработки гранул 2-этаноламином, глутаровым альдегидом и полиэтиленгликолем.
9. Способ по п.7, отличающийся тем, что ковалентное связывание гидрофильного полимера ведут путем последовательной обработки гранул этиленгликолем, глутаровым альдегидом и полиэтиленгликолем.
10. Способ по п.7, отличающийся тем, что ковалентное связывание гидрофильного полимера ведут путем последовательной обработки гранул 2-этаноламином, гексаметилендиизоцианатом и полиэтиленгликолем.
11. Способ по п.7, отличающийся тем, что ковалентное связывание гидрофильного полимера ведут путем последовательной обработки гранул этиленгликолем, гексаметилендиизоцианатом и полиэтиленгликолем.
12. Способ по п.7, отличающийся тем, что ковалентное связывание гидрофильного полимера ведут путем гранул алкоголями полиэтиленгликоля.
13. Способ получения, био-, гемосовместимых сорбентов на основе матрицы-сверхсшитых полимеров стирола с модифицированной поверхностью, включающий обработку сверхсшитых полимеров стирольного типа химическими реагентами, отличающийся тем, что гранулы микропористого или бипористого полимера с внутренней поверхностью 1400 1900 м2/г обрабатывают реагентами, вводящими остатки 2-этаноламина или этиленгликоля, активируют хлорокисью фосфора и иммобилизуют специфические биолипидные фрагменты, выбранные из группы: холин, Л-серин, 2-этаноламин.
14. Способ получения матрицы био-, гемосовместимых сорбентов на основе сверхсшитых полимеров стирола, включающий набухание стиролдивинилбензольных сополимеров в хлорсодержащем органическом растворителе, добавление бифункциональных соединений, взаимодействующих по реакции Фриделя-Крафтса, нагрев реакционной смеси, фильтрацию и промывку полимера, отличающийся тем, что бифункциональные соединения берут при их молярном отношении к сополимеру стирола, равном (0,5 1) 1, а нагрев ведут в изотермическом режиме при температуре, выбранной в интервале 70 140oС в течение 6 11 ч.
RU9696104844A 1996-03-23 1996-03-23 Био-, гемосовместимые сорбенты на основе сверхсшитых полимеров стирола с модифицированной поверхностью, способ их получения (варианты) и способ получения матрицы сорбента RU2089283C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU9696104844A RU2089283C1 (ru) 1996-03-23 1996-03-23 Био-, гемосовместимые сорбенты на основе сверхсшитых полимеров стирола с модифицированной поверхностью, способ их получения (варианты) и способ получения матрицы сорбента
US08/756,445 US5773384A (en) 1996-03-23 1996-11-25 Sorbents for removing toxicants from blood or plasma, and method of producing the same
EP97918683A EP0888178A4 (en) 1996-03-23 1997-03-24 SORPTION AGENT FOR REMOVING TOXIC SUBSTANCES FROM BLOOD AND PLASMA AND METHOD FOR THE PRODUCTION THEREOF
PCT/US1997/006377 WO1997035660A1 (en) 1996-03-23 1997-03-24 Sorbents for removing toxicants from blood or plasma, and method of producing same
CA002217139A CA2217139A1 (en) 1996-03-23 1997-09-30 Sorbents for removing toxicants from blood or plasma, and method of producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU9696104844A RU2089283C1 (ru) 1996-03-23 1996-03-23 Био-, гемосовместимые сорбенты на основе сверхсшитых полимеров стирола с модифицированной поверхностью, способ их получения (варианты) и способ получения матрицы сорбента
US08/756,445 US5773384A (en) 1996-03-23 1996-11-25 Sorbents for removing toxicants from blood or plasma, and method of producing the same
CA002217139A CA2217139A1 (en) 1996-03-23 1997-09-30 Sorbents for removing toxicants from blood or plasma, and method of producing the same

Publications (2)

Publication Number Publication Date
RU2089283C1 true RU2089283C1 (ru) 1997-09-10
RU96104844A RU96104844A (ru) 1998-05-27

Family

ID=27170473

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9696104844A RU2089283C1 (ru) 1996-03-23 1996-03-23 Био-, гемосовместимые сорбенты на основе сверхсшитых полимеров стирола с модифицированной поверхностью, способ их получения (варианты) и способ получения матрицы сорбента

Country Status (4)

Country Link
US (1) US5773384A (ru)
CA (1) CA2217139A1 (ru)
RU (1) RU2089283C1 (ru)
WO (1) WO1997035660A1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452562C1 (ru) * 2011-04-05 2012-06-10 Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" ГОУ ВПО "БашГУ" Способ получения сорбента
US9011695B2 (en) 2011-06-21 2015-04-21 King Abdulaziz City For Science And Technology Porous magnetic sorbent
RU2601605C1 (ru) * 2015-09-16 2016-11-10 Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) Наполненный частицами сорбента макропористый полимерный материал, композиция для его получения и способ получения
RU2653125C1 (ru) * 2017-05-23 2018-05-07 Акционерное общество "ПЕРСПЕКТИВНЫЕ МЕДИЦИНСКИЕ ТЕХНОЛОГИИ" Полимерный сорбент, способ его получения и использования
RU2657506C1 (ru) * 2017-09-25 2018-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Способ извлечения ионов тяжелых металлов из водных растворов
CN111632578A (zh) * 2013-04-01 2020-09-08 西托索尔本茨公司 交联聚合物材料的血液相容性修饰剂

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544727B1 (en) 1995-06-07 2003-04-08 Cerus Corporation Methods and devices for the removal of psoralens from blood products
US20010009756A1 (en) 1998-01-06 2001-07-26 Derek Hei Flow devices for the reduction of compounds from biological compositions and methods of use
US20010018179A1 (en) 1998-01-06 2001-08-30 Derek J. Hei Batch devices for the reduction of compounds from biological compositions containing cells and methods of use
US6627151B1 (en) * 1997-06-13 2003-09-30 Helmut Borberg Method for treatment diseases associated with a deterioration of the macrocirculation, microcirculation and organ perfusion
US20020197250A1 (en) * 2001-04-10 2002-12-26 Renal Tech International Biocompatible devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood
US6416487B1 (en) * 1997-07-30 2002-07-09 Renal Tech International Llc Method of removing beta-2 microglobulin from blood
US20020159995A1 (en) 1997-07-30 2002-10-31 Renal Tech International Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood, generated as a result of extracorporeal blood processing
US5904663A (en) * 1997-07-30 1999-05-18 Braverman; Andrew Method of removing beta-2 microglobulin from blood
US8329388B2 (en) * 1997-07-30 2012-12-11 Cytosorbents, Inc. Biocompatible devices, systems, and methods for reducing levels of proinflammatory of antiinflammatory stimulators or mediators in the blood
US20020197249A1 (en) * 2001-04-10 2002-12-26 Renal Tech International Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in blood products
US20020198487A1 (en) * 2001-04-10 2002-12-26 Renal Tech International Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in physiologic fluids
WO1999025463A1 (en) * 1997-11-14 1999-05-27 Massachusetts Institute Of Technology Apparatus and method for treating whole blood
US7611831B2 (en) * 1998-01-06 2009-11-03 Cerus Corporation Adsorbing pathogen-inactivating compounds with porous particles immobilized in a matrix
US6114466A (en) * 1998-02-06 2000-09-05 Renal Tech International Llc Material for purification of physiological liquids of organism
US6136424A (en) * 1998-02-06 2000-10-24 Renal Tech International, Llc Method of and material for purification of physiological liquids of organism, and method of producing the material
JP2002529556A (ja) * 1998-11-05 2002-09-10 ビードテック インコーポレイテッド ポリスチレン球形樹脂吸着剤とこれを用いる廃水処理方法
US6071410A (en) * 1998-11-16 2000-06-06 Varian, Inc. Recovery of organic solutes from aqueous solutions
AU1923200A (en) 1999-01-22 2000-08-07 Dow Chemical Company, The Surface modified divinylbenzene resin having a hemocompatible coating
US6497675B1 (en) 2000-04-17 2002-12-24 Renal Tech International Llc Device for extracorporeal treatment of physiological fluids of organism
US6527735B1 (en) * 2000-04-27 2003-03-04 Renaltech International Llc Method of peritoneal dialysis
DE10045434B4 (de) * 2000-09-14 2005-07-14 Fresenius Hemocare Gmbh Adsorbens mit unterschiedlich modifizierten Oberflächenbereichen, Verfahren zu dessen Herstellung und Verwendung davon
US6531523B1 (en) * 2000-10-10 2003-03-11 Renal Tech International, Llc Method of making biocompatible polymeric adsorbing material for purification of physiological fluids of organism
US6602418B2 (en) 2001-01-22 2003-08-05 Bechtel Bwxt Idaho, Llc Solution dewatering with concomitant ion removal
US6878127B2 (en) * 2001-04-10 2005-04-12 Renaltech International, Llc Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood
US20020197252A1 (en) * 2001-04-10 2002-12-26 Renal Tech International Selective adsorption devices and systems
DE10147463B4 (de) * 2001-09-20 2009-03-19 Hemoteq Ag Verfahren zur Herstellung eines Absorbers, Absorber und dessen Verwendung
US20030125656A1 (en) * 2001-12-31 2003-07-03 Vadim Davankov Hemo-and biocompatible beaded polymeric material for purification of physiological fluids of organism, method of producing the material, as well as method of and device for purification of physiological fluids of organism with use of the material
WO2004024099A2 (en) * 2002-04-02 2004-03-25 Scantibodies Laboratory, Inc. Methods and devices for treating severe peripheral bacterial infections
KR100459432B1 (ko) * 2002-08-21 2004-12-03 엘지전자 주식회사 이동통신 시스템의 핸드오버 처리방법
US7112620B2 (en) * 2002-10-18 2006-09-26 Albright Robert L Hemocompatible polymer systems & related methods
US7629049B2 (en) * 2002-10-18 2009-12-08 Medasorb, Inc. Hemocompatible polymer systems and related devices
US6884829B2 (en) * 2002-10-18 2005-04-26 Robert L. Albright Hemocompatible coated polymer and related one-step methods
DE10261910A1 (de) * 2002-12-30 2004-07-15 Polymerics Gmbh Adsorbermaterial für Blut-, Blutplasma- und Albuminreinigungsverfahren
US20080090222A1 (en) * 2004-06-30 2008-04-17 Terumo Kabushiki Kaisha Virus-Inactivated Hemoglobin And Method Of Producing The Same
EP1808191B1 (en) * 2004-09-10 2014-01-01 Kaneka Corporation In vitro lymphocyte proliferation method
DE102004063633B4 (de) 2004-12-28 2011-12-15 Polymerics Gmbh Verwendung eines Sorbens zur Festphasenextraktion (solid phase extraction, SPE)
US20100300971A1 (en) * 2005-05-18 2010-12-02 Sequant Ab Zwitterionic stationary phase as well as method for using and producing said phase
KR101397386B1 (ko) 2005-12-13 2014-05-26 엑스테라 메디컬 코퍼레이션 혈액으로부터 병원성 미생물, 염증 세포 또는 염증단백질의 체외 제거를 위한 방법
US9604196B2 (en) 2006-11-20 2017-03-28 Cytosorbent, Inc. Size-selective hemocompatible polymer system
US8211310B2 (en) * 2006-11-20 2012-07-03 Cytosorbents, Inc. Size-selective polymer system
US7875182B2 (en) * 2006-11-20 2011-01-25 Cytosorbents, Inc. Size-selective hemoperfusion polymeric adsorbents
WO2008157570A2 (en) * 2007-06-18 2008-12-24 Exthera Ab Device and method for restoration of the condition of blood
WO2008155683A1 (en) 2007-06-18 2008-12-24 Firmenich Sa Malodor counteracting compositions and method for their use
US8672869B2 (en) * 2007-10-30 2014-03-18 Bellco S.R.L. Kit, system and method of treating myeloma patients
WO2009110858A2 (en) * 2007-10-31 2009-09-11 Celonova Biosciences, Inc. Vasodilator eluting dynamic blood handling devices with a specific polyphosphazene coating and methods for their manufacture and use
US8758286B2 (en) 2009-12-01 2014-06-24 Exthera Medical Corporation Method for removing cytokines from blood with surface immobilized polysaccharides
WO2012112724A1 (en) 2011-02-15 2012-08-23 Exthera Medical, Llc Device and method for removal of blood-borne pathogens, toxins and inflammatory cytokines
CN102294233B (zh) * 2011-07-21 2013-06-12 南京大学 一种调控纳米复合吸附剂结构与性能的方法
EP2861273B1 (en) 2012-06-13 2017-08-23 ExThera Medical Corporation Use of heparin and carbohydrates to treat cancer
RU2524620C2 (ru) * 2012-11-02 2014-07-27 Федеральное государственное бюджетное учреждение науки Институт прикладной механики Российской академии наук (ИПРИМ РАН) Магнитоуправляемый сорбент для удаления билирубина из биологических жидкостей
WO2014209782A1 (en) 2013-06-24 2014-12-31 Exthera Medical Corporation Blood filtration system containing mannose coated substrate
MX2016005959A (es) 2013-11-08 2016-10-14 Exthera Medical Corp Métodos para diagnosticar enfermedades infecciosas usando medio de adsorción.
ES2625351T1 (es) 2014-04-24 2017-07-19 Exthera Medical Corporation Método para eliminar bacterias de la sangre utilizando caudal alto
BR112017004059A2 (pt) 2014-09-22 2017-12-05 Exthera Medical Corp dispositivo de hemoperfusão utilizável
US11911551B2 (en) 2016-03-02 2024-02-27 Exthera Medical Corporation Method for treating drug intoxication
EP3422943A4 (en) * 2016-03-02 2019-10-16 ExThera Medical Corporation METHOD OF TREATING DRUG ENTRIES
CN112473636A (zh) * 2019-09-11 2021-03-12 云南师范大学 一种包膜并共价固定肝素的血液灌流吸附剂及其制备方法
CN111530432B (zh) * 2020-05-07 2022-06-14 西安蓝深新材料科技有限公司 一种血液灌流用吸附材料的制备方法
CN111659359A (zh) * 2020-06-24 2020-09-15 中国人民解放军中部战区总医院 一种高吸附量的血液净化高分子微球
CN113856644B (zh) * 2021-09-13 2022-10-14 山东大学 一种四乙烯硅烷-聚苯乙烯吸附剂在吸附苯胺方面的应用
CN117696017A (zh) * 2024-02-05 2024-03-15 四川大学华西医院 一种血液净化吸附改性材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263407A (en) * 1978-07-24 1981-04-21 Rohm And Haas Company Polymeric adsorbents from macroreticular polymer beads
US5037857A (en) * 1987-10-26 1991-08-06 Rohm And Haas Company High-surface-area fiber
GB8905934D0 (en) * 1989-03-15 1989-04-26 Dow Europ Sa A process for preparing adsorptive porous resin beads
US5545131A (en) * 1994-04-28 1996-08-13 White Eagle International Technologies, Lp Artificial kidney

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 4048064, кл. A 61 K 23/02, 1977. 2. Патент ГДР N 249274, кл. C 08 F 25/02, 1986. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452562C1 (ru) * 2011-04-05 2012-06-10 Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" ГОУ ВПО "БашГУ" Способ получения сорбента
US9011695B2 (en) 2011-06-21 2015-04-21 King Abdulaziz City For Science And Technology Porous magnetic sorbent
CN111632578A (zh) * 2013-04-01 2020-09-08 西托索尔本茨公司 交联聚合物材料的血液相容性修饰剂
RU2601605C1 (ru) * 2015-09-16 2016-11-10 Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) Наполненный частицами сорбента макропористый полимерный материал, композиция для его получения и способ получения
RU2653125C1 (ru) * 2017-05-23 2018-05-07 Акционерное общество "ПЕРСПЕКТИВНЫЕ МЕДИЦИНСКИЕ ТЕХНОЛОГИИ" Полимерный сорбент, способ его получения и использования
US11602732B2 (en) 2017-05-23 2023-03-14 Efferon Gmbh Polymeric sorbent, preparation and use thereof
RU2657506C1 (ru) * 2017-09-25 2018-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Способ извлечения ионов тяжелых металлов из водных растворов

Also Published As

Publication number Publication date
US5773384A (en) 1998-06-30
WO1997035660A1 (en) 1997-10-02
CA2217139A1 (en) 1999-03-30

Similar Documents

Publication Publication Date Title
RU2089283C1 (ru) Био-, гемосовместимые сорбенты на основе сверхсшитых полимеров стирола с модифицированной поверхностью, способ их получения (варианты) и способ получения матрицы сорбента
US6136424A (en) Method of and material for purification of physiological liquids of organism, and method of producing the material
US5904663A (en) Method of removing beta-2 microglobulin from blood
Zeng et al. Membrane chromatography: preparation and applications to protein separation
EP0172579B1 (en) Modified siliceous supports
EP0066165B1 (en) A totally porous activated gel
JP7033083B2 (ja) 内毒素血症誘発分子を除去するための血液適合性多孔質ポリマービーズ収着材の使用
JPH0520439B2 (ru)
RU96104844A (ru) Био-, гемосовместимые сорбенты на основе сверхсшитых полимеров стирола с модифицированной поверхностью, способы их получения и способ получения матрицы сорбента
EP2117685A1 (en) Cross-linked cellulose membranes
EP1220868A1 (en) Extracorporeal endotoxin removal method
EP0028937B1 (en) Albumin-fixed resin, process for its production, method of using it to remove noxious substances from solutions containing them, and its use in removing noxious substances from blood
JP7024509B2 (ja) 分離剤、並びに当該分離剤を用いた標的分子の分離方法及びクロマトグラフィー用カラム
WO2013180176A1 (ja) エンドトキシン吸着材
JP2010014716A (ja) 電気的中性の親水性外側表面を有する化学的に変性された多孔質材料
JPS61141719A (ja) 変性ポリペプチド支持体
JPH0260660A (ja) 体液処理用吸着材
JP2000262895A (ja) 免疫吸着剤マトリックスの製法および免疫吸着剤カラム
JP3181343B2 (ja) 体液浄化用吸着材料の製造方法
JPH0126709B2 (ru)
TW202204040A (zh) 離子交換膜、過濾器及方法
JPH08299788A (ja) 糖化蛋白質吸着材
EP0888178A1 (en) Sorbents for removing toxicants from blood or plasma, and method of producing same
JPH0435742A (ja) β↓2―ミクログロブリン用吸着剤
JPS62244442A (ja) 低比重リポ蛋白質吸着材およびその製造方法