RU2062644C1 - Способ получения сверхтвердого компактного материала - Google Patents

Способ получения сверхтвердого компактного материала Download PDF

Info

Publication number
RU2062644C1
RU2062644C1 RU95104765A RU95104765A RU2062644C1 RU 2062644 C1 RU2062644 C1 RU 2062644C1 RU 95104765 A RU95104765 A RU 95104765A RU 95104765 A RU95104765 A RU 95104765A RU 2062644 C1 RU2062644 C1 RU 2062644C1
Authority
RU
Russia
Prior art keywords
powder
diamond
superhard
gpa
amplitude
Prior art date
Application number
RU95104765A
Other languages
English (en)
Other versions
RU95104765A (ru
Inventor
Игорь Анатольевич Жирноклеев
Original Assignee
Игорь Анатольевич Жирноклеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Игорь Анатольевич Жирноклеев filed Critical Игорь Анатольевич Жирноклеев
Priority to RU95104765A priority Critical patent/RU2062644C1/ru
Priority to PCT/RU1995/000157 priority patent/WO1996031305A1/ru
Priority to AU30883/95A priority patent/AU3088395A/en
Application granted granted Critical
Publication of RU2062644C1 publication Critical patent/RU2062644C1/ru
Publication of RU95104765A publication Critical patent/RU95104765A/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/08Compacting only by explosive forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/087Compacting only using high energy impulses, e.g. magnetic field impulses
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Использование: для изготовления режущего, шлифовального и абразивного инструментов, а также конструкционных изделий. Сущность изобретения: предварительно уплотненную смесь порошков сверхтвердого материала с 3 - 90 об. % одного из металлов группы железа в виде ультрадисперсного монокристаллического порошка с размерами частиц
Figure 00000001
помещают в устройство сверхвысокого давления и воздействуют на него ударной волной с амплитудой на фронте 1 - 25 ГПа. Смесь порошков дополнительно может содержать не более 40 об. % по крайней мере одной добавки из ряда тугоплавких неорганических соединений. Воздействие ударных волн осуществляют через передающую среду, в качестве которой используют по крайней мере одно из соединений, выбранное из ряда: SiO<Mv>2<D>, Al<Mv>2<D>O<Mv>3<D>, KCl, NaCl, KBr, RbCl. Возможно повторное воздействие ударной волной с амплитудой на фронте 1 - 15 ГПа. После извлечения компактного материала его подвергают пластическому деформированию при 600 - 900<198>С со скоростью деформации 10<M^ >-5<D> - 10<M^>-1<D> с<M^>-1<D>. Получаемые компакты имеют высокие эксплуатационные характеристики. 4 з. п. ф-лы, 3 ил. 1

Description

Изобретение относится к получению сверхтвердых материалов (СМ), в частности компактных материалов на основе алмаза и/или алмазоподобных модификаций нитрида бора, которые могут быть использованы в абразивной, машиностроительной и станкоинструментальной промышленностях для изготовления режущего, шлифовального и абразивного инструментов, а также конструкционных изделий.
Под алмазоподобными модификациями нитрида бора понимают: кубический нитрид бора (KBN), полученный в условиях воздействия высоких статических давлений и температур на графитоподобный нитрид бора; вюрцитоподобный нитрид бора (BBN), полученный воздействием ударной волны на графитоподобный нитрид бора [1]
Известен способ получения сверхтвердого материала, а именно компактного алмаза, включающий размещение уплотненного порошка алмаза с размерами частиц 1 150 мкм в металлический контейнер устройства сверхвысокого давления с последующим воздействием на него ударной волной с амплитудой не более 30 ГПа, создаваемой ударом метаемых взрывом стальных пластин [2] Способ позволяет получать компакты с частичной графитизацией алмаза (до 7 графита).
Известен способ получения компактного алмаза, включающий размещение порошка алмаза в центре сферы и воздействие на нее сферической ударной волной, создаваемой инициированием взрывчатого вещества, расположенного по наружной поверхности сферы, с целью создания осе-симметричного сходящегося детонационного фронта и обеспечения повышения времени воздействия на алмаз [3] Сложность сборки, трудность осуществления способа, особенно инициирования зарядов одновременно, а также большая степень фазового перехода алмаза в графит ограничивает возможности способа.
Известен способ получения компактного алмаза, включающий размещение частиц алмаза с размерами частиц от 4 до 8 мкм или 100 150 мкм в металлическую (стальную) капсулу (контейнер), служащей мишенью устройства сверхвысокого давления, уплотнение алмаза до плотности 30 80 и метание пластины в зону нахождения алмаза снарядом такой силы, которая в зоне нахождения алмаза создает температуры 1040 1140 К и давления от 7 до 20 ГПа, достаточные, чтобы расплавить кристаллы алмаза размерами от 4 до 8 мкм [4] Известный способ позволяет получать монолитные компакты алмаза из частиц размерами <8 мкм, однако, довольно сложная организация способа ограничивает его практическое использование.
Известен способ получения сверхтвердого материала, в частности компактного алмаза, включающий размещение предварительно уплотненного порошка алмаза с размерами частиц от 4 до 40 мкм в металлический контейнер устройства сверхвысокого давления, воздействие на него ударной волной с амплитудой по крайней мере 300 кбар (30 ГПа), извлечение компакта и обработку его химическими реагентами с целью удаления графита [5] Известный способ позволяет получать поликристаллические компакты алмаза плотностью 90 95 от теоретической, диаметром -0,4 мм и высотой -2 мм.
Наиболее близким по технической сущности к изобретению является способ получения сверхтвердого компактного материала, в частности компактного кубического и/или вюрцитоподобного нитрида бора, включающий помещение предварительно уплотненного порошка нитрида бора в металлический контейнер устройства сверхвысокого давления, воздействие на него ударной волной с амплитудой 50 75 ГПа и извлечение полученного компакта [6] Способ позволяет получать компактный кубический нитрид бора плотностью до 99 от теории и твердостью по Кнуппу от 29 до 43 ГН/м2.
Задачами изобретения являются:
получение поликристаллических сверхтвердых компактных материалов на основе алмаза и/или кубического и вюрцитного нитрида бора, обладающих высокой прочностью, плотностью и твердостью;
получение крупных компактов с высокими эксплуатационными характеристиками при использовании их в режущем и шлифовальном инструментах;
получение экономически выгодных компактов, которые могут быть легко обработаны алмазным инструментом;
получение компактов имеющих широкое применение в качестве высокотвердого, коррозие- и термостойкого металла, за счет большого разнообразия их свойств;
получение изделий заданной формы;
утилизация бракованных и использованных компактов в виде шлифпорошков после их предварительного дробления и классификации.
Это достигаются тем, что способ получения сверхтвердого компактного материала включает:
помещение предварительно уплотненного порошка сверхтвердого материала с 3 90 об. металлического связующего одного из металлов группы железа в виде ультрадисперсного монокристаллического порошка с размерами частиц 100 1000
Figure 00000004
в устройство сверхвысокого давления, воздействие на него ударной волной с амплитудой на фронте 1 25 ГПа и последующее извлечение полученного компактного материала;
дополнительно в смесь порошка и металлического связующего можно ввести до 40 об. добавки из ряда известных тугоплавких соединений;
воздействие ударных волн можно осуществить через передающую среду, в качестве которой используют по крайней мере одно из соединений, выбранное из ряда: SiO2, Аl2O3, КСl, NaСl, КBr, RbCl.
провести повторное воздействие ударной волной с амплитудой на фронте 1 - 15 ГПа;
после извлечения полученного компактного материала его можно подвергать пластическому деформированию при 600 900oС со скоростью деформации 10-5-10-1 см-1.
Для реализации способа могут быть использованы известные устройства сверхвысоких давлений, описанные в аналогах, а также в авт. св. СССР N 442945, кл. В 01 J 3/08, 1976; N 812333, кл. В 01 J 3/08, 1981, патенте Германии N 2108452, кл. С 01 В 21/06, 1971; в статье Г.А. Ададурова "Экспериментальное исследование химических процессов в условиях динамического сжатия". Журнал "Успехи химии", т. LV, вып. 4, 1986, с. 555 578.
Для реализации данного изобретения на фиг. 1 3 представлены устройства сверхвысокого давления:
фиг. 1 устройство (в разрезе) для создания сверхвысокого давления посредством метания металлической пластины (плоский вариант);
фиг. 2 устройство (в разрезе) для создания сверхвысокого давления с помощью накладного заряда взрывчатого вещества (ВВ) (плоский вариант);
фиг. 3 устройство (в разрезе) для создания сверхвысокого давления (цилиндрический вариант),
где 1 уплотненный порошок;
2 металлический контейнер;
3 крышка контейнера;
4 стальное охранное кольцо;
5 заряд ВВ;
6 металлическая пластина;
7 пробки;
8 среда, передающая давление.
Ультрадисперсные монокристаллические порошки группы железа: Fe, Ni, Co получают известными способами, например, описанными в книге "Физические свойства ультрадисперсных порошков", М. Атомиздат, 1980, авторы: Лаповак В.Н, Морохов И.Д. Трусов Л.И.
В качестве добавок могут быть использованы тугоплавкие неорганические соединения взятые из ряда известных порознь или в смеси:
оксиды: Hf, Nb, Та, А1 и Si;
нитриды: Ti, Zr, Hf, V, Nb, Та, Cr, Мо, W, AI и Si;
карбиды: Ti, Zr, Hf, V, Nb, Та, Cr, Mo, W, В и Si; соединения бора - бориды: Ti, Zr, Hf, V, Nb, Та, Cr, Mo, W.
В качестве среды передающей давление могут использоваться так же песок, глина и другие доступные природные материалы, которые как и указанные в формуле соединения могут быть размещены в металлическом контейнере 2 (фиг. 1 - 3) вместе с уплотненной смесью СМ, металлического связующего и добавки, а для фиг. 3 в пространстве между контейнером и охранным кольцом.
С целью улучшения компактирования частиц исходных СМ, металлического связующего и добавок их можно подвергать таким видам предварительной обработки, как химическое удаление примесей с поверхности, активизации поверхности путем очищения или нагревания в высоком вакууме или потоке водорода.
Пластическое деформирование осуществляют по известной методике, например, описанной в книге 0.А. Кайбышева "Сверхпластичность металлов и сплавов", М. Металлургия, 1975. Пластическое деформирование позволяет получать изделия заданной формы: пластины, резцы и другие виды по назначению заказчика.
Ниже представлены примеры реализации способа.
П р и м е р 1. Исходные порошки алмаза с размерами частиц менее 10 мкм перемешивают с ультрадисперсным монокристаллическим порошком никеля с размерами частиц
Figure 00000005
в объемном соотношении 60 и 40 соответственно, до получения однородной смеси. Смесь уплотняют на прессе при давлении около 10 кг/мм2 до плотности около 60 от теоретической, в виде таблеток диаметром 10 мм и высотой 4,5 мм. Уплотненную смесь 1 помещают в металлический (из нержавеющей стали) контейнер 2 с внутренним диаметром и высотой, соответствующими размерам уплотненной смеси, устройства сверхвысокого давления (фиг. 1), закрывают крышкой 3, вставляют в стальное охранное кольцо 4 и воздействуют ударной волной с амплитудой на фронте 25 ГПа, путем детонации заряда взрывчатого вещества (ВВ) 5 из смеси тротила (30) и гексогена (70). После прохождения ударной волны за время порядка микросекунды, устройство охлаждают, извлекают содержимое контейнера.
Полученный образец представляет собой плотный компакт, по данным рентгенофазового анализа, состоящий из смеси алмаза и никеля. По данным металлографического анализа плотный, без трещин компактный материал, содержащий частицы алмаза, окруженные никелем. Плотность полученного компакта 98 от теоретической. Прочность на сжатие 500 кг/мм2, микротвердость 7000 кг/мм2. Компакт на основе алмаза может быть использован для изготовления шлифовального инструмента.
П р и м е р 2. Порошок кубического нитрида бора с размерами частиц менее 5 мкм смешивают с порошком кобальта с размерами частиц
Figure 00000006
в объемном соотношении 80 и 20 соответственно методом встряхивания в вибраторе. Уплотняют как в примере 1, уплотненную смесь 1 в виде таблеток диаметром 10 мм и высотой 5 мм помещают в металлический контейнер 2 устройства (фиг. 2), закрывают крышкой 3, вставляют в охранное кольцо 4 и ударное воздействие осуществляют метанием пластины 6 из алюминия, толщиной 10 мм, путем детонации заряда ТНТ. Давление на фронте ударной волны при таком воздействии 10 ГПа.
Полученный таким образом компактный материал на основе кубического нитрида бора представляет собой плотно спеченный материал с плотностью 98 от теоретической, твердостью 47 ГПа по HV, пределом прочности при изгибе 1300 МПа. Может использоваться для изготовления режущего инструмента.
П р и м е р 3. Порошок алмаза с размерами частиц менее 30 мкм смешивают с порошком никеля
Figure 00000007
в объемном соотношении 10 и 90 соответственно, смесь уплотняют на прессе при давлении 100 кг/мм2. Воздействие ударной волной с амплитудой на фронте 1 ГПа осуществляют по схеме примера 1 с использованием в качестве ВВ смеси Аммонита 6ЖВ с аммиачной селитрой в соотношении 30/70. Полученный компакт обладает высокой износостойкостью, стойкостью к окислению при температуре до 1000oС и может быть использован для изготовления шлифовального инструмента.
П р и м е р 4. Порошок кубического нитрида бора с размерами частиц менее 5 мкм, перемешивают с порошком алмаза с размерами частиц менее 10 мкм и порошком никеля с размерами частиц
Figure 00000008
, в объемном соотношении 47, 50 и 3 соответственно. Уплотняют на прессе при давлении 100 кг/мм2 в форме цилиндрических образцов, диаметром 8 мм и высотой 10 мм. Уплотненную смесь 1 помещают в металлический контейнер 2 диаметром 8 мм и высотой 100 мм (10 штабиков), закрывают пробками 7 (фиг. 3), контейнер вставляют в охранное кольцо 4, заполняют пространство между кольцом и контейнером средой, передающей давление 8 песком (SiO2) или другим соединением, указанным в формуле, окружают кольцо зарядом ВВ 5 и воздействуют ударной волной с амплитудой 6,0 ГПа на фронте ударной волны, путем детонации заряда ТНТ.
Полученные компакты представляют собой плотно спеченные композиционные образования. По данным металлографического анализа компакт представляет собой сложный состав алмаз-кубический нитрид бора, частицы которых связаны между собой никелем, который окружает каждую частичку алмаза и KBN, образуя прочный композиционный материал. Композиционный материал обладает характеристиками, сочетающими свойства алмаза и KBN, сохраняет твердость алмаза и нитрида бора, лишен недостатков присущих алмазному инструменту легкой окисляемости и образования карбидов металлов при обработке сталей.
П р и м е р 5. Порошки алмаза с размерами частиц -30 мкм, KBN с размерами частиц менее 5 мкм, карбида кремния с размерами частиц менее 3 мкм, нитрида кремния с размерами частиц менее 2 мкм и никеля
Figure 00000009
в объемном соотношении 50, 35, 5, 5 и 5 соответственно смешивают в шаровой мельнице в ацетоне в течение 2 ч. После сушки смесь предварительно уплотняют на прессе давлением -100 кг/мм2 в таблетки диаметром 6 мм и высотой 4 мм в количестве 5 шт. Уплотненную смесь помещают в металлический контейнер устройства сверхвысокого давления (фиг. 1), диаметр которого 30 мм, а высота 10 мм, свободное пространство заполняют порошком КСl. Ударное воздействие осуществляют ударной волной с амплитудой на фронте 10 ГПа, детонацией заряда ТГ 60/40. Не извлекая полученных компактов, проводят повторное воздействие ударной волной с амплитудой на фронте 15 ГПа детонацией заряда ТГ 70/30.
4 из полученных композиционных компактных сверхтвердых материалов имеют высокие прочностные характеристики. Из них были изготовлены резцы. Испытания резцов при обработке чугуна со скоростью 400 м/мин, глубине резания 0,2 мм и подаче 0,1 мм/об. показали стойкость 100 мин.
При обработке сплава алюминий-кремний (30), скорости резания 200 м/мин, подаче 0,1 мм/об, и глубине резки 0,2 мм стойкость резцов составила 70 мин.
Замена нитрида кремния на другие нитриды, указанные в описании не изменяют свойств компактного материала, также как и замена карбида кремния на другие карбиды.
П р и м е р 6. Все как в примере 3, но извлеченный компакт, содержащий 10 об. алмаза и 90 об. никеля, диаметром 10 мм и высотой 3 мм подвергают пластическому деформированию 10-1 с-1 на степень деформации 50 Полученный таким образом образец представляет собой круглую пластину плотностью 99% от теоретической, которую можно использовать в качестве режущего инструмента, применяемого при обработке сплавов алюминия и меди, содержащих до 30% кремния.
П р и м е р 7. Порошки BBN с размерами частиц <1 мкм, кобальта с размерами частиц
Figure 00000010
и Al2O3 с размерами частиц менее 3 мкм, взятых в объемном соотношении 55, 5 и 40 соответственно смешивают в шаровой мельнице с течение часа до получения однородной смеси. Затем смесь уплотняют при давлении 1000 кг/ мм2 в виде таблеток диаметром 4,5 мм и высотой 2,5 мм в количестве 15 шт. Таблетки помещают в металлический (стальной) контейнер внутренним диаметром 20 мм и высотой 100 мм устройства сверхвысокого давления (фиг. 3) в среде порошка оксида алюминия, пространство 8 между контейнеров и ЕВ также заполняют Al2O3. Ударное воздействие осуществляют ударной волной с амплитудой на фронте 1 ГПа, детонацией заряда смеси аммонита 6ЖВ с аммиачной селитрой с соотношении 30/70. Не извлекая полученных компактов, проводят повторное воздействие ударной волной с той же амплитудой.
Полученные компакты представляют собой образцы диаметром около 4 мм и высотой около 2 мм, 5 из 15 имеют трещины. Другие 10 без трещин компакты по данным рентгенофазового анализа представляют собой смесь из BBN, Al2O3 и кобальта, равномерно распределенные по массе образца. Плотность таких компактов не более 90% от теоретической. Эти компакты подвергали пластическому деформированию в матрице по форме резца при 900oС со скоростью деформации 10-1 с-1. Полученные заготовки для резцов испытывали при резании стали 35ХХНМ 56 НRC при глубине резания 0,5 мм, подаче 0,5 мм/об. скорости 90 м/мин, которые показали высокую стойкость (до 90 мин) при износе резца по задней грани 0,2 мм.
Замена оксида алюминия на другие оксиды, указанные в описании не изменяет свойств компактов в режущем инструменте, так же как и замена ультрадисперсного монокристаллического кобальта на железо, а в качестве среды передающей давление могут быть использованы также SiO2, NaCl, KBr и RbCl, последний из них реже из-за дефицита вещества.
П р и м е р 8. Исходные порошки алмаза с размерами частиц менее 10 мкм, перемешивают с KBN с размерами частиц менее 5 мкм, с BBN с размерами частиц менее 1 мкм, с TiB2 с размерами частиц менее 3 мкм и ультрадисперсного порошка никеля с размерами частиц
Figure 00000011
при объемном соотношении 25, 25, 10, 35 и 5 соответственно.
Далее как в примере 1.
Полученный поликристаллический компактный материал по данным металлографического анализа представляет собой композиционный материал, состоящий из частиц алмаза, KBN, окруженных никелем, между которыми равномерно распределен диборид титана. BBN в условиях ударного воздействия полностью перешел в KBN.
Режущий инструмент, изготовленный из полученного компактного материала при обработке закаленной стали ХВГ твердостью HRС 62 с наличием продольного паза шириной 4,5 мм, при скорости резания 80 м/мин, подачи 0,2 мм/об, и глубине резания 3 мм показал стойкость 30 мин при износе резца по задней грани 0,1 мм.
Все бракованные компакты, т.е. имеющие трещины, поры и другие дефекты, и которые невозможно использовать подвергают измельчению в шаровой мельнице, после чего классифицируют по фракциям и направляют для изготовления абразивных кругов, дисков, паст, которые могут быть использованы по назначению.
Таким образом, изобретение позволяет получать за времена, исчисляемые микросекундами, компактные материалы на основе алмаза и/или нитрида бора обладающие высокими механическими характеристиками, которые могут быть использованы для изготовления режущего, шлифовального инструмента, изделий заданной формы.
Кроме того, способ может быть легко автоматизирован и не ограничен объемами контейнеров устройств сверхвысоких давлений в которых получают сверхтвердые компактные материалы. ЫЫЫ2

Claims (5)

1. Способ получения сверхтвердого компактного материала, включающий помещение предварительно уплотненного порошка сверхтвердого материала в устройство сверхвысокого давления, воздействие на него ударной волной и последующее извлечение полученного компактного материала, отличающийся тем, что перед уплотнением к порошку сверхтвердого материала добавляют в качестве металлического связующего 3-90 об. одного из металлов группы железа в виде ультрадисперсного монокристаллического порошка с размерами частиц 100 1000
Figure 00000012
, а воздействие осуществляют ударной волной с амплитудой на фронте 1-25 ГПа.
2. Способ по п. 1, отличающийся тем, что в смесь порошка сверхтвердого материала металлического связующего вводят не более 40 об. по крайней мере одной добавки из ряда тугоплавких неорганических соединений.
3. Способ по пп. 1 и 2, отличающийся тем, что воздействие ударных волн осуществляют через передающую среду, в качестве которой используют по крайней мере одно из соединений, выбранное из ряда: SiO2, Al2O3,KCl, NaCl, KBr, RbCl.
4. Способ по пп. 1-3, отличающийся тем, что проводят повторное воздействие ударной волной с амплитудой на фронте 1-15 ГПа.
5. Способ по пп. 1-4, отличающийся тем, что после извлечения компактного материала его подвергают деформированию при 600-900oС со скоростью деформации 10-5-10-1 с-1.
RU95104765A 1995-04-07 1995-04-07 Способ получения сверхтвердого компактного материала RU2062644C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU95104765A RU2062644C1 (ru) 1995-04-07 1995-04-07 Способ получения сверхтвердого компактного материала
PCT/RU1995/000157 WO1996031305A1 (fr) 1995-04-07 1995-07-19 Procede de fabrication d'un materiau compact extra-dur
AU30883/95A AU3088395A (en) 1995-04-07 1995-07-19 Method for producing compact superhard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95104765A RU2062644C1 (ru) 1995-04-07 1995-04-07 Способ получения сверхтвердого компактного материала

Publications (2)

Publication Number Publication Date
RU2062644C1 true RU2062644C1 (ru) 1996-06-27
RU95104765A RU95104765A (ru) 1996-07-27

Family

ID=20166265

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95104765A RU2062644C1 (ru) 1995-04-07 1995-04-07 Способ получения сверхтвердого компактного материала

Country Status (3)

Country Link
AU (1) AU3088395A (ru)
RU (1) RU2062644C1 (ru)
WO (1) WO1996031305A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003086970A1 (fr) * 2002-04-18 2003-10-23 Nauchno-Proizvodstvennoe Zakrytoe Aktsionernoe Obschestvo 'sinta' Procede de fabrication de materiaux synthetiques contenant des diamants
RU2484940C2 (ru) * 2011-05-31 2013-06-20 Учреждение Российской академии наук Институт физико-технических проблем Севера им. В.П. Ларионова Сибирского отделения РАН (ИФТПС СО РАН) Способ изготовления алмазометаллического композита методом взрывного прессования
RU2711289C1 (ru) * 2019-07-17 2020-01-16 Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2433908C2 (ru) 2005-08-16 2011-11-20 Элемент Сикс (Продакшн) (Пти) Лтд Мелкозернистый поликристаллический абразивный материал
EP2426229B1 (en) * 2006-12-11 2016-11-16 Element Six Abrasives S.A. Process for Producing a Cubic Boron Nitride Compact
CN109678477B (zh) * 2019-01-02 2021-06-01 南方科技大学 纳米结构斯石英-立方氮化硼超硬复合材料及其制备方法和刀具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089933A (en) * 1970-01-04 1978-05-16 Institut Fiziki Vysokikh Daleny Akademi Nauk, Sssr Method of producing polycrystalline diamond aggregates
SU1120629A2 (ru) * 1978-06-22 1994-04-30 Институт физики высоких давлений АН СССР Способ получения алмазных композиционных материалов
US4333986A (en) * 1979-06-11 1982-06-08 Sumitomo Electric Industries, Ltd. Diamond sintered compact wherein crystal particles are uniformly orientated in a particular direction and a method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 4014974, кл. 423-290, 1977. 2. Патент США N 3399254, кл. 423-446, 1968. 3. Патент США N 3659972, кл. 423-446, 1972. 4. Патент США N 5087435, кл. 423-446, 1992. 5. Патент США N 3851027, кл. 423-446, 1974. 6. Заявка PCT N 086/06057, кл. C OI B 21/06, 1986. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003086970A1 (fr) * 2002-04-18 2003-10-23 Nauchno-Proizvodstvennoe Zakrytoe Aktsionernoe Obschestvo 'sinta' Procede de fabrication de materiaux synthetiques contenant des diamants
RU2484940C2 (ru) * 2011-05-31 2013-06-20 Учреждение Российской академии наук Институт физико-технических проблем Севера им. В.П. Ларионова Сибирского отделения РАН (ИФТПС СО РАН) Способ изготовления алмазометаллического композита методом взрывного прессования
RU2711289C1 (ru) * 2019-07-17 2020-01-16 Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама

Also Published As

Publication number Publication date
RU95104765A (ru) 1996-07-27
AU3088395A (en) 1996-10-23
WO1996031305A1 (fr) 1996-10-10

Similar Documents

Publication Publication Date Title
US3767371A (en) Cubic boron nitride/sintered carbide abrasive bodies
AU611511B2 (en) Diamond and cubic boron nitride abrasive compacts
US4931068A (en) Method for fabricating fracture-resistant diamond and diamond composite articles
US3743489A (en) Abrasive bodies of finely-divided cubic boron nitride crystals
CA1321885C (en) Diamond compacts
US3894850A (en) Superhard composition material based on cubic boron nitride and a method for preparing same
IE49294B1 (en) Abrasive compacts
Trueb et al. Carbonado: A microstructural study
US4490329A (en) Implosive consolidation of a particle mass including amorphous material
RU2062644C1 (ru) Способ получения сверхтвердого компактного материала
JP5509668B2 (ja) ダイヤモンドの製造方法、及びこの製造方法によって製造されたダイヤモンド
EP0190346A1 (en) Novel composite ceramics with improved toughness
EP1319090A1 (en) Hard metal body with hardness gradient, such as punching tools
JPH0483525A (ja) ダイヤモンド砥粒の製造方法
WO1992017618A1 (en) Abrasive compact composed mainly of cubic boron nitride and method of making same
US4661155A (en) Molded, boron carbide-containing, sintered articles and manufacturing method
Yakovleva et al. Wear resistance factors of diamond-metal powder systems, obtained by explosive compaction
Deribas et al. Long–pulse explosive compaction of a diamond powder
SU741539A1 (ru) Способ получени сверхтвердых материалов
RU2750448C1 (ru) Сырьевая смесь для изготовления крупноразмерной заготовки сверхтвердого композитного материала, крупноразмерная заготовка сверхтвердого композитного материала и способ ее получения
JPH0230667A (ja) 超微粒子からなるダイヤモンド焼結体およびその製造方法
Gibas et al. Shock-treated boron nitride as a sintering aid for c-BN compacting under high pressure
RU2412111C1 (ru) Способ получения поликристаллического кубического нитрида бора
Yakovleva et al. Technology of Production of Diamond-Abrasive Composites with Metal Matrix
JPS6146540B2 (ru)