RU2711289C1 - Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама - Google Patents

Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама Download PDF

Info

Publication number
RU2711289C1
RU2711289C1 RU2019122441A RU2019122441A RU2711289C1 RU 2711289 C1 RU2711289 C1 RU 2711289C1 RU 2019122441 A RU2019122441 A RU 2019122441A RU 2019122441 A RU2019122441 A RU 2019122441A RU 2711289 C1 RU2711289 C1 RU 2711289C1
Authority
RU
Russia
Prior art keywords
steel
ampoules
nickel
explosive
cylindrical
Prior art date
Application number
RU2019122441A
Other languages
English (en)
Inventor
Леонид Моисеевич Гуревич
Сергей Петрович Писарев
Валентин Дмитриевич Рогозин
Артём Игоревич Богданов
Анатолий Федорович Трудов
Дмитрий Владимирович Проничев
Вячеслав Фёдорович Казак
Original Assignee
Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) filed Critical Федеральное государственное бюджетное образовательное учреж-дение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority to RU2019122441A priority Critical patent/RU2711289C1/ru
Application granted granted Critical
Publication of RU2711289C1 publication Critical patent/RU2711289C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/08Compacting only by explosive forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/06Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of high energy impulses, e.g. magnetic energy
    • B23K20/08Explosive welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Изобретение относится к технологии получения износостойких композиционных материалов с помощью энергии взрывчатых веществ (ВВ) и может быть использовано для изготовления пар трения. Прессуемые порошковые смеси из никеля (Ni) и 25-30 мас.% борида вольфрама (W2B5) размещают в цилиндрических ампулах в виде труб из аустенитной стали и укладывают их вплотную друг к другу на стальное основание в виде пластины. Устанавливают с двух сторон полученного пакета из цилиндрических ампул вспомогательные стержни в виде стальных труб, заполненных высокопластичным легкоплавким металлом. Устанавливают на поверхности пакета из цилиндрических ампул метаемую стальную пластину с зарядом ВВ, размещают полученную сборку на грунте и осуществляют взрывное прессование путём инициирования процесса детонации в заряде ВВ вдоль пакета из ампул при заданной высоте и скорости детонации заряда ВВ. Сдеформированные ампулы подвергают термической обработке при температуре с последующим охлаждением на воздухе. Одновременно получают несколько цельносварных композиционных материалов в виде стержней, каждый из которых содержит оболочку из аустенитной стали, а внутри её - высокотвёрдый износостойкий сплав, состоящий из продуктов взаимодействия никеля с боридом вольфрама. 2 з.п. ф-лы, 6 ил., 2 табл, 4 пр.

Description

Изобретение относится к технологии получения износостойких композиционных материалов с помощью энергии взрывчатых веществ (ВВ) и может быть использовано в промышленности для изготовления пар трения.
Известен способ взрывного прессования кольцевых антифрикционных уплотнений, по которому в исходную смесь порошков никелированного графита и алюминиевой бронзы дополнительно вводят 20-25 мас.% порошка никелированного нитрида бора с частицами чешуйчатой формы и размерами, равными размерам частиц порошка никелированного графита, получают смесь, размещают ее в ампуле и осуществляют прессование заготовки скользящими ударными волнами с последующим отжигом (Патент РФ № 1797217, МПК B22F 03/08, опубл. 10.12.1990). Известен также способ взрывного прессования кольцевых антифрикционных изделий, который включает приготовление смеси порошков никелированного графита преимущественно чешуйчатой формы частиц и алюминиевой бронзы со сферической формой частиц, размещение смеси в цилиндрической ампуле вокруг стального стержня, затем дополнительно по наружной поверхности смеси производят засыпку слоя порошка титановой губки и осуществляют прессование наружным контактным зарядом взрывчатого вещества (Патент РФ № 2002579, МПК B22F 03/08, опубл. 15.11.1993). Общим недостатком этих двух способов является невысокая твёрдость получаемых этими способами материалов, ампулы для прессуемых смесей порошков используются лишь как вспомогательная оснастка, которую в конце технологического цикла удаляют, невозможность получения неразъёмного соединения между стенкой ампулы и прессуемым порошком, малая их производительность: за один технологический цикл получают всего лишь одну прессовку. Всё это ограничивает применение этих способов в промышленности для изготовления пар трения.
Наиболее близким по техническому уровню и достигаемому результату является способ получения металлополимерного нанокомпозиционного материала путём взрывного прессования. При его реализации прессуемую порошковую металлополимерную смесь, содержащую 60-90% металлического порошка, в качестве которого предложено использовать никелевый порошок, засыпают в контейнер, имеющий внутри толщину не более 0,2 внутреннего диаметра D ампулы, с оболочкой из металла с пониженной адгезией к полимерам. Контейнер размещают симметрично продольной оси ампулы. Между оболочкой контейнера и стальными вкладышами, имеющими толщину (0,25-0,35) D, размещают пористую передающую среду. Соосно с контейнером с прессуемой порошковой металлополимерной смесью на наружной поверхности ампулы располагают два пуансона из металла с повышенной плотностью с толщиной, равной 1,2-1,5 наружной толщины контейнера с прессуемой порошковой металлополимерной смесью. Между пуансонами и секторными зарядами ВВ располагают прослойки из песка. В качестве секторных зарядов ВВ используют ВВ со скоростью детонации 3800-4120 м/с. Площадь контакта каждого секторного заряда ВВ со стенкой ампулы в пределах 34-42%. Отношение удельной массы ВВ к сумме удельных масс стенки ампулы, стального вкладыша и слоя пористой передающей среды - 0,14-0,29. Полученный наноструктурированный металлополимерный композиционный материал имеет форму пластины и обладает высокой твёрдостью и износостойкостью (патент РФ № 2452593, МПК B22F 03/08, B23К 20/08, B82В 3/00, опубл. 10.06.2012 - прототип).
Данный способ имеет невысокий технический уровень, что связано с недостаточно высокой твёрдостью спрессованного по нему материала, не превышающая 2-3,4 ГПа, с значительной сложностью его реализации, с малой его производительностью, с необходимостью удаления механической обработкой сдеформированной ампулы и прочей, расположенной в ней вспомогательной оснастки. Кроме того, этим способом невозможно получить неразъёмное соединение прессовки с контактирующим с ней металлом, что весьма ограничивает применение этого способа, для изготовления изделий, где требуется повышенная твёрдость прессовки и её прочная связь с находящимся в контакте с ней металлическим слоем.
В связи с этим важнейшей задачей является разработка нового способа получения композиционного материала из стали и смеси порошков никеля и борида вольфрама, обладающего в сравнении с прототипом значительно большей производительностью на стадии взрывного прессования, с большей твёрдостью порошковых прессовок, чем у материалов по прототипу, с использованием стенок стальных ампул в качестве оболочек порошковых прессовок, с образованием при этом между ними сплошных сварных соединений.
Техническим результатом заявленного способа является создание новой технологии, обеспечивающей с помощью одновременного взрывного прессования пакета из стальных ампул с находящимся в них прессуемыми смесями порошков из никеля и борида вольфрама и последующего термического воздействия на полученные при этом заготовки, одновременное получение цельносварных композиционных материалов в виде стержней, каждый из которых содержит оболочку из аустенитной стали, а внутри её - высокотвёрдый износостойкий сплав, состоящий из продуктов взаимодействия никеля с боридом вольфрама, с большей твёрдостью, чем у материалов по прототипу,
Указанный технический результат достигается тем, что в предлагаемом способе получения композиционных материалов из стали и смеси порошков никеля и борида вольфрама, включающем размещение в цилиндрической стальной ампуле прессуемой порошковой смеси, содержащей порошок никеля, инициирование процесса детонации в заряде взрывчатого вещества (ВВ) и взрывное прессование, прессуемые порошковые смеси, из никеля (Ni) и борида вольфрама (W2B5), содержащие 25-30 мас. % последнего, размещают в цилиндрических ампулах в виде труб из аустенитной стали с наружным диаметром 16-24 мм и с толщиной стенок 1-2 мм, укладывают их вплотную друг к другу на стальное основание в виде пластины с толщиной 10-15 мм, устанавливают с двух сторон полученного пакета из цилиндрических ампул вспомогательные стержни в виде стальных труб, заполненных высокопластичным легкоплавким металлом, с таким же наружным диаметром, как у цилиндрических ампул, устанавливают на поверхности пакета из цилиндрических ампул метаемую стальную пластину толщиной 4-5 мм с зарядом ВВ, размещают полученную сборку на грунте и осуществляют взрывное прессование путём инициирования процесса детонации в заряде ВВ вдоль пакета из ампул, при этом высоту и скорость детонации заряда ВВ, выбирают из условия получения давления в порошковой смеси каждой ампулы 1,5-1,8 ГПа, затем сдеформированные ампулы с находящимися в них спрессованными порошковыми смесями подвергают термической обработке при температуре 1150-1200 оС в течение 50-70 мин с последующим охлаждением на воздухе с получением при этом цельносварных композиционных материалов в виде стержней, каждый из которых содержит оболочку из аустенитной стали, а внутри её - высокотвёрдый износостойкий сплав, состоящий из продуктов взаимодействия никеля с боридом вольфрама. При реализации способа в качестве материала для изготовления цилиндрических ампул используют аустенитную сталь 12Х18Н10Т, а в качестве высокопластичного легкоплавкого металла для заполнения полостей вспомогательных стержней используют свинец.
Новый способ получения композиционных материалов из стали и смеси порошков никеля и борида вольфрама имеет существенные отличия по сравнению с прототипом как по используемым материалам, составу, свойствам и количеству получаемых за один технологический цикл композиционных материалов, так и по совокупности технологических приёмов и режимов их получения. Так предложено прессуемые порошковые смеси, из никеля (Ni) и борида вольфрама (W2B5), содержащие 25-30 мас. % последнего, размещать в цилиндрических ампулах в виде труб из аустенитной стали с наружным диаметром 16-24 мм и с толщиной стенок 1-2 мм и укладывать их вплотную друг к другу на стальное основание в виде пластины с толщиной 10-15 мм, что создаёт необходимые условия для получения при последующем взрывном прессовании сразу нескольких заготовок в виде стержней, каждый из которых содержит сдеформированную стенку ампулы (оболочку) из аустенитной стали, с расположенной внутри неё высокоплотной прессовкой из смеси порошков никеля и борида вольфрама. Содержание борида вольфрама в порошковой смеси менее 25 мас. % приводит при термической обработке спрессованных взрывом заготовок к появлению в зонах контакта стальной оболочки с порошковой прессовкой лишь локальных зон сварки, что может быть недопустимо при использовании таких материалов. Содержание борида вольфрама в порошковой смеси более 30 мас. % приводит к чрезмерному повышению твёрдости у получаемого при термической обработке сплава из порошков никеля и борида вольфрама, что может быть недопустимым при использовании таких материалов в ряде пар трения.
Размещение смесей из никеля и борида вольфрама, в цилиндрических ампулах в виде труб из аустенитной стали с наружным диаметром 16-24 мм и с толщиной стенок 1-2 мм обеспечивает надёжную защиту прессуемой смеси от воздействия окружающей среды при взрывном прессовании, способствует сохранности прессовок от разрушения как в процессе взрывного прессования, так и при разгрузке сжатой системы. Кроме того, стенки ампул выполняют роль сред, передающих давление от ВВ к прессуемым смесям порошков и применение при этом аустенитной стали, в качестве которой предложено использовать коррозионностойкую сталь 12Х18Н10Т, обладающей высокой пластичностью и прочностью обеспечивает высокое качество получаемой продукции и её служебные свойства, а также её защиту от воздействия окружающей среды. Наружный диаметр ампул менее 16 мм приводит к недопустимо малым объёмам располагаемых в них порошковых смесей, что приводит к снижению служебных свойств получаемых композиционных материалов. Наружный диаметр ампул более 24 мм может приводить при взрывном прессовании к локальному оплавлению наружных поверхностей ампул, что снижает качество продукции. Толщина стенок ампул менее 1 мм не всегда обеспечивает их целостность при взрывном прессовании, что приводит к невозможности практического использования получаемых при этом прессовок. Толщина стенок ампул более 2 мм является избыточной, поскольку это приводит к нежелательному снижению объёмной доли сплава из борида вольфрама и никеля в получаемых материалах.
Толщина стального основания менее 10 мм не обеспечивает надёжную защиту получаемых материалов от неконтролируемых деформаций, что снижает их качество. Его толщина более 15 мм является избыточной, поскольку на качество получаемой продукции это не влияет, а ведёт лишь к лишнему расходу металла в расчёте на одно изделие. Размещение ампул вплотную друг к другу на стальном основании в виде пакета препятствует образованию локальных зон сварки между смежными ампулами, снижающими качество получаемых материалов.
Предложено устанавливать с двух сторон полученного пакета из цилиндрических ампул вспомогательные стержни в виде стальных труб, заполненных высокопластичным легкоплавким металлом, в качестве которого предложено использовать свинец, с таким же наружным диаметром, как у цилиндрических ампул, что обеспечивает примерно одинаковые условия деформирования ампул с прессуемыми порошками как находящихся по краям пакета из ампул, так и внутри его, а это, в свою очередь, способствует получению материалов с одинаковой формой и размерами, способствует увеличению выхода годных изделий. При использовании вспомогательных стержней с диаметрами, выходящими за предлагаемые пределы, снижается качество получаемых материалов.
Предложено устанавливать на поверхности пакета из цилиндрических ампул метаемую стальную пластину толщиной 4-5 мм с зарядом ВВ, размещать полученную сборку на грунте и осуществлять взрывное прессование путём инициирования процесса детонации в заряде ВВ вдоль пакета из ампул, при этом высоту и скорость детонации заряда ВВ, выбирать из условия получения давления в порошковой смеси каждой ампулы 1,5-1,8 ГПа. В процессе взрывного прессования метаемая стальная пластина перемещается в направлении ампул с расположенными в них порошковыми смесями, деформирует их с высокой скоростью, при этом порошковые смеси прессуются до плотности, близкой к предельной. В процессе взрывного прессования происходит также очистка внутренних поверхностей стенок ампул и термодинамическая активация частиц Ni и W2B5, что способствует получению при последующей термической обработке цельносварных композиционных материалов. Толщина метаемой стальной пластины менее 4 мм не способствует получению композиционных материалов с осевой симметрией, а её толщина более 5 мм является избыточной поскольку это приводит к заметному увеличению расхода ВВ в расчёте на одно изделие. Осуществление взрывного прессования путём инициирования процесса детонации в заряде ВВ вдоль пакета из ампул способствует получению материалов с осевой симметрией. Давление в порошковой смеси каждой ампулы менее 1,5 ГПа является недостаточным для получения необходимой высокой плотности порошковых прессовок, а давление более 1,8 ГПа является избыточным, поскольку это не способствует повышению качества получаемых материалов, а приводит к лишним затратам на приобретение ВВ.
Предложено сдеформированные ампулы с находящимися в них спрессованными порошковыми смесями подвергать термической обработке при температуре 1150-1200 оС в течение 50-70 мин с последующим охлаждением на воздухе, что обеспечивает получение при этом нескольких цельносварных композиционных материалов, в виде стержней, каждый из которых содержит оболочку из аустенитной стали, а внутри её - высокотвёрдый износостойкий сплав, состоящий из продуктов взаимодействия никеля с боридом вольфрама: из твёрдого раствора вольфрама в никеле (основа), борида никеля, а также комплексного борида W2NiB2. Температура и время выдержки при термической обработке ниже нижних предлагаемых пределов не обеспечивают получение цельносварных композиционных материалов. Температура и время выдержки выше верхних предлагаемых пределов приводят к лишним энергозатратам при получении материалов, а также это может приводить к снижению их служебных свойств. Охлаждение на воздухе термически обработанных заготовок является наиболее экономичным способом снижения их температуры, обеспечивающим требуемые свойства получаемых материалов.
На фиг. 1 приведены расчётные импульсы давления в прессуемых порошковых смесях, где кривая 1 рассчитана для схемы прессования, описанной в примере 1, кривая 2 – для примера 2, кривая 3 – для примера 3.
На фиг. 2 показан продольный осевой разрез ампулы с прессуемой порошковой смесью, на фиг. 3 показана схема взрывного прессования ампул с прессуемыми порошками (вид сбоку), на фиг. 4 – поперечный разрез А-А на фиг. 3, на фиг. 5 - схема взрывного прессования (вид сверху), на фиг. 6 – поперечный разрез одного из полученных композиционных материалов.
Предлагаемый способ получения композиционных материалов из стали и смеси порошков никеля и борида вольфрама осуществляется в следующей последовательности. Сначала в каждой ампуле 1 в виде трубы из аустенитной стали с наружным диаметром 16-24 мм и с толщиной стенок 1-2 мм устанавливают путём запрессовки заглушку 2, например, из алюминия, заполняют её прессуемой порошковой смесью 3, затем ампулу герметизируют заглушкой 4. Вспомогательные стержни в виде стальных труб 5, заполненных высокопластичным легкоплавким металлом 6, изготавливают с таким же наружным и внутренним диаметром, а также с такой же длиной, как у цилиндрических ампул. Укладывают снаряженные ампулы описанным выше способом вплотную друг к другу на стальное основание 7 в виде пластины с толщиной 10-15 мм, устанавливают с двух сторон полученного пакета из цилиндрических ампул вспомогательные стержни, устанавливают на поверхности пакета из цилиндрических ампул метаемую стальную пластину 8 толщиной 4-5 мм с основным зарядом ВВ 9 и с расположенным в передней части основного заряда вспомогательным зарядом ВВ 10, создающим плоский фронт детонации в основном заряде, размещают полученную сборку, например, на песчаном на грунте 11 и осуществляют взрывное прессование путём инициирования с помощью электродетонатора 12 процесса детонации в заряде ВВ вдоль пакета из ампул, при этом высоту и скорость детонации заряда ВВ, выбирают с помощью компьютерной технологии исходя из условия получения давления в порошковой смеси каждой ампулы 1,5-1,8 ГПа. Затем, для устранения краевых эффектов, производят обрезку, например, с помощью абразивного инструмента, концевых частей у сдеформированных ампул с находящимися в них спрессованными порошковыми смесями, размещают полученные при этом заготовки в металлическом контейнере, например, из никеля, заполняют пространство между стенками контейнера и заготовками тугоплавким керамическим порошком, например, б-корундом, контейнер герметизируют, после чего его помещают, например, в электропечь, и подвергают термической обработке при температуре 1150-1200°С в течение 50-70 мин с последующим охлаждением на воздухе и извлечением полученных материалов из металлического контейнера.
В результате одновременно получают несколько цельносварных композиционных материалов, в виде стержней, каждый из которых содержит оболочку из аустенитной стали 13, а внутри её - высокотвёрдый износостойкий сплав 14, состоящий из продуктов взаимодействия никеля с боридом вольфрама: из твёрдого раствора вольфрама в никеле (основа), борида никеля, а также комплексного борида W2NiB2. Между оболочкой 13 и сформированным в процессе термической обработки сплавом 14 образуется сплошное сварное соединение 15. Твёрдость сплава, расположенного внутри оболочки из аустенитной стали превосходит в 1,2-5 раз твёрдость материалов, полученных по прототипу. Из полученных материалов можно изготавливать, например, вкладыши тормозных устройств с повышенной величиной допускаемого износа, присоединять их, например, пайкой с использованием легкоплавких или тугоплавких припоев к другим деталям, а также можно использовать в парах трения других технических устройств.
Пример 1 (см. таблицы 1 и 2, пример 1).
Для получения материалов по предлагаемому способу берут восемь ампул из аустенитной стали 12Х18Н10Т длиной каждой из них L=200 мм, с наружным диаметром Dн=16 мм, внутренним - Dв=14 мм, с толщиной стенки Тст=1 мм. Для заполнения ампул в качестве прессуемой порошковой смеси используют смесь из порошка электролитического никеля и порошка борида вольфрама с химической формулой W2B5, с содержанием 25 мас. % последнего. Для закупорки ампул используют заглушки из алюминия АД толщиной 3 мм. Вспомогательные стержни в виде труб изготавливают стали Ст3 с таким же наружным и внутренним диаметром и с такой же длиной, как у цилиндрических ампул, их внутренние полости заполняют высокопластичным легкоплавким металлом – свинцом. Стальное основание в виде пластины изготавливают стали Ст3 с толщиной Тос=10 мм, длиной Мос=210 мм, шириной Nос=190 мм. Метаемую стальную пластину изготавливают из стали Ст3 толщиной Тмп=4 мм. Её длина и ширина такие же, как у стального основания. Из предлагаемого диапазона выбираем необходимое давление прессования в порошковой смеси каждой ампулы Р. В данном примере Р=1,5 ГПа. Для обеспечения такого давления с помощью компьютерной технологии, с учетом толщин и физических характеристик всех объектов схемы взрывного прессования выбираем необходимую скорость детонации основного заряда ВВ Dвв и его высоту Нвв. В данном случае Dвв= 3300 м/с, а Нвв=30 мм. Такими параметрами обладает взрывчатое вещество в виде порошкообразного аммонита 6ЖВ.
После взрывного прессования и обрезки концевых частей у всех восьми сдеформированных ампул с находящимися в них спрессованными порошковыми смесями, их размещают в металлическом контейнере из никеля с толщиной стенки 1 мм, заполняют пространство между стенками контейнера и заготовками тугоплавким керамическим порошком, например, б-корундом, контейнер закрывают крышкой и герметизируют, например, с помощью смеси жидкого стекла с б-корундом, после просушки его помещают в электропечь, и подвергают термической обработке при температуре 1150°С в течение 70 мин с последующим охлаждением на воздухе и извлечением полученных материалов из металлического контейнера.
В результате одновременно получают композиционные материалы в виде восьми стержней, каждый из которых содержит оболочку из аустенитной стали, а внутри её - высокотвёрдый износостойкий сплав, состоящий из продуктов взаимодействия никеля с боридом вольфрама: из твёрдого раствора вольфрама в никеле (основа), борида никеля, а также комплексного борида W2NiB2. Между оболочкой и сформированным в процессе термической обработки сплавом образуется сплошное сварное соединение. В поперечном сечении форма композиционных стержней близка к эллиптической.
Длина каждого композиционного стержня Lкм=175 мм, ширина Nкм – около 17 мм, толщина Ткм - около 7 мм. В структуре указанного сплава имеются однофазные области с пониженной твёрдостью и области в виде высокодисперсных смесей фаз с значительно более высокой твёрдостью, чем у однофазных областей, что весьма благоприятно сказывается на долговечности таких материалов в парах трения со смазкой. У полученных материалов твёрдость сплавов внутри стальных оболочек, измеренная на микротвердомере ПМТ-3М, находится в пределах 4,2-7,8 ГПа, что в 1,2-3,9 раза выше, чем у материалов по прототипу. Еще одним важным достоинством полученных по предлагаемому способу материалов является сформированная в них в процессе термической обработки закрытая пористость, достигающая 15-16 % объёма, причём форма пор близка к сферической, их максимальные размеры могут достигать 0,25 мм, что также способствует повышению долговечности таких материалов в парах трения со смазкой.
Пример 2 (см. таблицы 1 и 2, пример 2).
То же, что в примере 1, но внесены следующие изменения. Для получения материалов по предлагаемому способу берут семь ампул из аустенитной стали 12Х18Н10Т длиной каждой из них L=230 мм, с наружным диаметром Dн=20 мм, внутренним - Dв=17 мм, с толщиной стенки Тст=1,5 мм. Для заполнения ампул в качестве прессуемой порошковой смеси использовали смесь тех же порошков, что в примере 1, но с содержанием 27 мас. % борида вольфрама. Стальное основание изготавливают с толщиной Тос=12 мм, длиной Мос=240 мм, шириной Nос=210 мм. Метаемую стальную пластину изготавливают толщиной Тмп=4,5 мм. Её длина и ширина такие же, как у стального основания. Из предлагаемого диапазона выбираем необходимое давление прессования в порошковой смеси каждой ампулы Р. В данном примере Р=1,6 ГПа. Для обеспечения такого давления скорость детонации основного заряда ВВ Dвв= 3500 м/с, а Нвв=35 мм. Такими параметрами обладает взрывчатое вещество в виде порошкообразного аммонита 6ЖВ. Термическую обработку семи сдеформированных ампул с находящимися в них спрессованными порошковыми смесями проводят при температуре 1170°С в течение 60 мин.
Результаты получения материалов те же, что и в примере 1, но одновременно получают композиционные материалы, в виде семи стержней, с длиной каждого из них Lкм=210 мм, с шириной Nкм- около 21 мм, с толщиной Ткм - около 10,5 мм. У полученных материалов твёрдость сплавов внутри стальных оболочек находится в пределах 4,2-9 ГПа, что в 1,2-4,5 раза выше, чем у материалов по прототипу.
Пример 3 (см. таблицы 1 и 2, пример 3).
То же, что в примере 1, но внесены следующие изменения. Для получения материалов по предлагаемому способу берут шесть ампул из аустенитной стали 12Х18Н10Т длиной каждой из них L=250 мм, с наружным диаметром Dн=24 мм, внутренним - Dв=20 мм, с толщиной стенки Тст=2 мм. Для заполнения ампул в качестве прессуемой порошковой смеси используют смесь тех же порошков, что в примере 1, но с содержанием 30 мас. % борида вольфрама. Стальное основание изготавливают с толщиной Тос=15 мм, длиной Мос=260 мм, шириной Nос=220 мм. Метаемую стальную пластину изготавливают толщиной Тмп=5 мм. Её длина и ширина такие же, как у стального основания. Из предлагаемого диапазона выбираем необходимое давление прессования в порошковой смеси каждой ампулы Р. В данном примере Р=1,8 ГПа. Для обеспечения такого давления скорость детонации основного заряда ВВ Dвв=3600 м/с, а Нвв=45 мм. Такими параметрами обладает взрывчатое вещество в виде порошкообразного аммонита 6ЖВ. Термическую обработку шести сдеформированных ампул с находящимися в них спрессованными порошковыми смесями проводят при температуре 1200 оС в течение 50 мин.
Результаты получения материалов те же, что и в примере 1, но одновременно получают композиционные материалы, в виде шести стержней, с длиной каждого из них Lкм=220 мм, с шириной Nкм- около 25,5 мм, с толщиной Ткм- около 12,5 мм. У полученных материалов твёрдость сплавов внутри стальных оболочек находится в пределах 4,3-10,3 ГПа, что в 1,3-5 раз выше, чем у материалов по прототипу.
Таблица 1
Номер
при-
мера
Способ
получе-
ния
материалов
Состав прессуемой порошковой смеси Параметры цилиндрических ампул и оснастки, используемой при взрывном прессовании Режимы взрывного прессования
1 Предлагае-
мый
способ
25 мас. % борида вольфрама с химической формулой W2B5, остальное никель Используют восемь ампул из аустенитной стали 12Х18Н10Т длиной каждой из них L=200 мм, с наружным диаметром Dн=16 мм, внутренним - Dв=14 мм, с толщиной стенки Тст=1 мм. Вспомогательные стержни из стали Ст3 с такими же размерами, как у цилиндрических ампул, их внутренние полости заполнены свинцом. Стальное основание из стали Ст3 с толщиной Тос=10 мм, длиной Мос=210 мм, шириной Nос=190 мм. Метаемая пластина из стали Ст3 толщиной Тмп=4 мм. Её длина и ширина такие же, как у стального основания. Состав ВВ: аммонит 6ЖВ. Нвв=30 мм, Dвв=3300 м/с, давление в порошковой смеси Р=1,5 ГПа.
2 Предлагае-
мый
способ
То же, что в примере 1, но
в смеси
27 мас. % W2B5
То же, что в примере 1, но используют семь ампул из аустенитной стали 12Х18Н10Т с длиной каждой из них L=240 мм, Dн=20 мм, Dв=17 мм, Тст=1,5 мм. У стального основания Тос=12 мм, Мос=240 мм, Nос=210 мм. У метаемой стальной пластины Тмп=4,5 мм. Её длина и ширина такие же, как у стального основания. Состав ВВ: аммонит 6ЖВ. Нвв=35 мм, Dвв=3500 м/с, Р=1,6 ГПа.
3 Предлагае-
мый
способ
То же, что в примере 1, но
в смеси
30 мас. % W2B5
То же, что в примере 1, но используют шесть ампул из аустенитной стали12Х18Н10Т с длиной каждой из них L=250 мм, Dн=24 мм, Dв=20 мм, Тст=2 мм. У стального основания Тос=15 мм, Мос=260 мм, Nос=220 мм. У метаемой стальной пластины Тмп=5 мм. Её длина и ширина такие же, как у стального основания. Состав ВВ: аммонит 6ЖВ. Нвв=45 мм, Dвв=3600 м/с, Р=1,8 ГПа.
4 Прототип патент РФ №2452593 Смеси из 60-90% никеля, остальное фторопласт Ф4. Ампулы из стали Ст3 с наружным диаметром 72-80 мм, внутренним – 60 мм, Кроме этого использовались стальные вкладыши, располагаемые внутри ампулы, а также два пуансона из металла с повышенной плотностью, располагаемые снаружи ампулы. Использовалась также пористая передающая среда в виде железного порошка. Используют секторные заряды ВВ из аммонита 6ЖВ толщиной 40-60 мм, Dвв=3800 - 4120 м/с
Таблица 2
Номер
при-
мера
Способ
получе-ния
материалов
Режимы термической обработки Результаты получения композиционных материалов по предлагаемому способу
1 Предлагаемый
способ
Термическую обработку проводят при температуре t=1150°С, при времени выдержки 70 мин. Одновременно получают композиционные материалы, в виде восьми стержней, каждый из которых содержит оболочку из аустенитной стали, а внутри её - высокотвёрдый износостойкий сплав, состоящий из продуктов взаимодействия никеля с боридом вольфрама: из твёрдого раствора вольфрама в никеле (основа), борида никеля, а также комплексного борида W2NiB2. Между оболочкой и сформированным в процессе термической обработки сплавом образуется сплошное сварное соединение. В поперечном сечении форма композиционных стержней близка к эллиптической. Длина каждого композиционного стержня Lкм=175 мм, ширина Nкм – около 17 мм, толщина Ткм - около 7 мм. Твёрдость сплавов внутри стальных оболочек находится в пределах 4,2-7,8 ГПа, что в 1,2-3,9 раза выше, чем у материалов по прототипу.
2 Предлагаемый способ t=1170 °С, время выдержки – 60 мин. Результаты получения материалов те же, что и в примере 1, но одновременно получают композиционные материалы, в виде семи стержней, с длиной каждого из них Lкм=210 мм, с шириной Nкм- около 21 мм, с толщиной Ткм- около 10,5 мм. Твёрдость сплавов внутри стальных оболочек находится в пределах 4,2-9 ГПа, что в 1,2-4,5 раза выше, чем у материалов по прототипу.
3 Предлагаемый способ t=1200 °С, время выдержки - 50 мин. Результаты получения материалов те же, что и в примере 1, но одновременно получают композиционные материалы, в виде шести стержней, с длиной каждого из них Lкм=220 мм, с шириной Nкм- около 25,5 мм, с толщиной Ткм- около 12,5 мм. Твёрдость сплавов внутри стальных оболочек находится в пределах 4,3-10,3 ГПа, что в 1,3-5 раз выше, чем у материалов по прототипу.
4 Прототип патент РФ №2452593 Термическая обработка после взрывного прессования не проводится. Получают лишь одно изделие из металлополимерного композиционного материала в виде пластины без наружной металлической оболочки, с твёрдостью в 1,2-5 раз более низкой, чем у сплавов, расположенных внутри стальных оболочек композиционных изделий, полученных по предлагаемому способу.
При получении материалов по прототипу (см. таблицы 1 и 2, пример 4) за один технологический цикл получают лишь одно изделие из металлополимерного композиционного материала в виде пластины без наружной металлической оболочки, с твёрдостью в 1,2-5 раз более низкой, чем у сплавов, расположенных внутри стальных оболочек композиционных изделий, полученных по предлагаемому способу, всё это ограничивает применение такого материала в ряде технических устройств, где требуется повышенная твёрдость и прочное соединение его с металлической поверхностью.

Claims (3)

1. Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама, включающий размещение в цилиндрической стальной ампуле прессуемой порошковой смеси, содержащей порошок никеля, инициирование процесса детонации в заряде взрывчатого вещества (ВВ) и взрывное прессование, отличающийся тем, что прессуемые порошковые смеси из никеля (Ni) и борида вольфрама (W2B5), содержащие 25-30 мас. % последнего, размещают в цилиндрических ампулах в виде труб из аустенитной стали с наружным диаметром 16-24 мм и с толщиной стенок 1-2 мм, укладывают их вплотную друг к другу на стальное основание в виде пластины с толщиной 10-15 мм, устанавливают с двух сторон полученного пакета из цилиндрических ампул вспомогательные стержни в виде стальных труб, заполненных высокопластичным легкоплавким металлом, с таким же наружным диаметром, как у цилиндрических ампул, устанавливают на поверхности пакета из цилиндрических ампул метаемую стальную пластину толщиной 4-5 мм с зарядом ВВ, размещают полученную сборку на грунте и осуществляют взрывное прессование путём инициирования процесса детонации в заряде ВВ вдоль пакета из ампул, при этом высоту и скорость детонации заряда ВВ выбирают из условия получения давления в порошковой смеси каждой ампулы 1,5-1,8 ГПа, затем сдеформированные ампулы с находящимися в них спрессованными порошковыми смесями подвергают термической обработке при температуре 1150-1200°С в течение 50-70 мин с последующим охлаждением на воздухе с получением при этом цельносварных композиционных материалов в виде стержней, каждый из которых содержит оболочку из аустенитной стали, а внутри неё - высокотвёрдый износостойкий сплав, состоящий из продуктов взаимодействия никеля с боридом вольфрама.
2. Способ по п.1, отличающийся тем, что в качестве материала для изготовления цилиндрических ампул используют аустенитную сталь 12Х18Н10Т.
3. Способ по п.1, отличающийся тем, что в качестве высокопластичного легкоплавкого металла для заполнения полостей вспомогательных стержней используют свинец.
RU2019122441A 2019-07-17 2019-07-17 Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама RU2711289C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019122441A RU2711289C1 (ru) 2019-07-17 2019-07-17 Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019122441A RU2711289C1 (ru) 2019-07-17 2019-07-17 Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама

Publications (1)

Publication Number Publication Date
RU2711289C1 true RU2711289C1 (ru) 2020-01-16

Family

ID=69171347

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019122441A RU2711289C1 (ru) 2019-07-17 2019-07-17 Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама

Country Status (1)

Country Link
RU (1) RU2711289C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115283810A (zh) * 2022-07-06 2022-11-04 中煤科工集团淮北爆破技术研究院有限公司 金属板水下无基座爆炸复合的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2062644C1 (ru) * 1995-04-07 1996-06-27 Игорь Анатольевич Жирноклеев Способ получения сверхтвердого компактного материала
RU2116177C1 (ru) * 1997-06-16 1998-07-27 Волгоградский государственный технический университет Способ получения плоских сверхпроводящих изделий сваркой взрывом
RU2452593C1 (ru) * 2011-01-11 2012-06-10 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ получения металлополимерного нанокомпозиционного материала путем взрывного прессования
CN107052350A (zh) * 2017-06-16 2017-08-18 大连理工大学 一种连接钨材与铜材的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2062644C1 (ru) * 1995-04-07 1996-06-27 Игорь Анатольевич Жирноклеев Способ получения сверхтвердого компактного материала
RU2116177C1 (ru) * 1997-06-16 1998-07-27 Волгоградский государственный технический университет Способ получения плоских сверхпроводящих изделий сваркой взрывом
RU2452593C1 (ru) * 2011-01-11 2012-06-10 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ получения металлополимерного нанокомпозиционного материала путем взрывного прессования
CN107052350A (zh) * 2017-06-16 2017-08-18 大连理工大学 一种连接钨材与铜材的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115283810A (zh) * 2022-07-06 2022-11-04 中煤科工集团淮北爆破技术研究院有限公司 金属板水下无基座爆炸复合的方法

Similar Documents

Publication Publication Date Title
US11969797B2 (en) Syntactic metal matrix materials and methods
US3356496A (en) Method of producing high density metallic products
CN111085769B (zh) 一种基于液体炸药的具有负压腔体的爆炸复合管制造工艺
JPS62294105A (ja) 金属物体の空所内面の被覆方法及び装置
CN103667849A (zh) 一种金属基陶瓷复合材料及其制造方法和应用
CN104148885B (zh) 聚晶金刚石镐钎加工工艺
RU2711289C1 (ru) Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама
CN106694889A (zh) 一种具有复合合金层的内衬套及其制备方法
NO129807B (ru)
CN101745639A (zh) 非晶颗粒增强铝基复合材料爆炸压实制备方法
RU2452593C1 (ru) Способ получения металлополимерного нанокомпозиционного материала путем взрывного прессования
US3383208A (en) Compacting method and means
RU2711288C1 (ru) Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама
RU2710828C1 (ru) Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама
CS216687B2 (en) Box for making the pressings and method of making the said box
RU2404035C1 (ru) Способ получения композиционных материалов с использованием энергии взрывчатых веществ
RU2685311C1 (ru) Способ получения слоистого металлополимерного нанокомпозиционного материала путем взрывного прессования
US20020136658A1 (en) Metal consolidation process applicable to functionally gradient material (FGM) compositions of tantalum and other materials
US2778757A (en) Carburized tungsten alloy article
RU2413594C1 (ru) Способ получения покрытия из порошкообразного фторопласта-4 на цилиндрической поверхности изделия
CN108220738A (zh) 一种造粒机螺杆料筒的制作方法
JPH02209448A (ja) 複合領域を有する超硬合金
GB2032962A (en) Aftertreatment of powder-metallurgically produced extruded tubes
RU2373035C1 (ru) Способ получения изделий с внутренними полостями путем взрывного нагружения
JPS63192504A (ja) 継目無鋼管製造用プラグ