RU2412111C1 - Способ получения поликристаллического кубического нитрида бора - Google Patents

Способ получения поликристаллического кубического нитрида бора Download PDF

Info

Publication number
RU2412111C1
RU2412111C1 RU2009127036/05A RU2009127036A RU2412111C1 RU 2412111 C1 RU2412111 C1 RU 2412111C1 RU 2009127036/05 A RU2009127036/05 A RU 2009127036/05A RU 2009127036 A RU2009127036 A RU 2009127036A RU 2412111 C1 RU2412111 C1 RU 2412111C1
Authority
RU
Russia
Prior art keywords
boron nitride
wurtzite
cubic
temperature
mixture
Prior art date
Application number
RU2009127036/05A
Other languages
English (en)
Inventor
Сергей Николаевич Малышев (RU)
Сергей Николаевич Малышев
Михаил Вадимович Пшеничный (RU)
Михаил Вадимович Пшеничный
Владимир Павлович Филоненко (RU)
Владимир Павлович Филоненко
Original Assignee
Открытое акционерное общество "Центральный научно-исследовательский технологический институт" (ОАО "ЦНИТИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Центральный научно-исследовательский технологический институт" (ОАО "ЦНИТИ") filed Critical Открытое акционерное общество "Центральный научно-исследовательский технологический институт" (ОАО "ЦНИТИ")
Priority to RU2009127036/05A priority Critical patent/RU2412111C1/ru
Application granted granted Critical
Publication of RU2412111C1 publication Critical patent/RU2412111C1/ru

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

Изобретение относится к области получения синтетических сверхтвердых материалов, в частности поликристаллического кубического нитрида бора, в условиях высоких давлений и температур для использования в химической, инструментальной, электронной и ряде других отраслей промышленности. Способ заключается в том, что готовят смесь вюрцитоподобной и кубической модификаций в соотношении от 1:4 до 2:1 соответственно, обрабатывают ее в планетарной мельнице для механоактивации и измельчения частиц до размеров, не превышающих 1 мкм, формуют и спекают смесь при температуре 1400-1800°С и давлении 7,0-9,0 ГПа, выдерживая при температуре спекания в течение времени, определяемого условиями перехода вюрцитоподобной модификации нитрида бора в кубическую без рекристаллизации, равного 5-30 с. Точное время выдержки смеси при заданных температуре и давлении определяют из условия сохранения от 5 до 15% вюрцитоподобного нитрида бора от его количества в исходной смеси. Изобретение позволяет снизить значения параметров синтеза (температуры, давления и продолжительности) и повысить комплекс физико-механических и эксплуатационных характеристик за счет получения из плотных форм нитрида бора сверхтвердых наноструктурированных компактов с субмикронной матрицей. 1 з.п. ф-лы, 1 табл.

Description

1. Область техники
Изобретение относится к области получения синтетических сверхтвердых материалов, в частности поликристаллического кубического нитрида бора, в условиях высоких давлений и температур для использования в химической, инструментальной и ряде других отраслей промышленности.
2. Уровень техники
Известен способ получения поликристаллического компакта из кубического нитрида бора путем бескатализаторного превращения пиролитического нитрида бора в области стабильности алмазоподобных фаз. Различные варианты этого способа запатентованы, например, в США (4,188,194, класс B01J 3/06, приоритет 1980 г.) и России (RU №2058966, кл. С04В 35/583, 1988 г.).
Недостатками этого способа являются очень высокие параметры проведения процесса (давление до 10 ГПа и температура до 2000°С), дороговизна исходного материала и сложность настройки параметров синтеза в массовом производстве из-за сильных различий в структуре пиролитического нитрида бора в различных партиях сырья.
Известен способ получения вюрцитоподобного нитрида бора (RU №2026810, класс С01В 21/064, 1990 г.), включающий приготовление смеси из графитоподобного нитрида бора и неорганической добавки, загрузку смеси в ампулу сохранения, размещение ампулы в объеме твердого взрывчатого вещества и воздействие на указанную смесь ударными волнами, генерируемыми детонацией взрывчатого вещества, где в качестве неорганической добавки используют кристаллогидраты галогенидов металлов, включающих марганец, щелочноземельные металлы в количестве 10-30 мас.%, а в качестве взрывчатого вещества используют, мас.%: коллоксилин - 54,4-59; нитроглицерин - 25,0-36,0; динитротолуол - 1,5-9,1; инертную добавку - 6,4-9,9.
Недостатком известного способа является низкий выход целевого продукта из-за недостаточной сохраняемости ампул.
Наиболее близким аналогом заявленного предложения, принятым в качестве прототипа, является способ получения поликристаллического кубического нитрида бора (авт. свид. СССР 411721, кл. С01В 21/06, приоритет 1971 г.). Способ заключается в воздействии высоких давлений (9-12 ГПа) и температур (1700-1800°С) на вюрцитоподобный нитрид бора (ВНБ) или его смесь 1:1 с кубическим нитридом бора (КНБ).
Недостатками прототипа являются очень высокие параметры спекания по давлению и температуре, а также малые размеры частиц конечного продукта. Такие параметры необходимы, поскольку после синтеза в ударных волнах частицы ВНБ имеют форму пластин толщиной до одного микрометра и размерами до десятков микрометров. Из-за такой формы частиц затрудняются процессы их уплотнения при спекании под давлением. Поэтому для получения беспористого компакта требуются значительные времена выдержки, а конечный продукт имеет микронные размеры частиц.
3. Раскрытие изобретения
Задачей предлагаемого технического решения является преодоление указанных недостатков, а именно - снижение параметров синтеза (температуры, давления и продолжительности), повышение комплекса физико-механических и эксплуатационных характеристик за счет получения из плотных форм нитрида бора сверхтвердых наноструктурированных компактов с субмикронной матрицей.
Решение указанной задачи обеспечивается тем, что в способе получения поликристаллического кубического нитрида бора смеси вюрцитоподобной и кубической модификаций предварительно подвергают обработке в планетарных мельницах для механоактивации и дробления частиц до размеров, соответствующих наноструктуре материала с высокой износостойкостью и лезвийностью. Затем смеси формуют и спекают, выдерживая в условиях высоких давлений и температур заданное время, определяемое условиями перехода вюрцитоподобной формы нитрида бора в кубическую без рекристаллизации.
Смеси вюрцитоподобной и кубической модификаций готовят в соотношении от 1:4 до 2:1 соответственно.
Смеси вюрцитоподобной и кубической модификаций измельчают до размеров частиц, не превышающих 1 мкм.
Параметры давления смеси выбирают из диапазона 7,0-9,0 ГПа.
Температуру спекания смеси выбирают из диапазона 1400-1800°С.
Время выдержки при температуре спекания выбирают из диапазона 5-30 секунд. Точное время выдержки смеси при заданных температуре и давлении определяют из условия сохранения в компакте от 5 до 15% вюрцитоподобной фазы от ее количества в смеси.
4. Осуществление изобретения
Заявляемый способ получения поликристаллического кубического нитрида бора из смеси вюрцитоподобной и кубической модификаций обеспечивают с помощью следующих основных операций:
- дробят частицы вюрцитоподобной и кубической модификаций нитрида бора в планетарных мельницах для механоактивации до размеров, соответствующих наноструктурному состоянию конечного материала с высокой износостойкостью и лезвийностью. При этом смеси вюрцитоподобной и кубической модификаций готовят в соотношении от 1:4 до 2:1 соответственно, измельчая их до размеров частиц, не превышающих 1 мкм;
- смеси формуют и спекают в условиях высоких давлений и температур, выдерживая заданное время, определяемое условиями частичного перехода вюрцитоподобной формы нитрида бора в кубическую без рекристаллизации.
Термобарические параметры спекания смеси выбирают из диапазонов по давлению от 7,0 до 9,0 ГПа, по температуре от 1400 до 1800°С.
Время выдержки при температуре спекания выбирают в зависимости от конкретных параметров смеси из диапазона 5-30 секунд для сохранения от 5 до 25% вюрцитоподобной фазы от ее количества в исходной смеси. Совокупность выбранных термобарических параметров спекания и времени выдержки обеспечивает получение полноплотного материала без рекристаллизации частиц нитрида бора.
Предлагаемые границы по составу смесей определяются тем, что вюрцитоподобная фаза активирует процесс уплотнения и спекания, а кубическая фаза играет роль упрочнителя. При содержании в смеси менее 25% вюрцитоподобной фазы уплотнение при спекании идет неоднородно, образуется закрытая пористость, снижающая прочность компактов. При содержании в смеси менее 30% кубической фазы снижается эффект упрочнения компакта и облегчается собирательная рекристаллизация вюрцитоподобной фазы.
Использование для получения компактов давлений выше 9,0 ГПа нецелесообразно экономически, поскольку это ведет к быстрому разрушению твердосплавной оснастки, а при давлениях ниже 7,0 ГПа получается материал с низкими эксплуатационными характеристиками, вследствие частичного перехода плотных форм нитрида бора в гексагональную фазу.
При температурах ниже 1400°С невозможно получение беспористого материала, а при температурах выше 1800°С уровень свойств компактов также снижается из-за частичного перехода плотных форм нитрида бора в гексагональную фазу.
Максимальные размеры частиц кубической фазы в исходном порошке не должны превышать пять микрометров. При использовании более крупных фракций требуются интенсивные режимы и большое время энергоемкого размола в планетарных мельницах, что приводит к увеличению затрат при изготовлении смесей, значимому повышению количества металлических примесей в смесях и снижению комплекса физико-механических свойств компактов.
Для анализа физико-механических характеристик синтезированные компакты из поликристаллического кубического нитрида бора шлифовали по торцам и образующей цилиндра. Одну торцевую поверхность полировали для измерения твердости. Плотность компактов определяли методом гидростатического взвешивания, твердость - методом Виккерса при нагрузке 100 Н. Модуль Юнга рассчитывали на основе результатов измерения скорости распространения ультразвуковых волн в образцах.
Сравнительные испытания для определения режущих свойств компактов проводили при непрерывном и прерывистом точении стали ХВГ с твердостью 62 HRC. В качестве критерия износа принимали ширину фаски износа по задней поверхности 0,2 мм. Режущие элементы имели одинаковые геометрические параметры с радиусом при вершине 0,7 мм. Обрабатывались цилиндрические образцы стали диаметром 80 мм и длиной 300 мм (для прерывистого точения с одним прямоугольным пазом шириной 5 мм) при глубине резания 0,2 мм и продольной подаче 0,03 мм/об. Величину износа режущих элементов определяли с помощью инструментального микроскопа после каждого прохода.
Средние значения результатов испытаний компактов из поликристаллического кубического нитрида бора по трем образцам сопоставлены с образцами прототипа и аналога и приведены в таблице.
Реализация заявленного предложения иллюстрируется примерами.
5. Примеры реализации способа
Пример 1
Навески порошков вюрцитоподобного (15 г) и кубического (5 г) нитрида бора зернистостью 3/2 мкм предварительно перемешиваются и обрабатываются в планетарной мельнице в течение 30 минут. Полученная механоактивированная смесь гранулируется и формуется в металлической пресс-форме в виде таблетки диаметром 5 мм и высотой 4 мм. Таблетка укладывается в графитовый стакан с крышкой, который помещается в контейнер из литографского камня и подвергается термобарической обработке в камере высокого давления при 7,5 ГПа и 1650°С с выдержкой при этой температуре в течение 10 секунд. Фазовый состав спеченных компактов составляет: ВНБ - 25-30%, КНБ - 70-75%, а максимальный размер частиц - 0,7-0,9 мкм.
Пример 2
Навески порошков вюрцитоподобного (10 г) и кубического (10 г) нитрида бора зернистостью 2/0 мкм предварительно перемешиваются и обрабатываются в планетарной мельнице в течение 15 минут. Полученная механоактивированная смесь гранулируется и формуется в металлической пресс-форме в виде таблетки диаметром 5 мм и высотой 4 мм. Таблетка помещается в графитовый стакан с крышкой, который подвергается термобарической обработке при давлении 8,5 ГПа и температуре 1750°С с выдержкой при этой температуре в течение 7 секунд. Фазовый состав спеченного компакта составляет: ВНБ - 7-9%, КНБ - 91-93% при максимальных размерах частиц кубического нитрида бора 0,4-0,6 мкм.
Пример 3
Навески порошков вюрцитоподобного (8 г) и кубического (12 г) нитрида бора зернистостью 1/0 мкм предварительно перемешиваются и обрабатываются в планетарной мельнице в течение 10 минут. Полученная механоактивированная смесь гранулируется и формуется в металлической пресс-форме в виде таблетки диаметром 5 мм и высотой 4 мм. Таблетка помещается в графитовый стакан с крышкой, который подвергается термобарической обработке при давлении 7,0 ГПа и температуре 1500°С с выдержкой при этой температуре в течение 25 секунд. Фазовый состав спеченного компакта составляет: ВНБ - 3-5%, КНБ - 95-97%, а максимальных размер частиц в нем - 0,5-0,7 мкм.
Пример 4
Навески порошков вюрцитоподобного (4 г) и кубического (18 г) нитрида бора зернистостью 1/0 мкм предварительно перемешиваются и обрабатываются в планетарной мельнице в течение 15 минут. Полученная смесь гранулируется и формуется в металлической пресс-форме в виде таблетки диаметром 5 мм и высотой 4 мм. Таблетка помещается в графитовый стакан с крышкой, который подвергается термобарической обработке при давлении 8,0 ГПа и температуре 1800°С с выдержкой при этой температуре в течение 40 секунд. Фазовый состав спеченного компакта составляет: КНБ - 100%. В образце наблюдалась остаточная пористость при максимальных размерах однородно рекристаллизованных частиц от 1,5 до 1,8 мкм.
Пример 5
Навеска порошка вюрцитоподобного (20 г) нитрида бора обрабатывается в планетарной мельнице в течение 10 минут. После механоактивации порошок гранулируется и формуется в металлической пресс-форме в виде таблетки диаметром 5 мм и высотой 4 мм. Таблетка помещается в графитовый стакан с крышкой, который подвергается термобарической обработке при давлении 7,5 ГПа и температуре 1700°С с выдержкой при этой температуре в течение 15 секунд. Фазовый состав спеченного компакта составляет: ВНБ - 16-21%, КНБ - 79-84%, максимальный размер частиц в зонах локальной рекристаллизации 2,5-2,9 мкм.
6. Технические результаты
Полученные сверхтвердые наноструктурированные компакты из алмазоподобных форм нитрида бора имеют микротвердость до 50 ГПа и модуль упругости около 750 ГПа, что превышает уровень большинства известных промышленных алмазных композитов. В то же время из сверхтвердых материалов только компакты из нитрида бора могут использоваться при обработке закаленных сталей и сплавов на основе железа, а за счет своей ультрамелкой структуры они окажутся вне конкуренции по уровню эксплуатационных характеристик (лезвийность инструмента, чистота обрабатываемой поверхности и т.д.). Их использование в промышленном производстве и замена твердого сплава позволят:
- повысить производительность обработки труднообрабатываемых (высокопрочных, жаропрочных, тугоплавких, коррозионно-стойких и др.) сталей и сплавов более чем в 10 раз;
- увеличить износостойкость нового инструмента при обработке высокопрочных материалов в 6-8 раз;
- повысить точность обработки до 0,5 мкм и чистоты поверхности до Ra 0,1 мкм без последующих шлифовально-доводочных операций;
- провести импортозамещение дорогостоящего инструмента для современного высокоскоростного и высокопроизводительного оборудования при техническом перевооружении предприятий.
Figure 00000001

Claims (2)

1. Способ получения поликристаллического кубического нитрида бора, заключающийся в том, что готовят смесь вюрцитоподобной и кубической модификаций в соотношении от 1:4 до 2:1, соответственно, обрабатывают ее в планетарной мельнице для механоактивации и измельчения частиц до размеров, не превышающих 1 мкм, формуют и спекают смесь при температуре 1400-1800°С и давлении 7,0-9,0 ГПа, выдерживая при температуре спекания в течение времени, определяемом условиями перехода вюрцитоподобной модификации нитрида бора в кубическую без рекристаллизации, равного 5-30 с.
2. Способ по п.1, отличающийся тем, что точное время выдержки смеси при заданных температуре и давлении определяют из условия сохранения от 5 до 15% вюрцитоподобного нитрида бора от его количества в исходной смеси.
RU2009127036/05A 2009-07-16 2009-07-16 Способ получения поликристаллического кубического нитрида бора RU2412111C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009127036/05A RU2412111C1 (ru) 2009-07-16 2009-07-16 Способ получения поликристаллического кубического нитрида бора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009127036/05A RU2412111C1 (ru) 2009-07-16 2009-07-16 Способ получения поликристаллического кубического нитрида бора

Publications (1)

Publication Number Publication Date
RU2412111C1 true RU2412111C1 (ru) 2011-02-20

Family

ID=46310028

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009127036/05A RU2412111C1 (ru) 2009-07-16 2009-07-16 Способ получения поликристаллического кубического нитрида бора

Country Status (1)

Country Link
RU (1) RU2412111C1 (ru)

Similar Documents

Publication Publication Date Title
US3894850A (en) Superhard composition material based on cubic boron nitride and a method for preparing same
US20110020163A1 (en) Super-Hard Enhanced Hard Metals
JPH06506502A (ja) セメンテッドカーバイド物品の製造方法
US20170304995A1 (en) Method of making polycrystalline diamond material
CN104245626A (zh) 烧结的立方氮化硼切削工具
US20110283629A1 (en) High Strength Diamond-SiC Compacts and Method of Making Same
Slipchenko et al. Investigation of the mechanical properties and cutting performance of cBN-based cutting tools with Cr3C2 binder phase.
CN104926315A (zh) 一种纳米金刚石/立方氮化硼块体及其制备方法
RU2412111C1 (ru) Способ получения поликристаллического кубического нитрида бора
US20150033637A1 (en) Polycrystalline superhard material and method of forming
TWI632024B (zh) 在硏磨期間具有微破裂特徵之單晶cbn
KR100700197B1 (ko) 탈황용 코발트 성분을 함유하는 촉매 스크랩을 재활용하여코발트 함유된 소결 합금 제조 방법
RU2533225C2 (ru) Способ изготовления наноструктурированного сплава на основе модифицированного карбида вольфрама
RU2414991C1 (ru) Способ получения керамических изделий с наноразмерной структурой
RU2062644C1 (ru) Способ получения сверхтвердого компактного материала
Kolmakov et al. Structure, properties, and applications of ceramic composite produced of nanostructured powders of composition ZrO 2+ 3% Y 2 O 3
RU2687355C1 (ru) Способ получения твердых сплавов с округлыми зернами карбида вольфрама для породоразрушающего инструмента
Ratov et al. Phase formation and physicomechanical properties of WC–Co–CrB2 composites sintered by vacuum hot pressing for drill tools
Vorozhtsov et al. The physical-mechanical properties of aluminum nanocomposites produced by high energy explosion impact
KR101606595B1 (ko) 복합 다이아몬드 보디의 제조 방법
RU2157335C2 (ru) Способ получения поликристаллического кубического нитрида бора
Afuza et al. Analysis of particles size distribution on the agglomeration and shrinkage of alumina-zirconia compacts
RU2238240C2 (ru) Способ получения композиционного материала
RU2258101C2 (ru) Способ изготовления поликристаллического сверхтвердого материала
Deng et al. The Effects of Diamond Grit Characteristics on the Microstructure and Abrasion Resistance of PCDs Sintered by HPHT

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110717