RU2060889C1 - Способ инжекционного ориентационного выдувного формования - Google Patents

Способ инжекционного ориентационного выдувного формования Download PDF

Info

Publication number
RU2060889C1
RU2060889C1 SU914895131A SU4895131A RU2060889C1 RU 2060889 C1 RU2060889 C1 RU 2060889C1 SU 914895131 A SU914895131 A SU 914895131A SU 4895131 A SU4895131 A SU 4895131A RU 2060889 C1 RU2060889 C1 RU 2060889C1
Authority
RU
Russia
Prior art keywords
preform
temperature
workpiece
blow molding
mold
Prior art date
Application number
SU914895131A
Other languages
English (en)
Inventor
Такеути Сетсуюки
Original Assignee
А.К.Текникал Лаборатори, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27299628&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2060889(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP13232590A external-priority patent/JP2948865B2/ja
Priority claimed from JP3068036A external-priority patent/JP2931428B2/ja
Application filed by А.К.Текникал Лаборатори, Инк. filed Critical А.К.Текникал Лаборатори, Инк.
Application granted granted Critical
Publication of RU2060889C1 publication Critical patent/RU2060889C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6436Thermal conditioning of preforms characterised by temperature differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C2049/023Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2623/00Use of polyalkenes or derivatives thereof for preformed parts, e.g. for inserts
    • B29K2623/10Polymers of propylene
    • B29K2623/12PP, i.e. polypropylene

Abstract

Использование: изготовление выдувным формованием полых изделий из синтетического полимера. Сущность изобретения: высвобождение заготовки из формы для инжекционного формования осуществляют в тот момент, когда форма этой заготовки сохраняется за счет наличия поверхностного слоя, образовавшегося на поверхности в результате быстрого охлаждения, и когда внутреннее охлаждение еще не завершалось и температура внутри остается высокой, а ориентационное выдувное формование заготовки проводят в течение того промежутка времени, пока температура поверхности заготовки, которая возрастает под воздействием ее внутренней температуры, не достигла своего максимального значения. 5 з. п. ф-лы, 9 ил., 4 табл.

Description

Изобретение относится к способам осуществления непрерывного ориентационного выдувного формования, как стадии продолжающей инжекционное формование заготовки из систематического полимера, с получением тонкостенного полого формованного изделия.
Известен один из способов формования, обычно называемый комплексным инжекционным и ориентационным выдувным формованием, представляющий собой трехстадийный процесс, при котором устьевая порция заготовки инжекционного формования удерживается губчатой формой. Эту предварительно отформованную заготовку немедленно перемещают в форму для выдувного формования, где и происходит сам процесс ориентационного выдувного формования.
Согласно раскрытому в японской патентной заявке N 63 296921 трехстадийному способу формования ориентационное выдувное формование осуществляется после того, как внутренняя и внешняя температура высвобожденной при высокой температуре предварительно отформованной заготовки станут одинаковыми за счет внутреннего тепла самой заготовки и тем самым будет устранена эта разница температур.
Техническая идея высвобождения такой заготовки при высокой температуре уже раскрыта в способе четырехстадийного формования. Этот метод формования включает высвобождение заготовки из полиэтилентерефталата инжекционного формования из формы в температурном интервале, в котором обеспечивается сохранение формы при высокой температуре и тем самым достигается одинаковая разница температур между внутренней и внешней поверхностями и внутренней центральной порцией в одном и том же плоском сечении заготовки. Затем температура заготовки доводится до уровня выше 95оС за счет подводимой извне энергии с целью осуществления выдувного формования.
Трехстадийный способ включает следующие три стадии формования: инжекционное формование заготовки, ориентационное выдувное формование, удаление формованного изделия.
В соответствии с четырехстадийным способом неизбежной является четвертая стадия, заключающаяся в немедленном регулировании температуры перед ориентационным выдувным формованием. Таким образом, этот способ включает следующие четыре стадии: инжекционное формование заготовки, регулирование температуры, ориентационное выдувное формование, удаление формованного изделия. Стадия регулирования температуры при трехстадийном способе не требуется.
Таким образом, устройство для регулирования температуры и любые другие вспомогательные устройства, используемые в четырехстадийной системе, могут быть исключены. Кроме того, имеется определенное преимущество в конструкции заключающееся в том, что число форм с шейками, служащими также как перемещающие элементы, может быть сокращено на одну. Помимо этого имеются и экономические преимущества, состоящие в сокращении продолжительности цикла формования и уменьшения стоимости оборудования (машин).
Однако круг формованных изделий, получаемых по трехстадийному способу формования обычно ограничивается широкогорлыми контейнерами. Это обусловлено тем, что отверстие в предварительной заготовке так велико, что из инжекционной формы без каких-либо технических трудностей можно сделать вытяжную систему, конусную форму, форму с сердечником и т.д. при этом высвобождение из нее при высокой температуре осуществить очень легко.
При формировании узкогорлых контейнеров, таких как бутылки, для которых характерны большая длина ориентированной части, чрезвычайно малое отверстие в заготовке, необходимость значительного ориентационного увеличения, используют четырехстадийную систему, позволяющую регулировать температуру непосредственно перед выдувным формованием. Это связано с трудностью регулирования температуры предварительно отформованной заготовки и ограниченностью вытяжки.
Затруднения при регулировании температуры предварительно отформованной заготовки при трехстадийном способе заключается в том, что не существует средств правильного определения того состояния, когда поверхностный слой нагрет за счет внутреннего тепла и температура всей заготовки стала одинаковой.
Время ориентационного выдувания определяют в грубом приближении посредством установления промежутка времени после высвобождения и повторения испытания применительно к этому временному интервалу. Для проведения такого испытания требуется время и опыт. В случае, когда полимерный материал представляет собой полипропилен, часто условия формования в зависимости от товарной партии могут быть различными. Следовательно, условия должны быть соответствующим образом скорректированы, что неизбежно увеличивает потери продукта.
Изобретение направлено на разрешение проблемы высокотемпературного высвобождения из формы в процессе формования по трехстадийному способу. Целью изобретения является создание нового способа комплексного инжекционного и ориентационного выдувного формования, позволяющего формовать узкогорлые контейнеры из систематических полимеров, такие как бутылки, аналогично широкогорлым контейнерам и не имеющего каких-либо ограничений на форму, вытяжку, распределение толщины стенок и другие характеристики предварительно отформованной заготовки за исключением требования, при котором заготовку из кристаллического полимера высвобождают при высокой температуре.
Другой целью изобретения является создание нового способа инжекционного и ориентационного выдувного формования, позволяющего формовать в три стадии контейнеры типа бутылок, отличающиеся меньшим направлением и растяжением, чем при получении их ориентационным выдувным формованием из заготовки, имеющей низкую температуру, практически не подвергающиеся деформации в форме сжатия (являющейся следствием этого напряжения) в момент наполнения их при высокой температуре, являющиеся прозрачными и имеющие упорядоченное распределение толщины стенок.
Еще одна цель изобретения состоит в создании нового способа нжекционного и ориентационного выдувного формования, который позволяет осуществлять регулирование температуры различных частей заготовки во время инжекционного формования, благодаря чему достигается сокращение продолжительности ориентационного выдувного формования по сравнению с известными техническими решениями, что обеспечивает увеличение количества изделий, производимых в 1 ч.
Согласно первому признаку данного изобретения для достижения введения в форму для инжекционного формования расплавленного полимера и заполнения ее последним с целью получения из него требующейся предварительно отформованной заготовки, удерживания устьевой порции этой заготовки с помощью губчатой формы для перемещения ее из формы для инжекционного формования в форму для выдувного формования и ориентационного выдувного формования заготовки в тонкостенное полое формованное изделие, высвобождение этой заготовки из формы для инжекционного формования проводят в момент, когда ее (заготовки) форма сохраняется за счет наличия поверхностного слоя, образовавшегося на поверхности в результате быстрого охлаждения, когда внутреннее охлаждение еще не закончилось и температура остается высокой, а ориентационное выдувное формование заготовки осуществляют в течение такого промежутка времени, при котором температура на поверхности заготовки, которая возрастает за счет ее внутренней температуры, не достигла максимума.
В соответствии со второй особенностью данного изобретения высовобождение заготовки из полиэтилентерефталата из формы для инжекционного формования проводят в интервале температур, характеризующемся тем, что температура поверхности сразу же после высвобождения оказывается выше 60оС, но ниже 70оС (при нормальной окружающей температуре), а ориентационное выдувное формование осуществляют до того момента, пока температура поверхности заготовки не достигнет максимума, находящегося в температурном интервале выше 80оС, но ниже 95оС.
Согласно третьей особенности данного изобретения высвобождение заготовки из полипропилена из формы инжекционного формования проводят в интервале температур, характеризующемся тем, что поверхностная температура сразу же после высвобождения составляет более 90оС, но не превышает 100оС (при нормальной окружающей температуре), а ориентационное выдувное формование осуществляют в течение такого промежутка времени, при котором, температура поверхности заготовки не достигнет максимума, лежащего в интервале выше 100оС, но ниже 122оС. Заготовка из термопластичного синтетического полимера, такого как полиэтилен, поликарбонат и других, отличных от вышеукаазанных полимеров в кристаллической форме, может также подвергаться формовке аналогичным способом.
В соответствии с четвертой особенностью этого изобретения внутреннее тепло различных частей ориентированной части заготовки регулируют посредством поддержания температуры формы на установленном уровне и измеренного контролирования распределения толщины ее стенок, при этом условия ориентации ориентированной части регулируют за счет изменения количества тепла, которое зависит от толщины стенки, благодаря этому становится ненужным регулирование температуры после высвобождения.
Контейнер типа бутылки, полученный путем ориентационного выдувного формования в соответствии с предлагаемым способом, отличается меньшим напряжением и растяжением, чем те, которые могут возникать при ориентационном выдувном формовании заготовки, имеющей низкую температуру. Соответственно деформация и сжатие при наполнении его при высокой температуре, вызываемые таким напряжением и растяжением, становятся маловероятными. Контейнеры из полиэтилентерефталата обладают повышенной термостойкостью.
В связи с тем, что ориентацию заготовки осуществляют, тогда, когда внутренняя часть ее находится в полурасплавленном состоянии, то на нее не оказывает существенного влияния разница температур. Формование завершают до полной кристаллизации внутренней части заготовки, благодаря чему может быть получен прозрачный тонкостенный контейнер, не имеющий такого недостатка, как утолщение одной стенки.
Кроме того, в связи с тем, что при быстром охлаждении образуется поверхностный слой, высвобождение заготовки из формы возможно даже тогда, когда ее внутренняя часть остается мягкой. Возможно также легко осуществлять трехстадийное формование (аналогично формованию широкогорлых контейнеров) даже узкогорлых контейнеров типа бутылок, которые трудно было высвобождать при адекватной температуре и в которых требовалось регулирование температуры посредством вытягивания заготовки.
Кроме того, время, требующееся для ориентационного выдувного формования, существенно сокращается по сравнению с известными техническими решениями, в результате чего ускоряется цикл формования и увеличивается количество производных изделий в 1 ч.
На фиг. 1 представлена предварительно отформованная заготовка, имеющая высокую температуру, разрез; на фиг.2 представлен график, показывающий изменение с течением времени высокотемпературной заготовки, полученной инжекционным формованием кристаллического полимера; на фиг.3 график, показывающий изменение с течением времени температуры поверхности высокотемпературной заготовки для образца N 1, полученной посредством инжекционного формования полиэтилентерефталата; на фиг.4 график, показывающий изменение с течением времени температуры поверхности высокотемпературной заготовки для образца N 2, полученной инжекционным формованием полиэтилентерефталата; на фиг.5 график, показывающий изменение с течением времени температуры поверхности высокотемпературной заготовки для образца N 3, полученной инжекционным формованием полиэтилентерефталата; на фиг. 6 график, показывающий изменение с течением времени температуры поверхности при ориентационном выдувном формовании заготовки из полиэтилентерефталата; на фиг.7 график, показывающий изменение с течением времени температуры поверхности высокотемпературной заготовки для образца N 4, полученной инжекционным формованием полипропилена; на фиг.8 график, показывающий изменение с течением времени температуры поверхности при ориентационном выдувном формовании заготовки из полипропилена; на фиг.9 график, показывающий изменение с течением времени температуры поверхности при ориентационном выдувном формовании двух заготовок, отличающихся толщиной стенок.
В форму для инжекционного формования вводят расплавленный полимер и заполняют ее этим полимером с целью получения посредством инжекционного формования заготовки 11, которая в разрезе имеет вид, показанный на фиг.1. Затем заготовку высвобождают из формы, при этом ее температуру поддерживают на как можно более высоком уровне. Когда заготовку оставляют при комнатной температуре, ее поверхностная температура изменяется в соответствии с графиком, показанном на фиг.2. Изменение поверхностной температуры с течением времени до момента достижения ее максимального значения для различных материалов может несколько отличаться, однако для большинства термопластичных полимеров, используемых для формования контейнеров, имеет место подобная зависимость. Повышение исходной поверхностной температуры связано с тем фактом, что в высвобожденной при высокой температуре заготовке поверхность полости формы или поверхности заготовки, находящаяся в контакте с сердцевиной, отверждается за счет охлаждения формы с образованием поверхностного слоя. В то же время внутреннее охлаждение еще не закончилось, температура остается высокой и внутренняя часть заготовки пребывает в полурасплавленном состоянии, при этом охлаждение прерывается при высвобождении из формы, после чего начинается нагревание поверхностного слоя изнутри.
Естественно, что в таком состоянии температура заготовки не может быть повсюду однородной. Исключением является устьевая порция, которая к моменту высвобождения из формы является полностью охлажденной и отвердевшей. В случае, если ориентационное выдувное формование осуществляют в таком состоянии заготовки, когда существует разница между температурой ее внутренней и внешней частей, наблюдается белое помутнение из-за кристализации или образование микротрещин. По этой причине в вышеупомянутом традиционном способе температуру во всех частях заготовки перед ориентационным выдувным формованием стараются сделать одинаковой.
Белое помутнение в формованном изделии, полученном ориентационным выдувным формованием, часто бывает связано с температурой в процессе самого ориентационного выдувного формования, а не с различием температур во внутренней и внешней частях.
Проведенные к настоящему времени эксперименты показали, что в случае полиэтилентерефталата имеется тенденция к возникновению белого помутнения, всегда поверхностная температура заготовки оказывается меньше 80оС. Было также обнаружено, что в случае, если поверхностная температура заготовки сразу же после высвобождения из формы оказывается не менее 80оС, а ориентационное выдувное формование проводят спустя очень короткий промежуток времени, то редко происходит образование микротрещин.
Было также установлено, что даже в том случае, когда время охлаждения является достаточно длительным и температура сразу же после высвобождения из формы составляет менее 60оС, а температура в процессе ориентационного выдувного формования равна или превышает 80оС, в формованном изделии, полученном последним способом, вероятно возникновение белого помутнения.
В случае полиэтилентерефталата при охлаждении в течение короткого промежутка времени и поддержании поверхностной температуры заготовки сразу же после высвобождения ее из формы на уровне не менее 70оС, максимальная температура часто превышает 95оС. При проведении формования в описанных условиях происходит потеря жесткости и имеется тенденция к возникновению одностороннего увеличения толщины стенок.
Соответственно, время охлаждения заготовки в форме для инжекционного формования ограничено определенной заданной величиной. Однако охлаждение может быть различным даже для одного и того же полимера и зависит от толщины стенок и температуры воды, используемой для охлаждения. Приемлемый интервал для одной и той же толщины стенок в случае полиэтилентерефталата составляет примерно 1 с. За это время вполне можно получить такую поверхностную температуру сразу после высвобождения заготовки, при которой возможно формование узкогорлого прозрачного контейнера упорядоченной (правильной) формы.
Аналогично в случае заготовки из полипропилена поверхностная температура быстро поднимается от значения в момент высвобождения при комнатной температуре до максимального уровня, после чего эта пиковая температура сохраняется в течение длительного периода и затем постепенно снижается.
Момент времени, когда температура во всех точках заготовки становится одинаковой благодаря нагреванию за счет внутреннего тепла, точно неизвестен, поскольку поверхностная температура меняется с течением времени. Однако в случае традиционного ориентационного выдувного формования высокотемпературной широкогорлой заготовки его осуществляют примерно через 17 с, после высвобождения ее из формы. Именно это время использовали при проведении опыта по ориентационному выдувному формованию по диагональной линии, который рассматривали как эталонный. Из заготовки для широкогорлого контейнера удалось сформовать тонкостенный широкогорлый контейнер, имеющий прозрачную основную часть, примеpно через 17 с.
Однако в заготовках для узкогорлого контейнера (отличающихся большим ориентационным увеличением, чем широкогорлый контейнер) даже в тех из них, которые являются достаточно большими в вытянутом состоянии для того, чтобы их можно было легче высвободить из формы, часто имеет место одностороннее утолщение стенок и неправильное формование дна, что не позволяет получить нормальное формованное изделие.
В то же время в случае, если поверхностная температура сразу же после высвобождения из формы составляет не менее 90оС, а температура в процессе ориентационного выдувного формования составляет не менее 110оС, то узкогорлый контейнер может быть получен даже из полипропилена. Допустимое время охлаждения при одной и той же толщине стенок составляет примерно 3 с.
Эксперименты по ориентационному выдувному формованию показывают, что при проведении его спустя заданный период времени после высвобождения из форсы, необходимый для того, чтобы сделать температуру заготовки одинаковой во всех точках, заготовка подвергается постепенному охлаждению и вследствие этого проявляется тенденция к возникновению белого помутнения, вызываемого кристаллизацией. Очевидно, что это затрудняет формование узкогорлого контейнера.
Соответственно на ход процесса ориентационного выдувного формования заготовки, высвобожденной из формы при высокой температуре, влияет не только неоднородность температуры, но и в значительной степени состав этой высокотемпературной заготовки, который меняется с течением времени, а также время ориентационного выдувания и т.д.
Высокотемпературная заготовка сразу после высвобождения ее из формы для инжекционного формования имеет низкую поверхностную температуру, что видно на фиг.1, в результате чего на ее поверхности образуется твердый поверхностный слой 12. Состояние образующегося поверхностного слоя 12 зависит от скорости охлаждения.
При высвобождении заготовки при высокой температуре центральная часть ее еще не охладилась, и полимер 13 внутри обладает определенной текучестью. Вытяжку предотвращает поверхностный слой 12, и даже после высвобождения форма заготовки сохраняется.
Внутренняя теплота с течением времени выходит наружу, а слой 12, образующий поверхность, нагревается изнутри. Вследствие этого поверхностная температура резко поднимается, поверхностный слой 12 размягчается, а внутренняя температура понижается. В результате текучая часть уменьшается в направлении центра.
Поверхностный слой 12, температура на поверхности которого достигла максимального значения, является достаточно тонким для того, чтобы он мог служить оболочкой, а внутренняя часть находится в полутвердом состоянии.
После достижения пика поверхностная температура медленно понижается с течением времени. Что касается заготовки в целом, то температура во всех точках становится одинаковой, и в то же время развивается кристаллизация.
В высокотемпературной заготовке до момента, когда поверхностная температура достигнет своего максимума (даже в случае отверждения поверхности с образованием поверхностного слоя 12), слой 12 при приближении и пиковой температуре размягчается, т. е. переходит в состояние, в котором можно осуществлять ориентацию.
В первую очередь под действием полученного изнутри тепла размягчения толстостенная часть поверхностного слоя 12, отличающаяся большей внутренней теплотой. В течение некоторого времени после того, как поверхностная температура достигнет максимума, существует разница температур между толстостенной и тонкостенной частями. Эта разница особенно заметна в момент перед достижением максимальной температуры.
Когда ориентационному выдувному формованию подвергают заготовку, находящуюся в описанном состоянии, поверхностный слой на одной стороне толстостенной части, где аккумулировано больше тепла, т.е. на той стороне, где поверхностная температура выше, претерпевает ориентацию в первую очередь, приходя в состояние, в котором внутренний размягченный пластин оказывается захваченным внутри.
Естественно, что площадь поверхности благодаря ориентации возрастает и в результате поверхность излучения также увеличивается, что приводит к уменьшению температурной разницы между тонко- и толстостенной сторонами. Более того, температура на стороне тонкой стенки также увеличивается и затем происходит ориентация тонкостенной части. Такую взаимную ориентацию осуществляют неоднократно в течение очень короткого периода времени. За этот период температура внутренней части, где содержится больше тепла, понижается до уровня, приемлемого для ориентации. Внутреннюю часть пластика 13, ориентированную пока вместе с поверхностным слоем 12, подвергают слабой ориентации, аналогично той, которую использовали для слоя 12, благодаря чему получают формованное изделие с равномерным распределением толщины.
Соответственно при инжекционном формовании заготовки 11 в первую очередь учитывают величину ориентации различных частей заготовки 11, исходя из будущей формы контейнера 14, являющегося целевым формованным изделием. При этом распределение толщины стенок различных частей намеренно регулируют, поддерживая температуру инжекционного формования на постоянном уровне, и в предпочтительном варианте равномерно охлаждая все части заготовки 11, сформованной посредством введения и заполнения ею полости формы.
Для высокотемпературной заготовки 11, имеющей поверхностный слой 12, образовавшийся в результате быстрого охлаждения, наилучший результат может быть получен при формовании до того момента, когда поверхностная температура достигнет максимума. В случае, когда температура уже достигла максимума, при формовании проявляется тенденция к возникновению одностороннего утолщения стенок, что препятствует получению хорошего результата.
Поверхностная температура в момент проведения ориентационного выдувного формования составляла не менее 80оС в случае полиэтилентерефталата и не менее 110 оС в случае полипропилена, промежуток времени от высвобождения из формы до начала указанного процесса достигал примерно 8 с для первого и примерно 14 с для второго.
Однако из предшествующих опытов очевидно, что хороший результат невозможно получить без образования путем быстрого охлаждения поверхностного слоя 12. Это, по всей видимости, является результатом особенностей кристаллического состояния поверхностного слоя, полученного путем быстрого охлаждения. Благодаря быстрому охлаждению образуется мелкозернистый кристалл. В случае постепенного охлаждения кристалл интенсивно растет, и соединение кристаллов друг с другом оказывается слабее, чем в мелкозернистом кристалле.
Предпочтительнее проводить ориентационное выдувной формование в интервале температур, который можно приспособить к толщине стенок любой части заготовки 11.
Наиболее удобно, чтобы в случае, когда различие в толщине стенок составляет примерно 0,25 мм, не возникало большой разницы в значениях максимальной температуры и времени, необходимого до достижения этого максимума, даже при наличии такого различия сразу же после высвобождения из формы. Более того, своевременное определение температурного интервала, в котором возможно ориентационное выдувное формование, в обоих случаях не сопряжено с большими техническими трудностями.
В случае, когда количество теплоты, аккумулированное в различных частях, контролируется (в форме для инжекционного формования) по разнице в толщине стенок, намеренно создаваемой в качестве средства для регулирования степени ориентации различных частей заготовки по отношению к форме готового формованного изделия, различия в толщине стенок являются весьма незначительными и кроме того, соответствуют приемлемому времени. Это относится и к различию в толщине стенок для плоского контейнера, который существенно отличается по степени ориентации его поперечной и продольной частей.
Соответственно не представляет особых трудностей осуществление регулирования внутренней теплоты различных частей ориентированной части заготовки путем поддержания температуры формы на постоянном уровне и намеренного регулирования распределения толщины стенок. Степень ориентации ориентированной части контролируют по различиям в количестве теплоты, зависящим от толщины стенок.
П р и м е р 1. Расплавленный полимер полиэтилентерефталат ввели в форму для инжекционного формования и заполнили им последнюю с целью получения узкогорлой заготовки 11, показанной на фиг.1, посредством быстрого охлаждения.
Инжекционному формованию подвергли три заготовки, отличающиеся толщиной стенок, при этом изменяли время охлаждения от заготовки к заготовке. Затем определяли изменение поверхностной температуры с течением времени.
Заготовка была предназначена для по- лучения контейнера объемом 1 л общей длиной 124 мм. Температуру заготовки измеряли в трех точках на высоте 30, 60 и 100 мм от дна. Измеренные значения температуры представлял и собой средние величины.
В качестве прибора для измерения температуры использовали цифровой радиационный термометр IP-АНОТ, изготовленный фирмой К.К.Chino.
Использовались следующие условия инжекционного формования: Вес материала 33 г Температура инжекции 275оС Температура формы 13оС Вытяжка 1,5о Время инжекции и за- полнения 5,3 с
П р и м е ч а н и е. Температура формы соответствует температуре охлаждающей воды в полости и сердцевине формы.
На фиг.3-5 показано изменение с течением времени (среднее значение) поверхностной температуры образцов при комнатной температуре (22оС), измерение для основных точек, которые приведены в табл.1.
Время охлаждения соответствует периоду после периода инжекции и заполнения.
Для вышеописанных образцов ориентационное выдувное формование с целью получения бутылкообразного контейнера 14 проводят при давлении воздуха 14 кг/cм2, как показано прерывистой линией на фиг.1. Было установлено, что наилучший результат можно получить при проведении ориентационного выдувного формования во временном интервале, показанном на фиг.6 (т.е. в течение времени t, между моментам времени t1, когда поверхностная температура еще не достигла максимума, и моментом времени t2, когда этот максимум, по всей видимости, достигнут. Однако в заготовке, поверхностная температура которой сразу же после высвобождения (при нормальной температуре окружающей среды) выходит за пределы интервала 60-70оС, или заготовке, поверхностная температура которой во время ориентационного выдувного формования выходит за пределы интервала 80-95оС, не удалось получить удовлетворительные формованные изделия, что видно из табл.2.
П р и м е р 2. Расплавленный полимер-полипропилен вводили в форму для инжекционного формования и заполняли ее целиком с целью получения узкогорлой заготовки 11, показанной на фиг.1, посредством быстрого охлаждения аналогично примеру 1.
Было получено восемь заготовок с различной толщиной стенок, при этом изменяли время охлаждения. Определяли зависимость их поверхностной температуры от времени при комнатной температуре.
Использовали следующие условия инжекционного формования. Вес материала 40 г Температура инжекции 240оС Температура формы (ох- лаждающей воды) 13оС Вытяжка 3,0о Время инжекции и за- полнения 6,0 с
На фиг.7 показано изменение с течением времени среднего значения поверхностной температуры образцов, находящихся при комнатной температуре (22оС). Значения для основных точек этих образцов показаны в табл.3.
Для образца 4 ориентированное выдувное формование проводили при давлении продуваемого воздуха 12 кг/см2 в течение времени, показанного на фиг.6 аналогично случаю с полиэтилентерефталатом. Целью было получение бутылкообразного контейнера 14, как показано прерывистой линией на фиг.1. Было установлено, что наилучший результат получали при проведении ориентационного выдувного формования в течение времени, приведенного на фиг.8 (т.е. в течение времени t между моментом t1 до того, как поверхностная температура достигала максимума, моментом t2, когда она достигла этого максимума).
Однако в случае заготовки, поверхностная температура которой сразу же после высвобождения из формы при нормальной температуре окружающей среды находится вне интервала 90-100оС или заготовки, поверхностная температура которой в процессе ориентационного выдувного формования выходит за пределы интервала 110-123оС, удовлетворительные результаты получены не были, что видно из табл.4.
Из фиг.3-5, показывающих изменение заготовки 11 с течением времени, очевидно, что существует приемлемый интервал времени охлаждения. Очевидно также, что при сравнении значений приемлемого времени образцов с различной толщиной стенок может быть определено время охлаждения, пригодное для обоих случаев
На фиг.9 приведен график, на котором показано время охлаждения, выбранное для обоих образцов 1 и 2 из табл.1 с тем, чтобы отразить изменение поверхностной температуры для этого случая. Разница температур Δ t для приемлемого времени ориентационного выдувного формования толстостенной порции D1 и тонкостенной порции D2 составили 2,5-3,0оС.
Ориентационное выдувное формование проводили с целью получения узкогорлого контейнера из заготовки с намеренно измененным распределением толщины стенок.
П р и м е р 3. Заготовку 11, показанную на фиг.1, толщина стенок которой была сделана уменьшающейся в направлении от верхней части ко дну таким образом, чтобы возникла определенная разница в распределении толщины стенок по всему телу, по- лучали из полипропилентерефталата посредством инжекционного формования. Из этой заготовки путем ориентационного выдувного формования получали контейнер 14 объемом 1 л.
В процессе инжекционного формования намеренно создали разницу между толщиной стенки части D1 заготовки 11, составившей 3,05 мм, и толщиной стенки части D2, составившей 2,80 мм. Более того, время охлаждения применительно к толщине обеих стенок было выбрано для образцов 1 и 2 из табл.1 таким образом, чтобы поверхностная температура сразу же после высвобождения из формы находилась в интервале 60-70оС.
Условия инжекционного формования. Вес материала 33 г Температура инжекции 275оС Температура формы (ох- лаждающей воды) 13,0оС Вытяжка 1,5о
Время инжекции и за- полнения 5,3 с П р и м е р 1. Время охлаждения (1) 4,1 с Поверхностная темпера- тура (D1) сразу же после высво- бождения 63,8оС в процессе выдувного формования 85,7оС Поверхностная темпе- ратура (D2) сразу же после высвобождения 68,0оС в процессе выдувного формования 86,0оС
П р и м е р 2. Время охлаждения (2) 4,5 с Поверхностная темпе- ратура (D1) сразу же после высвобождения 62,4оС в процессе выдувного формования 82,5оС Поверхностная темпе- ратура (D2) сразу же после высвобождения 67,0оС в процессе выдувного формования 82,6оС Время после высво- бождения 7,5 с Давление продувае- мого воздуха 14 кг/см2
В примерах 1 и 2 состояние контейнера 14, полученного ориентационным формованием, оценивалось как хорошее. Прозрачность контейнера оценивалась как отличная, одностороннее утолщение стенок было едва заметным, толщина стенок (0,3 мм) корпуса была одинаковой.
Из предшествующего ясно, что наиболее предпочтительным способом формования в случае трехстадийной системы является регулирование толщины стенок различных ориентированных частей заготовки в соответствии с их состоянием и контроль ориентирующегося состояния этих частей по разнице количества теплоты, зависящего от толщины стенки.
Следовательно предпочтительно проводить ориентационное выдувное формование в состоянии, когда температура заготовки в целом является не одинаковой в различных частях. Регулирование толщины стенок может легко осуществляться путем вытачивания сердцевины формы или создания набивки посредством планировки и т.п. Таким образом может быть создана незначительная разница в толщине стенок.

Claims (6)

1. Способ инжекционного ориентационного выдувного формования, заключающийся в том, что инжектируют расплавленный полимер в форму инжекционного формования с получением заготовки, высвобождают заготовку из формы инжекционного формования, удерживая устьевую часть заготовки с помощью захватного средства, используя форму инжекционного формования для получения устьевой части, переносят заготовку при помощи захватного средства из формы инжекционного формования в форму для выдувного формования и формуют заготовку при помощи ориентационного выдувного формования в тонкостенное полое формованное изделие, отличающийся тем, что заготовку подвергают быстрому охлаждению в форме инжекционного формования так, что слой ее оболочки позволяет заготовке сохранить ее форму, ориентационное выдувное формование заготовки выполняют в течение периода времени, который заканчивается до того, как температура поверхности заготовки, которая поднимается за счет внутреннего тепла, сохраняющегося во внутренней части заготовки, достигнет максимального значения.
2. Способ по п. 1, отличающийся тем, что в качестве полимера для получения заготовки используют такие кристаллические полимеры, как полиэтилентерефталат, полипропилен, полиэтилен, поликарбонат и другие.
3. Способ по п. 2, отличающийся тем, что в качестве полимера для получения заготовки используют полиэтилентерефталат и высвобождения заготовки из формы инжекционного формования проводят при температуре поверхности заготовки сразу после высвобождения из формы инжекционного формования, равной выше 60oС и ниже 70oС, и ориентационное выдувное формование заготовки осуществляют в интервале времени, который заканчивается перед тем, как температура поверхности заготовки достигнет максимальной величины, и указанный интервал времени начинается, когда температура поверхности лежит в интервале выше 80oС, но ниже 96oС.
4. Способ по п. 2, отличающийся тем, что высвобождение заготовки из полипропилена из формы для инжекционного формования осуществляют в температурном интервале, характеризующимся тем, что сразу после высвобождения заготовки из формы температура на ее поверхности составляет выше 90oС и ниже 100oС, а ориентационное выдувное формование заготовки производят в период времени, который заканчивается перед тем, как температура поверхности заготовки достигнет максимального значения и начинается, когда температура поверхности лежит в температурном интервале выше 100oС, но ниже 122oС.
5. Способ по пп. 1 4, отличающийся тем, что внутреннюю теплоту ориентируемой заготовки регулируют посредством поддержания температуры формы инжекционного формования на определенном заданном уровне и создают в форме инжекционного формования полость для расплавленного полимера, имеющую изменяющуюся толщину стенок с тем, чтобы регулировать толщину заготовки с получением нужного количества теплоты, которое зависит от толщины стенок.
6. Способ по пп. 2 5, отличающийся тем, что теплоту внутренних частей заготовки регулируют путем поддержания формы инжекционного формования при определенно заданной охлаждающей температуре и толщину стенок заготовки регулируют в такой форме, что состояние ориентации заготовки во время ориентационного выдувного формования регулируется разницей температур в нужных участках заготовки, причем температура в каждой части заготовки является функцией толщины стенок.
Приоритет по пунктам:
30.03.90 по пп. 1 4;
22.05.90 по пп. 5 и 6.
SU914895131A 1990-03-30 1991-03-29 Способ инжекционного ориентационного выдувного формования RU2060889C1 (ru)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8559490 1990-03-30
JP2-85594 1990-03-30
JP13232590A JP2948865B2 (ja) 1990-05-22 1990-05-22 射出延伸吹込成形方法
JP2-132325 1990-05-22
JP3068036A JP2931428B2 (ja) 1990-03-30 1991-03-07 射出延伸吹込成形方法
JP3-68036 1991-03-07

Publications (1)

Publication Number Publication Date
RU2060889C1 true RU2060889C1 (ru) 1996-05-27

Family

ID=27299628

Family Applications (1)

Application Number Title Priority Date Filing Date
SU914895131A RU2060889C1 (ru) 1990-03-30 1991-03-29 Способ инжекционного ориентационного выдувного формования

Country Status (13)

Country Link
US (1) US5364585B1 (ru)
EP (1) EP0454997B1 (ru)
KR (1) KR950009720B1 (ru)
CN (1) CN1035806C (ru)
AR (1) AR247130A1 (ru)
AU (1) AU640997B2 (ru)
CA (1) CA2039488C (ru)
DE (2) DE69120863T2 (ru)
ES (1) ES2038099T3 (ru)
HK (1) HK1000182A1 (ru)
MX (1) MX173373B (ru)
RU (1) RU2060889C1 (ru)
SG (1) SG43360A1 (ru)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290011B2 (ja) * 1993-10-22 2002-06-10 株式会社青木固研究所 射出延伸吹込成形におけるプリフォーム成形方法
AU685498B2 (en) * 1993-10-22 1998-01-22 A. K. Technical Laboratory, Inc. Method for injection stretch blow molding of polyethylene
US5620650A (en) * 1993-10-22 1997-04-15 A.K. Technical Laboratory Inc. Method for injection stretch blow molding of polyethylene
NL9400738A (nl) * 1994-05-04 1995-12-01 Wavin Bv Werkwijze en inrichting voor het vervaardigen van biaxiaal georiënteerde buis uit thermoplastisch kunststofmateriaal.
NL1001259C2 (nl) 1995-05-03 1996-11-05 Wavin Bv Werkwijze voor het behandelen van een geëxtrudeerd kunststof profiel en extrusie-installatie daarvoor.
JP3573380B2 (ja) * 1995-08-14 2004-10-06 株式会社青木固研究所 ポリエステル樹脂のプリフォーム射出成形方法及び延伸ブロー成形方法
JPH0994872A (ja) * 1995-09-29 1997-04-08 Aokiko Kenkyusho:Kk 射出延伸吹込成形方法
WO1999033636A1 (en) * 1997-12-23 1999-07-08 Coraltech Limited Thermoforming or blow moulding of injection moulded preforms
US6296473B1 (en) * 1998-08-18 2001-10-02 Ventax Robot Inc. Handling and cooling system for plastic container preforms
EP1070578A1 (en) * 1998-10-20 2001-01-24 A.K. Technical Laboratory, Inc., Injection stretch blow molding method
JP2001121598A (ja) * 1999-10-29 2001-05-08 Aoki Technical Laboratory Inc 広口容器の延伸ブロー成形方法
JP2002172681A (ja) * 2000-09-29 2002-06-18 Aoki Technical Laboratory Inc 延伸ブロー容器及びその成形方法
JP2003104404A (ja) * 2001-09-28 2003-04-09 Aoki Technical Laboratory Inc 樹脂製チューブ状容器及びそのプリフォーム
JP3996007B2 (ja) * 2002-07-30 2007-10-24 株式会社吉野工業所 ひび割れ模様を有する合成樹脂製容器及びその製造方法
US20060204694A1 (en) * 2005-03-08 2006-09-14 Silgan Plastics Corporation Bottle with extended neck finish and method of making same
JP4714509B2 (ja) * 2005-06-13 2011-06-29 株式会社青木固研究所 射出延伸ブロー成形方法
WO2007046998A1 (en) * 2005-10-14 2007-04-26 Exxonmobil Chemical Patents Inc. Methods for stretch blow molding polymeric articles
JP5033469B2 (ja) * 2007-05-08 2012-09-26 株式会社青木固研究所 耐熱ボトルの射出延伸ブロー成形方法
USD769720S1 (en) 2007-12-21 2016-10-25 Silgan Plastics Llc Preform for dosing bottle
US8057733B2 (en) * 2007-12-21 2011-11-15 Silgan Plastics Corporation Dosing bottle and method
IT1392541B1 (it) * 2008-12-30 2012-03-09 Pet Engineering Srl Processo di progettazione iniezione e soffiaggio per bottiglie ultraleggere swerve neck
JP5286169B2 (ja) * 2009-06-19 2013-09-11 株式会社青木固研究所 延伸ブローボトルのプリフォーム
JP6647144B2 (ja) * 2015-12-11 2020-02-14 株式会社青木固研究所 射出延伸ブロー成形機の射出成形型とプリフォームの成形方法とプリフォーム、及び容器の成形方法と容器
WO2020138292A1 (ja) * 2018-12-28 2020-07-02 日精エー・エス・ビー機械株式会社 ブロー成形装置、ブロー成形方法、及び金型ユニット
JP6727604B1 (ja) 2020-04-23 2020-07-22 株式会社青木固研究所 射出延伸ブロー成形機及びポリエチレン製容器の成形方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2331702A (en) * 1938-05-13 1943-10-12 Hartford Empire Co Method of molding hollow articles of plastic material
US2913762A (en) * 1953-12-21 1959-11-24 Specialty Papers Company Plastic molding machine
US3091000A (en) * 1960-12-05 1963-05-28 American Can Co Container lining
US3247304A (en) * 1961-10-17 1966-04-19 Owens Illinois Glass Co Method of and apparatus for making plastic articles
US3979491A (en) * 1971-11-24 1976-09-07 Continental Can Company, Inc. Process for the manufacture of an oriented container
US3963399A (en) * 1971-11-24 1976-06-15 Continental Can Company, Inc. Injection-blow molding apparatus with parison heat redistribution means
US3934743A (en) * 1972-12-29 1976-01-27 American Can Company Blow molded, oriented plastic bottle and method for making same
US4235837A (en) * 1975-10-31 1980-11-25 Standard Oil Company (Indiana) Method of making oriented containers
GB2010734B (en) * 1977-12-23 1982-06-16 Emhart Ind Method and apparatus for making plastic bottles
US4521369A (en) * 1977-12-23 1985-06-04 Emhart Industries, Inc. Method of making molecularly oriented plastic bottles
JPS594292B2 (ja) * 1978-09-28 1984-01-28 固 青木 偏平容器の射出吹込成形方法
US4372910A (en) * 1980-06-23 1983-02-08 Van Dorn Company Method for molding hollow plastic articles
US4473515A (en) * 1980-09-02 1984-09-25 Ryder Leonard B Injection blow molding method
JPS5777536A (en) * 1980-10-31 1982-05-14 Katashi Aoki Self-supporting bottle for carbonated drink of polyethylene terephthalate resin
JPS5793125A (en) * 1980-12-03 1982-06-10 Katashi Aoki Injection molding and stretching blow forming method
ATE20209T1 (de) * 1982-04-12 1986-06-15 Siegfried Shankar Roy Injektions-blasform-vorrichtung.
JPS59179318A (ja) * 1983-03-31 1984-10-11 Katashi Aoki ポリプロピレンの2軸延伸吹込成形方法
JPS60178020A (ja) * 1984-02-24 1985-09-12 Katashi Aoki 薄肉容器の成形方法及び金型装置
JPS63296921A (ja) * 1987-05-28 1988-12-05 Katashi Aoki 透明なポリプロピレン容器の射出延伸吹込成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент США N 2331702, кл. B 29C 17/07, опублик. 1943. *

Also Published As

Publication number Publication date
MX173373B (es) 1994-02-23
EP0454997A2 (en) 1991-11-06
EP0454997B1 (en) 1996-07-17
CA2039488C (en) 1995-03-07
EP0454997A3 (en) 1992-09-02
ES2038099T1 (es) 1993-07-16
US5364585B1 (en) 2000-07-25
HK1000182A1 (en) 1998-01-23
CN1059866A (zh) 1992-04-01
DE69120863T2 (de) 1996-12-12
AU7386991A (en) 1991-10-03
AU640997B2 (en) 1993-09-09
KR950009720B1 (ko) 1995-08-26
AR247130A1 (es) 1994-11-30
KR910016463A (ko) 1991-11-05
SG43360A1 (en) 1997-10-17
US5364585A (en) 1994-11-15
ES2038099T3 (es) 1996-11-01
DE69120863D1 (de) 1996-08-22
DE454997T1 (de) 1994-03-03
CN1035806C (zh) 1997-09-10

Similar Documents

Publication Publication Date Title
RU2060889C1 (ru) Способ инжекционного ориентационного выдувного формования
US4108937A (en) Method of making hollow articles from plastic material
US8691140B2 (en) Process for injection molding of thin-walled preform
US5122327A (en) Blow molding method for making a reversely oriented hot fill container
US4145392A (en) Method for the preparation of hollow plastic articles
CA2593927C (en) A process for forming a container by stretch blow molding and container formed thereby
US8021596B2 (en) Method for injection stretch blow molding
DK158144B (da) Fremgangsmaade til fremstilling af en formbestandigflaskeformet beholder
US4382905A (en) Injection mold dwell cycle
EP0900135B1 (en) Improvement in the method and plant for manufacturing thermoplastic-resin parisons
KR0185181B1 (ko) 폴리에틸렌의 사출 연신 취입 성형방법
EP0725722B1 (en) Method of forming molecularly oriented preforms
GB2124543A (en) Parison for oriented plastic containers
JP3922727B2 (ja) 改良多層容器及びプレフォーム
JP2931428B2 (ja) 射出延伸吹込成形方法
EP3900913B1 (en) Injection stretch blow molding machine and method for molding polyethylene container
GB2126156A (en) A method of controlling the temperature of a parison during injection stretch-blow moulding
US6555046B1 (en) Injection stretch blow molding method
JPH09504240A (ja) 分子配向プリフォームの成形方法
JP2948865B2 (ja) 射出延伸吹込成形方法
EP1748931A2 (en) Polyolefin container having certain shrink characteristics and method of making such containers
EP0603882B1 (en) Injection molding arrangement with improved preform cooling
JPH0624758B2 (ja) 飲料用ポリエステル製容器の製法
MXPA98007591A (en) Improvement in the method and plant to manufacture resin preforms termoplast

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070330

REG Reference to a code of a succession state

Ref country code: RU

Ref legal event code: MM4A

Effective date: 20070330