RU2047645C1 - Способ получения дистиллятных фракций - Google Patents

Способ получения дистиллятных фракций Download PDF

Info

Publication number
RU2047645C1
RU2047645C1 RU93020250A RU93020250A RU2047645C1 RU 2047645 C1 RU2047645 C1 RU 2047645C1 RU 93020250 A RU93020250 A RU 93020250A RU 93020250 A RU93020250 A RU 93020250A RU 2047645 C1 RU2047645 C1 RU 2047645C1
Authority
RU
Russia
Prior art keywords
polyethylene
oil
temperature
pyrolysis
fractions
Prior art date
Application number
RU93020250A
Other languages
English (en)
Other versions
RU93020250A (ru
Inventor
М.У. Кадыров
Г.В. Романов
Д.З. Бикмухаметов
В.И. Семкин
А.А. Газикашев
Original Assignee
Институт органической и физической химии им.А.Е.Арбузова Казанского филиала АН СССР
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт органической и физической химии им.А.Е.Арбузова Казанского филиала АН СССР filed Critical Институт органической и физической химии им.А.Е.Арбузова Казанского филиала АН СССР
Priority to RU93020250A priority Critical patent/RU2047645C1/ru
Publication of RU93020250A publication Critical patent/RU93020250A/ru
Application granted granted Critical
Publication of RU2047645C1 publication Critical patent/RU2047645C1/ru

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Сущность изобретения: дистиллятные фракции получают термокрекингом тяжелого и остаточного нефтяного сырья в присутствии инициирующей добавки 10 20% полиэтилена любого вида при 360 460 °С. Образующиеся пары конденсируют при 10 90 °С для раздельного отбора жидких и маслянных дистиллятных фракций. 2 табл. 1 ил.

Description

Изобретение относится к нефтепереработке, в частности к получению светлых дистиллятных фракций путем термодеструкции тяжелых нефтей и нефтяных остатков, и может быть использовано в нефтехимической и нефтеперерабатывающей промышленности.
Известен способ переработки тяжелого нефтяного сырья, описанный (1) пат. СССР N 719551, Бюл. N 8, 1980.
Сущность способа заключается в термическом крекинге нефтяного сырья в серии реакторов при 405-520оС в контакте с инертным газом, поступающим в зону реакции с температурой 400-2000оС.
Недостатки данного способа: образуются летучие газы (6-10%); остается большой процент кубового остатка (35-40%); можно получать только масляные фракции (данный способ не рассчитан на получение бензиновых и керосиновых фракций).
Наиболее близким к изобретению относится способ получения дистиллятных фракций из тяжелых нефтей и нефтяных остатков (мазута) (2) а.с. N 941397, Бюл. N 25, 1982. Согласно описанию способ проводится следующим образом.
Нефтяной остаток подвергается вакуумной перегонке в присутствии ароматического концентрата, выкипающего в пределах 300-500оС и с содержанием ароматических углеводородов 50-100% Количество его берется 5-12% исходного сырья. В качестве ароматического концентрата используются: экстракты масляных фракций (побочный продукт, получаемый при селективной очистке масляных фракций нефтей); смолы пиролиза нефтяных остатков; антраценовая фракция, представляющая собой продукт каталитического реформинга. До 3/4 ароматического концентрата смешивается с исходной нефтью, а остальная часть вводится в дистилляционную колонну. Вакуумную перегонку ведут при температуре верха колоны 180оС, низа 380оС и остаточном давлении 50 мм рт.ст. Суммарный выход дистиллятов составляет на исходное сырье 70-74% кубовый остаток составляет 20-25% летучие углеводороды 5-6% Недостатками прототипа являются сравнительно высокий выход летучих и кубового остатка; наличие вредных примесей в ароматических концентратах, таких как сера (до 2%), фосфора (до 1%) и пр. элементов, загрязняющих целевые дистилляты; применение в технологии операции вакуумирования.
Целью изобретения является замена данных ароматических концентратов на легкодоступное и химически чистое углеводородное сырье, уменьшение выхода побочных продуктов летучих и кубового остатка, получение жидких дистиллятов, соответствующих бензиновым и керосиновым фракциям, исключение из технологии операции вакуумирования.
Поставленная задача достигается тем, что в исходное тяжелое нефтяное сырье вместо ароматического концентрата добавляют полиэтилен, причем полиэтилен любого вида в количестве 10-20% получаемой смеси, полученную смесь подвергают термическому крекингу (пиролизу) при атмосферном давлении путем нагрева в интервале температур 360-460оС, где 360оС начало пиролиза, а 460оС конец пиролиза, образующиеся в процессе пиролиза продукты разложения конденсируют в холодильнике-конденсаторе, температуру хладагента которого повышают от 10 до 90оС в соответствии с ростом температуры пиролиза.
Преимущество предлагаемого способа заключается в том, что вместо ароматических концентратов в качестве инициирующей добавки применяют легкодоступный и химически чистый полиэтилен, причем полиэтилен любого вида (ПВД полиэтилен высокого давления; ПНД полиэтилен низкого давления; НП нестандартный полиэтилен; ОУ отходы и утиль), и вместо вакуумной перегонки процесс термодеструкции проводят при атмосферном давлении.
Такое техническое решение обеспечивает уменьшение выхода побочных продуктов летучих газов и кубового остатка соответственно до 1-2 и 5-6% вместо 6 и 30% у известных способов, и получение наряду с масляными дистиллятами жидких дистиллятов, разгоняемых в интервале температур 100-300оС и в количестве 22-36% исходной смеси.
Предлагаемый способ проводят по следующей технологии, схема лабораторной установки приведена на чертеже.
Исходную смесь 1, состоящую из 80-90% тяжелой нефти или нефтяного остатка (мазута) и 10-20% полиэтилена загружают в реактор 2 и начинают нагревать включением муфельной электропечи 3. Регулировку и контроль температур в реакторе 2 и печи 3 осуществляют с помощью термопар 4. С достижением в реакторе 2 температуры 360оС начинается процесс пиролиза полиэтилена.
В процессе пиролиза полиэтилена продукты его расщепления начинают инициировать разрыв цепей в молекулах нефтяного сырья и способствуют таким образом образованию целевых дистиллятов бензино-керосиновых и масляных. Пиролиз смеси 1 продолжается до 460оС. Выше этой температуры начинается уже термический процесс коксования углеводородов. Поэтому процесс пиролиза смеси 1 с достижением температуры 460оС считается законченным. В процессе пиролиза в интервале температур 360-460оС, образующиеся пары попадают в холодильник-конденсатор 5, конденсируются там и стекают в приемник 6, состоящий из емкостей для жидких и масляных дистиллятов. Процесс пиролиза протекает все технологическое время при атмосферном давлении в стационарном режиме (без перемешивания).
Как показали результаты опытов пиролиз смеси в интервале температур 360-400оС протекает с образованием жидких дистиллятов (бензино-керосиновых), выкипающих в интервале температур 100-300оС, а в интервале температур 400-460оС с образованием маслянных дистиллятов, состоящих из легких, средних и тяжелых фракций. Поскольку температура плавления масел легких фракций начинается с 38-40оС и повышается до 90оС у тяжелых, то в процессе пиролиза температура хладагента в конденсаторе 5 повышается с 10 до 90оС с ростом температуры смеси 1 в реакторе 2.
При проведении опытов по изложенной технологии были установлены следующие закономерности: механизм термокрекинга смеси нефтяное сырье + полиэтилен не зависит от вида полиэтилена, а зависит только от химического состава нефтяного сырья и количества полиэтилена; если полиэтилена берется меньше 10% исходной смеси, то температура окончания пиролиза понижается. Такое понижение приводит на начальном этапе к простой перегонке, а затем к операции коксования углеводородов. В результате этого выход целевых дистиллятов уменьшается, а выход летучих и кубового остатка увеличивается; если количество полиэтилена берется более 20% исходной смеси, то в процессе пиролиза в целевых дистиллятах увеличивается содержание α-олефиновых углеводородов, а это влечет за собой резкое изменение физических и химических свойств целевых продуктов.
П р и м е р 1. Нефтяной остаток прямой перегонки нефти Студено-Ключевского месторождения, имеющий показатели: плотность ρ 0,939 кг/м3, температуру разгонки 340-500оС, вязкость кинематическую ν50 20,6 сСт, содержание серы S 1,8% коксуемость К 6,9% смешивают в количестве 900 г с полиэтиленом вида НП (нестандартный полиэтилен, представляющий собой технологический отход производства), взятым в количестве 100 г. Показатели полиэтилена: плотность ρ 0,86 кг/м3, температура пиролиза 360-440оС. Полученную в соотношении 9:1, исходную смесь 1 нагревают в реакторе 2 путем установки его в муфельную электропечь 3. С достижением в реакторе 2 температуры 360оС начинается пиролиз смеси 1. С этого момента пары разложения поступают в холодильник-конденсатор 5, охлаждаемый водой с температурой 10-20оС, конденсируются там и стекают в емкость для бензино-керосинового дистиллята приемника 6. Сбор данного дистиллята в емкость заканчивается при температуре в реакторе 395-400оС. Начиная с этой температуры приемку целевых дистиллятов переводят на емкость для масляных фракций. Масляные дистиллят, представляющий собой смесь легких, средних и тяжелых фракций получается при пиролизе, протекающем в интервале температур 400-460оС. Поскольку температура плавления масляных фракций растет от 38 (легкая) до 90оС (тяжелая), то в процессе их сбора поднимают и температуру хладагента (воды) с 20 до 90оС. С достижением в реакторе 2 температуры 460оС пиролиз смеси 1 прекращается, реактор 2 выводится из зоны нагрева, охлаждается и взвешивается. Взвешиваются также емкости приемника 6 с целевыми продуктами. Результаты пиролиза представлены в табл.1.
П р и м е р 2. Технологический режим тот же, что и в примере 1, только исходная смесь 1 взята в соотношении 8:2 (800 г нефтяной остаток и 200 г полиэтилена вида НП). Результаты пиролиза представлены в табл.1.
П р и м е р 3. Технологический режим тот же, что и в примере 1, только в качестве исходного нефтяного сырья взят топочный мазут показателями: плотностью ρ0,954 кг/м3, вязкостью кинематической ν 21,0 сСт, температурой разгонки 340-520оС, коксуемостью К 7,0% содержанием серы S 2,1% Соотношение компонентов в исходной смеси 9: 1 (900 г мазута и 100 г полиэтилена НП). Результаты пиролиза представлены в табл.1.
П р и м е р 4. Технологический режим тот же, что и в примере 1, исходная смесь 1 та же, что в примере 3, соотношение компонентов в смеси 8:2. Результаты пиролиза представлены в табл.1.
Из табл.1 видно, что предложенный способ позволяет получать из нефтяных остатков бензино-керосиновые дистилляты, выкипающие в интервале температур 100-300оС в количестве 22-36% исходного сырья, масляные дистилляты, выкипающие в интервале температур 300-440оС в количестве 60-72% исходного сырья и уменьшить выход летучих до 2% и кубового остатка до 6%
Получаемые таким способом целевые дистилляты имеют одинаковые или очень близкие физико-химические показатели (см. табл.2), что показывает высокую стабильность найденного технологического режима.
Таким образом, применение предлагаемого способа в нефтеперерабатывающей промышленности позволит решить такие задачи, как:
замена химически неоднородных ароматических концентратов на легко доступное и химически чистое углеводородное сырье на полиэтилен; уменьшения выхода летучих газов и кубового остатка; получения жидких дистиллятов, соответствующих бензино-керосиновым фракциям; упрощения технологического процесса путем исключения операции вакуумирования.

Claims (1)

  1. СПОСОБ ПОЛУЧЕНИЯ ДИСТИЛЛЯТНЫХ ФРАКЦИЙ путем термокрекинга тяжелого и остаточного нефтяного сырья в присутствии инициирующих добавок, отличающийся тем, что в качестве инициирующей добавки используют полиэтилен любого вида в количестве 10-20 мас. от исходного сырья, полученную смесь подвергают термокрекингу при атмосферном давлении и температуре 360-460oС с конденсацией образующихся паров при 10-90oС для раздельного отбора жидких и масляных дистиллятных фракций.
RU93020250A 1993-04-20 1993-04-20 Способ получения дистиллятных фракций RU2047645C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93020250A RU2047645C1 (ru) 1993-04-20 1993-04-20 Способ получения дистиллятных фракций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93020250A RU2047645C1 (ru) 1993-04-20 1993-04-20 Способ получения дистиллятных фракций

Publications (2)

Publication Number Publication Date
RU93020250A RU93020250A (ru) 1995-10-20
RU2047645C1 true RU2047645C1 (ru) 1995-11-10

Family

ID=20140638

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93020250A RU2047645C1 (ru) 1993-04-20 1993-04-20 Способ получения дистиллятных фракций

Country Status (1)

Country Link
RU (1) RU2047645C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522615C2 (ru) * 2012-10-03 2014-07-20 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ совместной переработки нефтяных фракций и полимерных отходов
RU2798461C2 (ru) * 2021-11-02 2023-06-23 Общество с ограниченной ответственностью "Химмотолог" Способ переработки тяжёлых нефтяных остатков, резинотехнических и многокомпонентных полимерных отходов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 941397, кл. C 10G 7/06, 1980. *
Патент СССР N 719511, кл. C 10G 9/16, 1978. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522615C2 (ru) * 2012-10-03 2014-07-20 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ совместной переработки нефтяных фракций и полимерных отходов
RU2798461C2 (ru) * 2021-11-02 2023-06-23 Общество с ограниченной ответственностью "Химмотолог" Способ переработки тяжёлых нефтяных остатков, резинотехнических и многокомпонентных полимерных отходов

Similar Documents

Publication Publication Date Title
KR100250114B1 (ko) 증기 전환 방법 및 촉매
SU719511A3 (ru) Способ переработки т желого нефт ного сырь
RU2047645C1 (ru) Способ получения дистиллятных фракций
RU2398811C1 (ru) Способ переработки тяжелого углеводородного сырья
GB2135333A (en) Making coke for metallurgical purposes
US4455221A (en) Process for upgrading heavy hydrocarbons employing a diluent
US20090120837A1 (en) Method Of Obtaining High-Quality Products From Polyolefine Waste Material Or Polyolefines
RU2643954C1 (ru) Способ получения нефтяных среднетемпературных связующего и пропиточного пеков
US4009094A (en) Stabilizing pyrolysis naphtha
EP0153112B1 (en) Electrical insulating oil
RU2013416C1 (ru) Способ получения связующего для изготовления углеродных материалов и изделий из них
RU2490308C1 (ru) Способ переработки тяжелого углеводородного сырья
JPS59117585A (ja) 熱分解油の処理方法
GB2083492A (en) Production of pitch from petroleum fractions
SU429086A1 (ru) Способ получения сырья для производствасажи
RU2612963C1 (ru) Способ получения тяжёлого нефтяного топлива
SU859418A1 (ru) Способ получени битума
SU791599A1 (ru) Способ получени дистилл тных фракций
RU2203923C1 (ru) Способ переработки жидких продуктов пиролиза
RU2771842C1 (ru) Способ утилизации нефтяных остатков
RU2054449C1 (ru) Способ переработки нефтяного сырья
US10947459B2 (en) One-step low-temperature process for crude oil refining
RU2659262C1 (ru) Способ получения нефтяного высокотемпературного связующего пека
US2119110A (en) Treatment of hydrocarbon oils
US1954477A (en) Treatment of hydrocarbon oils