RU2028374C1 - Смазка для холодной обработки металлов давлением - Google Patents

Смазка для холодной обработки металлов давлением Download PDF

Info

Publication number
RU2028374C1
RU2028374C1 SU5042183A RU2028374C1 RU 2028374 C1 RU2028374 C1 RU 2028374C1 SU 5042183 A SU5042183 A SU 5042183A RU 2028374 C1 RU2028374 C1 RU 2028374C1
Authority
RU
Russia
Prior art keywords
lubricant
copper
triethanolamine
graphite
increase
Prior art date
Application number
Other languages
English (en)
Inventor
Н.П. Барыкин
З.В. Сергеева
А.Н. Абрамов
С.Ю. Рябинин
Original Assignee
Институт проблем сверхпластичности металлов РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт проблем сверхпластичности металлов РАН filed Critical Институт проблем сверхпластичности металлов РАН
Priority to SU5042183 priority Critical patent/RU2028374C1/ru
Application granted granted Critical
Publication of RU2028374C1 publication Critical patent/RU2028374C1/ru

Links

Images

Landscapes

  • Lubricants (AREA)

Abstract

Сущность изобретения: смазка содержит, мас.%: стеарат цинка 5 - 7; стеарат алюминия 5 - 7; хлоргидрат алкиламинов с числом углеродных атомов 12 - 18 в алкильном радикале 4 - 8: олеиновая кислота 5 - 10; триэтаноламин 2 - 5; хлорная медь 0,1 - 0,5; сульфаминовая кислота 0,5 - 6,0; графит 3 - 10, полиоксиэтилированный алкилфенол -0,5 - 2 и вода остальное. 1 табл.

Description

Изобретение относится к смазкам для холодной обработки металлов давлением, в частности для вытяжки и выдавливания сложно-профильных изделий из углеродистых и легированных сталей.
В настоящее время процессы холодной деформации находят широкое применение при получении сложных изделий из конструкционных нержавеющих и инструментальных сталей. Развитие таких процессов при этом сдерживается в известной степени, отсутствием смазок, обеспечивающих высокое качество поверхности получаемых деталей.
Известны смазочные композиции для холодной обработки металлов давлением, содержащие антифрикционные наполнители, поверхностно-активные вещества и серо-хлорсодержащие добавки [1].
Смазка состава: окисленный петролатум 40%, масло веретенное 20%, графит 20% , сера 7% , спирт 1%, вода остальное. Коэффициент трения при вытяжке сплава ХН75МБТЮ 0,11.
Минеральное масло с наполнителями (мел, графит) при вытяжке стали 1Х18Н9Т обеспечивает коэффициент трения - 0,15.
Смазка "Укринол 5/5", содержащая 40% хлорпарафина, 2% серы, остальное минеральное масло обеспечивает коэффициент трения при вытяжке стали ХН75МБТЮ 0,057.
Наиболее близким техническим решением к предлагаемой является смазка (2) следующего состава, мас. %: стеарат цинка 5-7; стеарат алюминия 5-7; хлоргидрат алкиламинов с числом углеродных атомов С1218 в алкильном радикале 4-8; олеиновая кислота 5-10; триэтаноламин 2-5; вода до 100. Коэффициент трения 0,03-0,05 при осадке кольцевых образцов из стали 20Х13.
Данные смазки обладают высокими антифрикционными свойствами при холодной деформации сталей. При высоких же удельных давлениях, создаваемых при штамповке трудно-деформируемых сталей, происходит нарушение сплошности слоев смазки, что приводит к образованию задиров и царапин на поверхности изделий. Для обеспечения высокого качества поверхности получаемых деталей необходимо усилить разделительные свойства смазки путем введения веществ, повышающих экранирующие свойства смазки.
Цель изобретения - повышение разделительных свойств смазки, обеспечивающих качество поверхности обрабатываемых изделий при холодной деформации углеродистых и легированных сталей.
Поставленная задача достигается тем, что смазка для холодной обработки давлением углеродистых и легированных сталей на водной основе, содержащая стеараты цинка и алюминия, олеиновую кислоту, триэтаноламин и хлоргидрат алкиламинов с числом углеродных атомов 12-18 в алкильном радикале, дополнительно содержит хлорную медь, сульфаминовую кислоту, графит и полиоксиэтилированный алкилфенол при следующем соотношении компонентов, мас.%: Стеарат цинка 5-7 Стеарат алюминия 5-7
Хлоргидрат алкиламинов
с числом углеродных
атомов С1218 в алкиль- ном радикале 4-8 Олеиновая кислота 5-10 Триэтаноламин 2-5 Хлорная медь 0,1-0,5 Сульфаминовая кислота 0,5-6,0 Графит 3-10
Полиоксиэтилированный алкилфенол (ОП-7(10) 0,5-2,0 Вода Остальное
Существенным отличительным признаком смазки является взаимосвязка использования хлорной меди, сульфаминовой кислоты, графита и оксиэтилированного алкилфенола при определенном соотношении компонентов. Известно использование хлорной меди в смазках для узлов трения, где реализуется избирательный перенос (3, 4). Известно использование сплава цинк-медь, полученного гальваническим способом для повышения термостойкости смазки в условиях горячей деформации (5), а также послойное гальваническое нанесение никеля и меди на поверхность проволоки перед волочением для повышения производительности процесса (6) за счет увеличения пластического течения деформируемого металла.
Известно использование подслоя гальванически или химически нанесенной меди в сочетании с различными смазками при холодной высадке и вытяжке (1), где слой металлической меди используется для разделения контактирующих поверхностей металлов.
В предлагаемой же смазке, именно определенное соотношение хлорной меди, сульфаминовой кислоты, графита, оксиэтилированного алкилфенола и стеаратов цинка и алюминия обеспечивает качественную поверхность деталей вследствие образования металлокомпозиционной прослойки между контактирующими поверхностями при получении изделий холодной обработкой металлов давлением.
Образование металлокомпозиционной прослойки, состоящей из меди, ее солей, графита и стеаратов цинка и алюминия, возможно за счет электрохимических процессов, а также вследствие температурных и механических воздействий.
Хлоргидрат алкиламинов, олеиновая кислота и триэтаноламин усиливают разделительные свойства смазки при высоких степенях деформации, что предотвращает контакт инструмента с заготовкой, приводящей к образованию рисок и задиров. Использование смазки с содержанием олеиновой кислоты и триэтаноламина менее 5 и 2% соответственно, не позволяет получить стабильную эмульсию стеаратов цинка и алюминия в воде, что снижает качество получаемых изделий.
Увеличение содержания приведенных компонентов свыше 10 и 5%, соответственно, приводит к повышению вязкости смазки, что делает невозможным ее использование в автоматическом режиме нанесения.
Снижение содержания стеаратов цинка и алюминия ниже 5% и графита ниже 3% приводит к ухудшению качества обрабатываемой поверхности вследствие уменьшения толщины разделительного слоя.
Увеличение количества стеаратов цинка и алюминия более 7% приводит к заметному повышению вязкости практически при сохранении прежнего уровня эффективности. Увеличение концентрации графита свыше 10% не приводит к возрастанию эффективности смазки.
Использование хлоргидрата алкиламина с числом углеродных атомов C1218 в алкильном радикале с концентрацией ниже 4% приводит к ухудшению качества обрабатываемой поверхности вследствие понижения адсорбционной эффективности смазки. Увеличение концентрации свыше 8% приводит к возрастанию вязкости смазки без увеличения эффективности смазочной композиции.
Снижение содержания хлорной меди ниже 0,1% не обеспечивает качественную поверхность обрабатываемой поверхности.
Увеличение содержания хлорной меди выше 0,5% не приводит к увеличению эффективности смазочного слоя.
Использование сульфаминовой кислоты ниже 0,5% приводит к ухудшению качества обрабатываемой поверхности вследствие образования несплошной пленки металлической меди, увеличение свыше 6% приводит к загущению смазочной композиции практически без роста эффективности. Снижение количества оксиэтилированного алкилфенола ниже 0,5% приводит к расслоению смазки, увеличение свыше 2% приводит к возрастанию вязкости смазки. Таким образом, обеспечивая смазочное действие, данная смазка улучшает качество обрабатываемой поверхности за счет исключения на поверхности царапин, задиров и других дефектов.
Способ приготовления.
Стеараты цинка и алюминия смешиванием с олеиновой кислотой. В другой емкости растворяем хлоргидрат алкиламинов с числом углеродных атомов С1218 в водном растворе триэтаноламина. В смесь стеаратов добавляем раствор триэтаноламина и хлоргидрата алкиламинов. Сульфаминовую кислоту, хлорную медь и оксиэтилированный алкилфенол, ОП-7 отдельно растворением в воде, приливаем в полученную смесь. Все тщательно перемешиваем, после чего добавляем графит.
Эффективность смазки оценивали по результатам измерения напряжений трения с различными смазками при фиксированных значениях давлений и температур деформации. Для этой цели использовали установку на базе машины 2767 Р-50 и ЭВМ "Мера-660". Комплект экспериментальной оснастки для прямого выдавливания устанавливается на машину Р-50, работающую в режиме сжатия и позволяющую реализовать скорости деформирования в диапазоне 10-4-10 мм/с. На поверхность цилиндрических образцов диаметром d = 5-0,0/мм и длиной b = 15 мм наносится исследуемая смазка. По результатам обработки текущей информации в процессе деформирования (значений полных усилий и перемещений пуансона через определенные промежутки времени) с помощью миниЭВМ "Мера-660" определяются значения напряжений трения при фиксированных значениях температуры, давления и скорости деформирования.
Значения напряжений трения для составов смазок N 1-3 приведены в таблице. Условия экспериментов: температура 20оС, скорость деформирования - 0,5 ммм/с, давление 800-900 МПа.
Для исследования использовали образцы из стали 12Х18Н10Т, подвергнутые предварительной закалке с температурой 1020-1100оС с охлаждением в масле.
Кроме составов, имеющих различное содержание инградиентов, соответствующих формуле изобретения (составы 1-3) в таблице приведена дополнительная рецептура прототипа.
Сопоставление результатов показывает
наименьшие значения напряжений трения соответствуют содержанию инградиентов, приведенному в таблице.
Опытно-промышленные испытания смазок осуществляли при штамповке заготовок из сплава Х20Н80 на операции прямого выдавливания. Поверхность исходных образцов диаметром 4 мм покрывали смазкой, при помощи кисти и подвергали деформации с относительным обжатием поперечного сечения ε = 30%. Штамповку осуществляли на кривошипном прессе. Качество поверхности оценивали по появлению видимых рисок на боковой поверхности деформированного полуфабриката. В качестве смазок использовали 2 варианта: 4 - прототип и смазки 1-3, соответствующие заявленному составу.
Установлено, что в случае прототипа риски появляются после штамповки 120 заготовок. При использовании заявленной смазки риски появляются после штамповки 10000 шт., что соответствует нормам стойкости инструмента.

Claims (1)

  1. СМАЗКА ДЛЯ ХОЛОДНОЙ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ, содержащая воду, стеарат цинка, стеарат алюминия, олеиновую кислоту, триэтаноламин и хлоргидрат алкиламинов с числом углеродных атомов 12 - 18 в алкильном радикале, отличающаяся тем, что смазка дополнительно содержит хлорную медь, сульфаминовую кислоту, графит и полиоксиэтилированный алкилфенол при следующем соотношении компонентов, мас.%:
    Стеарат цинка - 5 - 7
    Стеарат алюминия - 5 - 7
    Хлоргидрат алкиламинов с числом углеродных атомов 12 - 18 в алкильном радикале - 4 - 8
    Олеиновая кислота - 5 - 10
    Триэтаноламин - 2 - 5
    Хлорная медь - 0,1 - 0,5
    Сульфаминовая кислота - 0,5 - 6,0
    Графит - 3 - 10
    Полиоксиэтилированный алкилфенил - 0,5 - 2,0
    Вода - Остальное
SU5042183 1992-05-15 1992-05-15 Смазка для холодной обработки металлов давлением RU2028374C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5042183 RU2028374C1 (ru) 1992-05-15 1992-05-15 Смазка для холодной обработки металлов давлением

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5042183 RU2028374C1 (ru) 1992-05-15 1992-05-15 Смазка для холодной обработки металлов давлением

Publications (1)

Publication Number Publication Date
RU2028374C1 true RU2028374C1 (ru) 1995-02-09

Family

ID=21604229

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5042183 RU2028374C1 (ru) 1992-05-15 1992-05-15 Смазка для холодной обработки металлов давлением

Country Status (1)

Country Link
RU (1) RU2028374C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1198545A4 (en) * 1999-01-28 2002-07-10 Dover Chemical Corp CLEAR LUBRICANT ADDITIVES WITH SULFUR-CONTAINING EXTREME-PRESSURE PROPERTIES
RU2660909C1 (ru) * 2017-05-15 2018-07-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Смазочно-охлаждающее технологическое средство для процессов поверхностного деформирования
CN110029008A (zh) * 2019-05-17 2019-07-19 湖南省机械科学研究院有限公司 一种用于铝合金冷挤压的高效环保脱模剂

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1186633, кл. C 10M 125/02, 1985. *
Авторское свидетельство СССР N 1188194, кл. C 10M 125/18, 1985. *
Авторское свидетельство СССР N 1214734, кл. C 10M 129/16, 1986. *
Авторское свидетельство СССР N 889176, кл. B 21C 9/00, 1982. *
Барыкин Н.П. и др. Смазочно-охлаждающая жидкость для холодного выдавливания. Кузнечно-штамповочное производство, N 4, 1991, с.12-13. *
Грудев А.П. и др. Трение и смазка при обработке металов давлением, М.: Металлургия, 1982, с.107. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1198545A4 (en) * 1999-01-28 2002-07-10 Dover Chemical Corp CLEAR LUBRICANT ADDITIVES WITH SULFUR-CONTAINING EXTREME-PRESSURE PROPERTIES
RU2660909C1 (ru) * 2017-05-15 2018-07-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Смазочно-охлаждающее технологическое средство для процессов поверхностного деформирования
CN110029008A (zh) * 2019-05-17 2019-07-19 湖南省机械科学研究院有限公司 一种用于铝合金冷挤压的高效环保脱模剂

Similar Documents

Publication Publication Date Title
EP0917559B1 (en) Waterborne lubricant for the cold plastic working of metals
DE1521939B1 (de) Verfahren zur Herstellung feingeschlichteter Oberflächen niedriger Reibung von K¦rpern aus Legierungen auf Aluminiumbasis mit hohemSiliziumgehalt
RU2028374C1 (ru) Смазка для холодной обработки металлов давлением
CN1054892C (zh) 用于金属冷加工的化学转化涂料溶液和复合涂层生成方法
JP4054539B2 (ja) 傾斜型2層潤滑皮膜を有する塑性加工用金属材料の製造方法
JP2733735B2 (ja) 銅鉛合金軸受
JPH06330392A (ja) 耐摩耗性および摺動性にすぐれた複合めっき金属材料、およびその製造方法
EP0073306B1 (en) Cold forming lubricants and process
EP2176447B1 (en) A microporous layer for lowering friction in metal-forming processes
DE69303970T2 (de) Aluminiumplatte mit ausgezeichneter Umformbarkeit
JP2925388B2 (ja) 熱間塑性加工用潤滑剤組成物
JPH06330077A (ja) アルミニウム及びアルミニウム合金の極低温加工用潤滑剤及び極低温加工方法
CN113462445A (zh) 排锯丝杆润滑脂及其制备方法
JP2891683B2 (ja) ステンレス鋼線の製造方法
JPS58152096A (ja) 金属加工用潤滑油組成物及びその使用方法
CN107312590A (zh) 用于冷轧钢板的平整防锈油及其制备方法
SU765342A1 (ru) Смазочно-охлаждающа жидкость дл холодной обработки металлов давлением
RU2139322C1 (ru) Концентрат технологического смазочного материала "латойл-1" для волочения латунированной проволоки
JPS62297394A (ja) 鍛造用離型潤滑剤
SU615126A1 (ru) Смазочно-охлаждающа жидкость дл механической обработки металлов и обработки металлов давлением
CN104862038A (zh) 冷张力减径铜合金管润滑剂组合物
RU2354746C2 (ru) Раствор для химического осаждения никель-фосфорных покрытий
JPS6013092A (ja) 金属被覆層形成方法
RU2072389C1 (ru) Смазочный материал для холодной обработки металлов давлением
SU1171512A1 (ru) Смазка дл холодной обработки металлов давлением