RU2020166C1 - Способ управления нагревом металла - Google Patents

Способ управления нагревом металла Download PDF

Info

Publication number
RU2020166C1
RU2020166C1 SU4948525A RU2020166C1 RU 2020166 C1 RU2020166 C1 RU 2020166C1 SU 4948525 A SU4948525 A SU 4948525A RU 2020166 C1 RU2020166 C1 RU 2020166C1
Authority
RU
Russia
Prior art keywords
metal
thermal
temperature
effective
control
Prior art date
Application number
Other languages
English (en)
Inventor
А.Е. Кочетков
И.В. Канашина
Е.В. Захарова
Original Assignee
Кочетков Александр Евгеньевич
Канашина Ирина Викторовна
Захарова Евгения Валериановна
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кочетков Александр Евгеньевич, Канашина Ирина Викторовна, Захарова Евгения Валериановна filed Critical Кочетков Александр Евгеньевич
Priority to SU4948525 priority Critical patent/RU2020166C1/ru
Application granted granted Critical
Publication of RU2020166C1 publication Critical patent/RU2020166C1/ru

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

Способ относится к области автоматического управления нагревом металла в электрических печах сопротивления периодического действия. Способ включает управление скоростью изменения температуры теплового центра по заданной программе, определение эффективной полосы пропускания объекта и создание импульсного воздействия на металл на максимальной частоте полосы пропускания. 1 з.п.ф-лы, 3 ил.

Description

Изобретение относится к способам автоматического управления нагревом металла в электропечах сопротивлением периодического действия и может найти применение в черной металлургии, машиностроении и строительной промышленности.
Известен способ управления нагревом металла в электропечах путем позиционного регулирования мощности, при котором печь периодически включается на номинальную мощность, а затем выключается. Длительность интервалов включения и отключения мощности печи определяется допустимым интервалом колебаний температуры в печи.
Недостатком известного способа является отсутствие информации о теплопоглощении металла, управляющее воздействие на металл формируют по косвенной характеристике нагрева металла - температуре в печи, которая не отражает динамики внешнего и внутреннего теплообмена в металле, поэтому не может служить представительным импульсом для управления нагревом металла.
Наиболее близким по технической сущности и достигаемому результату является способ управления нагревом по заданной скорости изменения температуры теплового центра металла, включающий измерение скорости изменения температуры теплового центра, сравнение ее с заданной и измерение скважности импульсного воздействия при отклонении текущей скорости температуры теплового центра от заданной на 5%.
Недостаток данного способа состоит в том, что частоту импульсного воздействия поддерживают исходя из действующих, по условиям технологии нагрева металла, ограничений, без учета эффективной полосы пропускания объекта управления. Способ фактически осуществляет программное регулирование теплопоглощения металла без учета динамических свойств объекта регулирования. Однако из теории автоматического управления известно, что эффективность частотного воздействия зависит от того, насколько совпадает частотный спектр воздействия с эффективной полосой пропускания объекта. Если указанное условие не соблюдается, то объект отфильтровывает воздействие, что приводит к перерасходу энергии.
Целью изобретения является снижение электроэнергии на нагрев металла за счет формирования управляющего воздействия в эффективной полосе пропускания объекта.
Указанная цель достигается тем, что в известном способе управления нагревом металла, включающем измерение скорости изменения температуры теплового центра металла, сравнение ее с заданной и изменение скважности импульсного воздействия при отклонении скорости от заданной на 5%, определяют эффективную полосу пропускания объекта управления (ωэ), и создают импульсные воздействия на максимальной частоте эффективной полосы пропускания (ωэ), при этом эффективную полосу пропускания объекта определяют по формуле
ωэ=
Figure 00000001
, где Коб. - коэффициент передачи канала управления "тепловое напряжение печи - температура теплового центра печи";
Тоб. - постоянная времени канала управления, с;
Тоб. = R . C, где R =
Figure 00000002
- термическое сопротивление,
Figure 00000003
;
δ - расчетный геометрический размер нагреваемого металла, м;
λ - коэффициент теплопроводности металла,
Figure 00000004
;
с - тепловая емкость металла,
Figure 00000005
;
C=C
Figure 00000006
, где Vм. - объем металла, м3;
Fм.эф. - эффективная поверхность нагрева металла, м2.
Способ основан на применении к нагреву металла теории оптимальной фильтрации. Канал управления "тепловое напряжение печи - температура теплового центра металла" рассматривают как фильтр для прохождения управляющего воздействия к тепловому центру металла.
Известно, что динамические свойства канала "тепловое напряжение печи - температура теплового центра металла" могут быть аппроксимированы статическим инерционным звеном I-го порядка. Рассматривая динамику процесса нагрева металла как последовательный процесс поглощения тепла и роста температуры теплового центра металла, получим структурную схему, показанную на фиг.1. Известно, что канал "тепловое напряжение печи - теплопоглощение металла" в динамическом отношении является реальным дифференцирующим звеном. Известно, что реальное дифференцирующее звено хорошо пропускает высокочастотные воздействия и плохо - низкочастотные, следовательно, тепловой поток, усвоенный металлом, усредненный по времени периода воздействия, возрастает с повышением частоты управляющего воздействия (фиг.2). Канал "теплопоглощение металла - температура теплового центра металла" является интегрирующим звеном. Интегрирующее звено не пропускает высококачественные воздействия, в результате металл не допускает высокочастотных колебаний температуры, и температура теплового центра металла нарастает пропорционально количеству тепла, усвоенного металлом за время τ:
T(τ)=K
Figure 00000007
q(τ)dτ, (фиг.2б) где q (τ) - теплопоглощение металла, Вт/м2;
K =
Figure 00000008
, где Fэф - эффективная поверхность нагреваемого металла, м2;
С - объемная теплоемкость металла, Дж/м3К;
V - объем металла, м3.
Особенность электрических печей сопротивления как объектов управления нагревом металла состоит в том, что они позволяют создать высокочастотное управляющее воздействие и получить широкополостный спектр воздействия. Известно, что при широкополосном воздействии эффективность прохождения управляющего воздействия через систему определяется эффективной полосой пропускания системы, которая определяется по формуле
ωэ=
Figure 00000009
(W(iω))2dω, где W(i ω ) - амплитудно-частотная характеристика системы.
Таким образом, эффективная полоса пропускания системы представляет собой основание прямоугольника, высота которого равна единице, а площадь равна площади под кривой квадратов модуля W(i ω ).
Для канала управления "тепловое напряжение печи - температура теплового центра металла", описываемого статическим инерционным звеном 1-го порядка, эффективная полоса пропускания определяется по формуле
ωэ=
Figure 00000010
рад/с
Коэффициент передачи имеет смысл изменения температуры теплового центра металла на единицу изменения теплового напряжения печи
Kоб=
Figure 00000011
где Δ Р - изменение тепловой мощности, выделяемой электрическими нагревателями, Вт;
αп - приведенный коэффициент теплоотдачи печи, Вт/м2 . К,
Tоб = R · C, где R - термическое сопротивление металла,
Figure 00000012
, R =
Figure 00000013
; δ - расчетный геометрический размер нагреваемого металла, м; δ =
Figure 00000014
; λ - коэффициент теплопроводности металла, Вт/м.К.
С - тепловая емкость металла, Дж/м2
C=C
Figure 00000015
, V - объем металла;
См - теплоемкость металла, Дж/м3.К.
Учитывая, что теплопоглощение металла, усредненное по времени периода воздействия, возрастает с повышением частоты воздействия, следует поддерживать максимальную, в найденной полосе пропускания, частоту воздействия, ωэ max (фиг.3).
Нагрев металла с частотой воздействия ωэ max позволяет уменьшить расход электроэнергии на нагрев.
Управление импульсным нагревом металла в предложенном способе осуществляют следующими приемами:
- рассчитывают динамические параметры объекта управления по каналу "тепловое напряжение печи - температура теплового центра металла";
- рассчитывают полосу пропускания объекта, ωэ;
- создают импульсные воздействия с максимальной частотой в полосе пропускания объекта, ωэ max;
- измеряют скорость роста температуры теплового центра, сравнивают с заданной по программе
Figure 00000016
= f(τ);
- изменяют скважность импульсного воздействия при отклонении текущей скорости изменения температуры теплового центра металла от заданной на 5%.
В результате сопоставительного анализа предлагаемого способа с прототипом выделены следующие отличительные признаки:
- определяют эффективно полосу пропускания канала "тепловое напряжение печи - температура теплового центра металла", ωэ , по формуле
ωэ=
Figure 00000017
;
- создают управляющее воздействие с максимальной частотой в полосе пропускания объекта, ωэ max.
Из сопоставительного анализа предлагаемого решения с известными техническими решениями можно сделать вывод о том, что признаки известных технических решений не совпадают с признаками заявляемого решения.
На фиг. 1 представлена динамика процесса нагрева металла в виде последовательного соединения двух звеньев: "тепловое напряжение печи - теплопоглощение металла" и "теплопоглощение металла - температура теплового центра металла"ж на фиг. 2 - график изменения теплопоглощения металла (а) и график изменения температуры теплового центра (б) при различной длительности периода воздействия; на фиг. 3 - частотная характеристика канала "тепловая мощность печи - температура теплового центра металла" и эффективную полосу пропускания объекта.
Способ реализуется автоматической системой управления, выполненной на базе УВМ, работающей в реальном времени в режиме непосредственного цифрового управления.
В УВМ оперативно вводят следующую информацию:
- марка стали, геометрические размеры заготовок, теплофизические параметры металла
- временная программа скорости изменения температуры теплового центра металла ;
Figure 00000018
= f1(τ);
- временная программа изменения температуры поверхности металла, Т (R, τ ) = f2( τ ).
УВМ получает с объекта текущую информацию с датчиков температуры поверхности металла, теплового центра металла, теплопоглощения металла (для испарения температуры теплового центра используется без дифференциатора, для измерения теплопоглощения с дифференциатором).
В каждом периоде импульсного воздействия УВМ рассчитывают:
- термическое сопротивление металла R(τ) = δ/λ (τ)
- тепловую емкость металла С (τ ) =См (τ ) Vм/Fм.эф.
- постоянную времени объекта Тоб.=R ( τ ) C ( τ )
- коэффициент передачи объекта Kоб=
Figure 00000019

- эффективную полосу пропускания объекта и период:
ωэ=
Figure 00000020
, рад/с; Tэ=
Figure 00000021

Система работает следующим образом.
УВМ выдает сигнал в схему включения электрических нагревателей и начинает отсчет длительности периода. Одновременно по результатам опроса датчиков температуры поверхности металла, Т(R, τ ) и центра металла, Т(0,τ ), УВМ определяет теплофизические характеристики металла и выполняет расчет эффективной полосы пропускания (ωэ ), и длительности периода импульсного воздействия (Тэ). Расчетное значение Тэ УВМ выдает в блок отсчета времени и осуществляет регулирование температуры поверхности по заданной программе Т(R, τ ) =f2( τ ) и скорости изменения температуры теплового центра
Figure 00000022
= f1(τ) следующим образом: по результатам опроса датчика температуры поверхности, Т(R, τ) УВМ определяет момент выхода температуры поверхности на заданное значение и снижает тепловую мощность печи, если скорость роста температуры теплового центра металла не вошла в заданный интервал δ = ± 0,05
Figure 00000023
зад. По результатам опроса датчика теплопоглощения металла УВМ отслеживает момент прохождения сигнала
Figure 00000024
через задание и выдает сигнал в схему отключения электрических нагревателей. Выключенное состояние нагревателей сохраняется до получения сигнала из блока счета времени об окончании данного периода импульсного воздействия, после чего УВМ выдает сигнал в схему включения электрических нагревателей и повторяет указанные действия в новом периоде. Таким образом, система обеспечивает нагрев металла на максимальной частоте эффективной полосы пропускания объекта.
Пример осуществления способа.
В электрической печи сопротивления периодического действия общей установленной мощностью Nу = 212 кВт нагревают металл массой 700 кг; марка стали 45Х.
Заданы: временная программа скорости изменения температуры теплового центра металла,
Figure 00000025
(0,τ)=f1(τ), временная программ изменения температуры поверхности металла, Т(R, τ) = f2(τ). С пульта управления вводят данные в УВМ:
- марка стали 45Х;
- размеры заготовки 1000х900х800;
- теплофизические параметры заданной марки стали (в табличной форме);
- временная программа,
Figure 00000026
(0,τ)=f1(τ);
- временная программа, Т(R, τ) = f2 ( τ);
УВМ получает текущую информацию с датчиков:
- температуры поверхности металла, Т(R, τ);
- температуры центра металла, Т (0, τ);
- теплопоглощения металла, q( τ);
- температуры в рабочем пространстве печи, Тп (τ ).
УВМ включает нагреватели на максимальную мощность, начинает отсчет длительности периода и рассчитывает:
Kоб=
Figure 00000027
= 2,15, где Fэф. = 0,9 м2; αп = 125 Вт/м2 . К
Тоб. = 18 с, где R = 0,017 м2К/Вт, с =1100 дж/м2К.
Эффективную полосу пропускания:
ωэ=
Figure 00000028
= 0,5 1/c
Период Tэ=
Figure 00000029
= 30,7 c
Расчетное значение Тэ УВМ вводит в память и отслеживает момент прохождения сигнала
Figure 00000030
через заданное программой значение, при этом УВМ выдает сигнал в схему отключения электрических нагревателей. По сигналу из блока счета времени УВМ начинает новый период импульсного воздействия.

Claims (2)

1. СПОСОБ УПРАВЛЕНИЯ НАГРЕВОМ МЕТАЛЛА, включающий измерение скорости изменения температуры теплового центра металла, сравнение ее с заданной и изменение скважности импульсного воздействия при отклонении текущей скорости от заданной на 5%, отличающийся тем, что определяют эффективную полосу пропускания объекта управления ωэ и создают импульсное воздействие на максимальной частоте эффективной полосы пропускания ωэ max.
2. Способ по п.1, отличающийся тем, что эффективную полосу пропускания определяют по математическому выражению
ωэ=
Figure 00000031
, 1/c,
где Kоб - коэффициент передачи объекта по каналу управления, "тепловое напряжение печи - температура теплового центра металла";
Tоб - постоянная времени объекта управления, с;
Tоб = R · C, где R =
Figure 00000032
- термическое сопротивление нагреваемого металла, м2 · к/Вт;
δ - расчетный геометрический размер нагреваемого металла, м;
δ =
Figure 00000033
;
Vм - объем нагреваемого металла, м3;
Fмэф - эффективная поверхность металла, м2;
λ - коэффициент теплопроводности металла Вт/(м · K);
C - тепловая емкость металла Дж/(м2 · K);
C=C
Figure 00000034
; Cм - теплоемкость нагреваемого металла Дж/(м3 · K).
SU4948525 1991-06-24 1991-06-24 Способ управления нагревом металла RU2020166C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4948525 RU2020166C1 (ru) 1991-06-24 1991-06-24 Способ управления нагревом металла

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4948525 RU2020166C1 (ru) 1991-06-24 1991-06-24 Способ управления нагревом металла

Publications (1)

Publication Number Publication Date
RU2020166C1 true RU2020166C1 (ru) 1994-09-30

Family

ID=21580870

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4948525 RU2020166C1 (ru) 1991-06-24 1991-06-24 Способ управления нагревом металла

Country Status (1)

Country Link
RU (1) RU2020166C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524296C1 (ru) * 2013-01-11 2014-07-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технический университет "МИСиС" Способ управления импульсной подачей топлива в нагревательных и термических печах

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1470792, кл. C 21D 11/00, 1989. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524296C1 (ru) * 2013-01-11 2014-07-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технический университет "МИСиС" Способ управления импульсной подачей топлива в нагревательных и термических печах

Similar Documents

Publication Publication Date Title
US4335293A (en) Heating control apparatus by humidity detection
DE2938980C2 (de) Verfahren zum Regeln der Mikrowellenbeheizung eines Heizgutes in einem Lebensmittelerhitzungsgerät
DE4022846C2 (de) Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material
DE3885561T2 (de) Vorrichtung zur Überwachung der Temperatur in einem Kochgerät.
EP0146780B1 (de) Anordnung zum Steuern und Regeln der Heizleistung in der Aufheizphase eines Dampfdruckkochgefässes
EP0392162B1 (de) Gaskocheinrichtung mit wenigstens einem unter Glaskeramikplatte angeordneten Gasstrahlungsbrenner sowie Verfahren zum Verringern der Aufheizzeit einer derartigen Gaskocheinrichtung
DE10262141B4 (de) Verfahren und Vorrichtung zur thermischen Überwachung eines induktiv erwärmbaren Gargefäßes
EP2574145B1 (de) Verfahren zum Zubereiten von Lebensmitteln mittels einer Induktionsheizeinrichtung und Induktionsheizeinrichtung
DE69422833T2 (de) Verbesserter partikelfilter und system und verfahren zu seiner reinigung
US4668856A (en) Method of controlling the heating of an aqueous load in a cooking utensil
EP3482661A1 (de) Verfahren zur anpassung einer heizleistung wenigstens eines heizelementes eines hausgeräts
RU2020166C1 (ru) Способ управления нагревом металла
RU97106760A (ru) Устройство для приготовления пищи
JPS6234166Y2 (ru)
JP3112137B2 (ja) 高周波電磁誘導加熱器
US5698123A (en) Toaster compensation for repeated use
DE2625135C3 (de) Verfahren zur Regelung der Temperatur von metallischem Gut
JPS62155814A (ja) 炊飯器
JP2790384B2 (ja) 調理器
SU1647467A1 (ru) Способ контрол качества металлизации отверстий печатных плат
JP2858788B2 (ja) 電気温水器の運転制御方法
JP4239419B2 (ja) 熱処理炉及びその加熱制御装置
JPS61216293A (ja) 加熱調理装置
SU1031686A1 (ru) Способ стабилизации энергии сварочных импульсов
JPS60170182A (ja) 電気加熱器の温度制御装置