RU2014877C1 - Способ очистки отходящих газов от окислов серы - Google Patents

Способ очистки отходящих газов от окислов серы Download PDF

Info

Publication number
RU2014877C1
RU2014877C1 SU4830495A RU2014877C1 RU 2014877 C1 RU2014877 C1 RU 2014877C1 SU 4830495 A SU4830495 A SU 4830495A RU 2014877 C1 RU2014877 C1 RU 2014877C1
Authority
RU
Russia
Prior art keywords
stage
neutralization
column
tank
absorbent
Prior art date
Application number
Other languages
English (en)
Inventor
Накагава Кенити (Jр)
Original Assignee
Нитимен Корпорейшн и Фудзи Машинери Инджиниринг Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нитимен Корпорейшн и Фудзи Машинери Инджиниринг Ко., Лтд. filed Critical Нитимен Корпорейшн и Фудзи Машинери Инджиниринг Ко., Лтд.
Priority to SU4830495 priority Critical patent/RU2014877C1/ru
Application granted granted Critical
Publication of RU2014877C1 publication Critical patent/RU2014877C1/ru

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

Использование: очистка газов от окислов серы, полученных при сжигании угля или нефти. Сущность изобретения: в обсорбционной колонне осуществляют непрерывное контактирование отходящих газов с циркулирующим водным абсорбентом, содержащим Mg(OH) Mg(OH)2 . Водный абсорбент с продуктами абсорбции выводят с низа колонны и подают в систему регенерации. Регенерацию ведут последовательно двустадийной нейтрализацией и разделением на твердую и жидкую фазы. На первой стадии нейтрализацию ведут с помощью водного шлама, полученного при отделении твердой фазы. Частично нейтрализованный абсорбент подают на вторую стадию, в качестве нейтрализующего агента используют обоженную легкую измельченную MgO. После разделения жидкую фазу, не содержащую твердых частиц, подают в колонну в качестве абсорбционного раствора. Предпочтительно, по меньшей мере, частью водного шлама перед подачей на первую стадию нейтрализации подвергают мокрому порошкованию с помощью мельницы. На оборудовании в системе очистки газов не наблюдается отложений. Конечная концентрация SO2 10 миллионных долей. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к способу обессеривания отработанных газов, которые содержат окислы серы, например отработанных газов, полученных при сгорании тяжелой нефти или угля, в частности, к способу обессеривания, при котором используется легкая обожженная окись магния в качестве обессеривающего агента.
Цель изобретения - предотвращение отложений на оборудовании.
Наилучший вариант установки для осуществления изобретения приведен на чертеже.
На чертеже символ А обозначает абсорбционную колонну обессеривания, в которой водный абсорбент, состоящий из водного раствора гидроокиси магния, подаваемого из внешней системы обработки В, выливается сверху в виде душа и вводится в контакт с отходящим газом G1, содержащим окислы серы. В результате окислы серы поглощаются и фиксируются в виде сильфита магния в водном абсорбенте. В то же время отходящий газ G2, из которого окислы серы были удалены, выпускается из верхней части колонны.
Абсорбент, выливаемый в нижний резервуар а колонны обессеривания А, то есть обессеривающий раствор, который поглотил окислы серы, обычно включает смесь MgSO3, MgSO4 и Mg(HSO3)2. Этот раствор подается к верхней части башни вместе с вновь подаваемым водным абсорбентом через насос Р1 и трубопровод L1, повторение чего позволяет раствору непрерывно циркулировать внутри абсорбера А.
Внешняя система обработки В содержит первый реакционный бак 1 для первого процесса нейтрализации, второй реакционный бак 2 для второго процесса нейтрализации, бак осаждения 3 для процесса разделения твердой и жидкой фаз, бак 4 для хранения водного шлама легкой обожженной окиси магния и мельницу для мокрого порошкования 5. Оба бака 1 и 2 снабжены мешалками 6 соответственно.
В первом баке нейтрализации 1 обессеривающий раствор, подаваемый из башни А через насос Р2 и трубопровод L2, смешивается и вводится в реакцию со шламом, подаваемым из бака осаждения 3 через насос Р3. Продукты реакции в виде пульпы направляются во второй нейтрализационный бак 2. Во втором баке водный шлам легких частиц обожженной окиси магния, который подается в большом избытке из бака 4, смешивается и вводится в реакцию с продуктами реакции, подаваемыми из бака 1. Полученные продукты реакции, подаются в бак для осаждения 3 и разделяются на верхний слой жидкости и на осевший шлам. Отделенная жидкость подается к колонне А, в качестве водного абсорбента, в то время как осевший шлам подается в первый нейтрализационный бак 1.
Реакция в обоих баках 1 и 2 такая же, что и в обессеривающей колонне А, то есть реакция между гидроокисью магния, образуемой в результате гидратации твердой окиси магния, и окислами серы, содержащимися в обессеривающем растворе. В жидкости в верху бака осаждения 3 находятся избыточная гидроокись магния, которая не израсходована в указанной реакции, и сульфит магния в виде продукта реакции. Твердое вещество в осевшем шламе содержит непрореагировавшие компоненты окиси магния, которые до этого времени не были гидратированы, то есть компоненты с низкой реакционной способностью, карбонат магния, который является производным от частиц легкой обожженной окиси магния и от примесей, таких как Al2O3, SiO2 и т. п.
В ходе первого процесса нейтрализации в первом баке шлам из бака осаждения 3 имеет низкую реакционную способность, как пояснено выше, но обессеривающий раствор, подаваемый из колонны обессеривания А, имеет высокую реакционную способность, так как в нем содержится много Mg(HSO3)2. В соответствии с этим низкая реакционная способность шлама дополняется высокой реакционной способностью этого раствора. Как результат, обессеривание усиливается. В дополнение к этому предусмотрена мельница 5 для мокрого порошкования на пути шлама, который идет от бака осаждения 3 к первому нейтрализационному баку 1, как показано на чертеже, для размалывания либо части, либо всего подаваемого шлама в мелкий шлам, площадь поверхности для реакции у твердых частиц которого увеличена и указанная реакция более ускорена.
Компоненты окиси магния крайне низкой реакционной способности повторяющимся образом циркулируют вдоль тракта первого нейтрализационного бака 1, второго нейтрализационного бака 2 и бака для осаждения 3, они постепенно расходуются в реакции и убывают. Во втором баке 2 обрабатываемый раствор содержит мало Mg(НSO3)2, так как реакция была проведена в первом нейтрализационном баке 1. Наибольшая часть указанного остаточного Mg(HSO3)2 превращается в MgSO3, так как компоненты окиси магния с высокой реакционной способностью далее подаются в большом избытке. Величина рН нейтрализованного раствора составляет примерно 9. Путем детектирования рН с помощью регулятора рН (РНС) 7а, подающий клапан У1 автоматически настраивается так, чтобы регулировать подаваемое количество шлама из бака 4.
Единичный реакционный бак не рекомендуется, так как компоненты окиси магния с высокой реакционной способностью, подаваемые из бака 4, должны реагировать предпочтительно, а компоненты с низкой реакционной способностью, возвращаемые из бака осаждения 3, не будут способствовать реакции, и как результат, компоненты окиси магния с низкой реакционной способностью быстро накопятся в виде непрореагировавших продуктов в баке осаждения 3.
Компоненты окиси магния с крайне низкой реакционной способностью, которые не реагируют даже если повторно циркулируют вдоль тракта реакционных баков 1 и 2 и бака осаждения 3, и карбонат магния, также как и другие примеси, постепенно скапливаются в циркуляционной системе. Однако возрастание содержания твердых веществ настолько медленно, что не происходит нарушения при выгрузке шлама, эквивалентного возросшему количеству из выпускного трубопровода 8, связанного с баком осаждения 3.
Хотя в колонну обессеривания А поступает жидкость из бака осаждения 3 в качестве водного абсорбента, циркуляционная система, включающая насос Р1 и трубопровод L1, продолжает стабильно работать без увеличения расхода и без закупорки осадком, так как водный абсорбент не содержит твердых веществ. С целью предупреждения возрастания расхода желательно поддерживать уровень рН обессеривающего раствора в нижнем баке на уровне примерно 6. Поэтому рН регулируется регулятором рН(РНС) 7в, в результате чего клапан управления V2 настраивают для регулирования подаваемого количества обессеривающего раствора, которое должно быть направлено в бак первой нейтрализации 1. Количество водного абсорбента, подаваемого из бака осаждения 3, превышает количество обессеривающего раствора, подаваемого в первый реакционный бак 1, на количество шлама, подаваемого из бака 4. Это избыточное количество выводится из системы через выпускной трубопровод 9.
В приведенном варианте выполнения по одному баку используется для первого и второго нейтрализационных процессов соответственно. Однако допускается использовать два или более реакционных бака либо для одного, либо для обоих из указанных процессов, подсоединенных к одному концу или к обоим концам последовательно или параллельно.
Что касается процесса разделения жидкого и твердого, можно использовать циклон для жидкости или любое другое устройство разделения твердого и жидкого вместо бака осаждения 3.
Легкая обожженная окись магния, используемая по изобретению, более предпочтительно получается путем прокаливания руды карбоната магния при низкой температуре. Однако материалы, полученные из других материалов, такие как пыль, собранная из вращающейся обжиговой печи во время процесса изготовления клинкера из окиси магния, также может быть использована.
Ниже приводится описание примера осуществления способа обессеривания с использованием указанной системы.
П р и м е р. Отходящий газ G1, содержащий 1200 частей на миллион двуокиси серы (SO2), выпускаемый из парового котла, работающего на тяжелой нефти, подавали в башню обессеривания А с расходом 104 Нм/ч. Обессеривание осуществляли в результате непрерывного контакта газ-жидкость между отходящим газом и водным абсорбентом выливаемым сверху наподобие душа.
Раствор для обессеривания, хранящийся в самом нижнем баке а, регулировали до рН в пределах от 5,9 до 6,0 и при температуре 55оС подавали в первый нейтрализационный бак объемом 1 м3 с помощью насоса Р1 с расходом 4500 кг/ч. Тот же самый обессеривающий раствор выпускали из этой системы через выпускной трубопровод 9 с расходом 1400 кг/ч.
В первом нейтрализационном баке 1 обессеривающий раствор и шлам, направляемый из бака осаждения 3 с расходом 120 кг/ч, смешивали и проводили реакцию в течение времени примерно 10 мин. Шламо-подобные продукты реакции затем непрерывно направляли во второй нейтрализационный бак 2 объемом 1 м3. Во втором баке продукты реакции из первого бака смешивали со шламом частиц легкой обожженной окиси магния (средний размер частиц 20 мкм), имеющим содержание твердых частиц 30 мас.%, который непрерывно подавали из бака 4. Время реакции примерно 10 мин. Шламоподобные продукты реакции затем непрерывно подавали в бак осаждения 3.
Подаваемое количество шлама из бака 4 во второй реакционный бак 2 регулировали так, чтобы рН внутри второго реакционного бака 2 сохранялся равным 9,0 в ходе нормальной работы. В баке осаждения 3 осевший шлам подавали в первый реакционный бак 1 с помощью насоса Р3 через мельницу для мокрого порошкования 5 с указанным расходом, и весь переток осветленной жидкости непрерывно подавали в колонну обессеривания А.
Таким образом, обессеривание отходящих газов осуществляли непрерывно, в результате концентрация двуокиси серы в обработанном отходящем газе G2, выводимом из колонны обессеривания А, составляла 10 частей на миллион. В дополнение к этому обессеривающий раствор, хранящийся в нижнем баке а башни А представлял собой водный раствор, содержащий 1,2 мас.% MgSO4, 1,3 мас.% MgSO3 и 1,48 мас.% Mg(HSO3)2 в среднем, который почти не содержит твердых веществ. Отложений на оборудовании при очистке газов от окислов серы не наблюдалось.

Claims (2)

1. СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ОТ ОКИСЛОВ СЕРЫ, включающий непрерывное контактирование их в абсорбционной колонне с водным абсорбентом, содержащим гидроокись магния, вывод из колонны водного абсорбента с продуктами абсорбции окислов серы и подачу его в систему регенерации посредством двухстадийной нейтрализации с использованием измельченной обожженной легкой окиси магния на второй стадии и разделения на твердую и жидкую фазы, отличающийся тем, что, с целью предотвращения отложений на оборудовании, водный абсорбент продуктов нейтрализации с первой стадии подают на вторую стадию нейтрализации, водный абсорбент с продуктами нейтрализации с второй стадии нейтрализации подают на разделение его на твердую и жидкую фазы, твердую фазу в виде водного шлама подают на первую стадию нейтрализации в качестве нейтрализующего агента, а жидкую фазу, не содержащую твердых частиц, подают в абсорбционную колонну в качестве водного абсорбента.
2. Способ по п.1, отличающийся тем, что по меньшей мере часть водного шлама перед подачей его на первую стадию нейтрализации подвергают мокрому порошкованию с помощью размалывающего устройства.
SU4830495 1990-06-29 1990-06-29 Способ очистки отходящих газов от окислов серы RU2014877C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4830495 RU2014877C1 (ru) 1990-06-29 1990-06-29 Способ очистки отходящих газов от окислов серы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4830495 RU2014877C1 (ru) 1990-06-29 1990-06-29 Способ очистки отходящих газов от окислов серы

Publications (1)

Publication Number Publication Date
RU2014877C1 true RU2014877C1 (ru) 1994-06-30

Family

ID=21516850

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4830495 RU2014877C1 (ru) 1990-06-29 1990-06-29 Способ очистки отходящих газов от окислов серы

Country Status (1)

Country Link
RU (1) RU2014877C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2504427C2 (ru) * 2008-08-07 2014-01-20 Эф-Эл-Смидт А/С Устройство и способ снижения выбросов при помоле сырьевой смеси
RU2692382C1 (ru) * 2018-08-01 2019-06-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" Способ очистки отходящих газов от оксидов серы с получением товарных продуктов
RU2740015C1 (ru) * 2019-12-03 2020-12-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" Способ очистки отходящих газов от хлора и оксида серы с получением вяжущих

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент Великобритании N 1328403, кл. C 01B 17/60, 1973. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2504427C2 (ru) * 2008-08-07 2014-01-20 Эф-Эл-Смидт А/С Устройство и способ снижения выбросов при помоле сырьевой смеси
RU2692382C1 (ru) * 2018-08-01 2019-06-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" Способ очистки отходящих газов от оксидов серы с получением товарных продуктов
RU2740015C1 (ru) * 2019-12-03 2020-12-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" Способ очистки отходящих газов от хлора и оксида серы с получением вяжущих

Similar Documents

Publication Publication Date Title
US4246245A (en) SO2 Removal
US3873532A (en) Sulfur dioxide scrubbing process
US4000991A (en) Method of removing fly ash particulates from flue gases in a closed-loop wet scrubbing system
US7419643B1 (en) Methods and apparatus for recovering gypsum and magnesium hydroxide products
JP2691041B2 (ja) フライアッシュを含む吸収液スラリーの処理方法
CA2939399A1 (en) Method of removing sulphate from waste water
KR100487144B1 (ko) 연소 배기 가스의 처리 방법 및 처리 장치
US4017391A (en) Water treatment system
RU2014877C1 (ru) Способ очистки отходящих газов от окислов серы
EP0484637A1 (en) Sulfur dioxide removal from gases using a modified lime
KR20000070574A (ko) 탈황흡수액의 처리방법 및 장치
Lefers et al. Heavy metal removal from waste water from wet lime (stone)—gypsum flue gas desulfurization plants
US3972980A (en) Process removing sulfur dioxide from gases
EP0406446A1 (en) Desulfurization of exhaust gas
US4021202A (en) Apparatus for removing sulfur dioxide from stack gases
JP4014679B2 (ja) 排水の処理方法
KR100324078B1 (ko) 배연탈황배수중의 플루오르 제거 방법
US4255388A (en) Apparatus for the production of H2 S from SO2 obtained from flue gas
JPS60118286A (ja) 排煙脱硫廃水処理における汚泥処理方法
JP3902861B2 (ja) 排ガス脱硫方法
JPS63336Y2 (ru)
KR100262689B1 (ko) 배연 탈황 배수의 처리방법
JPS625027B2 (ru)
JP4628013B2 (ja) フッ素含有水の処理装置および処理方法
JPS58186494A (ja) 排水の処理方法