RU2012120750A - Монокристалл, способ его изготовления, оптический изолятор и использующий его оптический процессор - Google Patents

Монокристалл, способ его изготовления, оптический изолятор и использующий его оптический процессор Download PDF

Info

Publication number
RU2012120750A
RU2012120750A RU2012120750/05A RU2012120750A RU2012120750A RU 2012120750 A RU2012120750 A RU 2012120750A RU 2012120750/05 A RU2012120750/05 A RU 2012120750/05A RU 2012120750 A RU2012120750 A RU 2012120750A RU 2012120750 A RU2012120750 A RU 2012120750A
Authority
RU
Russia
Prior art keywords
single crystal
crystal according
chemical formula
optical
satisfy
Prior art date
Application number
RU2012120750/05A
Other languages
English (en)
Other versions
RU2527082C2 (ru
Inventor
Кадзуо САНАДА
Кийоси СИМАМУРА
Виллора Энкарнасион Антония ГАРСИА
Original Assignee
Фуджикура Лтд.
Нэшнл Инститьют Фор Матириалз Сайенс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фуджикура Лтд., Нэшнл Инститьют Фор Матириалз Сайенс filed Critical Фуджикура Лтд.
Publication of RU2012120750A publication Critical patent/RU2012120750A/ru
Application granted granted Critical
Publication of RU2527082C2 publication Critical patent/RU2527082C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect

Abstract

1. Монокристалл, который представляет собой монокристалл алюмотербиевого граната и в котором основная часть алюминия замещена лютецием (Lu).2. Монокристалл по п.1, представленный следующей химической формулой:(TbL)(MN)AlO(I)(в которой L представляет собой M или N, M представляет собой, по меньшей мере, один тип элемента, выбранного из группы, состоящей из Sc и Y, N содержит Lu, и a и b удовлетворяют следующим формулам:2,8 ≤ a ≤ 3,2; и1,8 ≤ b ≤ 2,2).3. Монокристалл по п.2, в котором N в химической формуле представляет собой Lu.4. Монокристалл по п.2, в котором N в химической формуле дополнительно содержит, по меньшей мере, один тип элемента, выбранного из группы, состоящей из Yb и Tm.5. Монокристалл по п.2 или 3, в котором M в химической формуле представляет собой Sc, N представляет собой Lu, и x удовлетворяет следующей формуле:0,01 ≤ x ≤ 0,6.6. Монокристалл по п.5, в котором y и z в химической формуле удовлетворяют следующим формулам:0 ≤ y ≤ 0,5; и-0,5 ≤ z ≤ 0,5.7. Монокристалл по п.6, в котором y и z в химической формуле удовлетворяют следующим формулам:0 ≤ y ≤ 0,2; и-0,2 ≤ z ≤ 0,2.8. Монокристалл по п.6 или 7, в котором y равен 0.9. Способ изготовления монокристалла для изолятора, содержащий: нагревание и плавление порошкообразного исходного материала, содержащего оксид тербия, оксид алюминия и оксид лютеция; и получение монокристалла по п.1 из итогового расплава способом выращивания из расплава.10. Оптический изолятор, содержащий монокристалл по любому из пп.1-8.11. Оптический процессор, содержащий:источник лазерного излучения; иоптический изолятор, расположеный на световом пути лазерного излучения, излучаемого из источника лазерного излучения,в котором оптический изолятор представляе�

Claims (13)

1. Монокристалл, который представляет собой монокристалл алюмотербиевого граната и в котором основная часть алюминия замещена лютецием (Lu).
2. Монокристалл по п.1, представленный следующей химической формулой:
(Tba-yLy)(Mb-xNx)Al3-zO12
Figure 00000001
(I)
(в которой L представляет собой M или N, M представляет собой, по меньшей мере, один тип элемента, выбранного из группы, состоящей из Sc и Y, N содержит Lu, и a и b удовлетворяют следующим формулам:
2,8 ≤ a ≤ 3,2; и
1,8 ≤ b ≤ 2,2).
3. Монокристалл по п.2, в котором N в химической формуле представляет собой Lu.
4. Монокристалл по п.2, в котором N в химической формуле дополнительно содержит, по меньшей мере, один тип элемента, выбранного из группы, состоящей из Yb и Tm.
5. Монокристалл по п.2 или 3, в котором M в химической формуле представляет собой Sc, N представляет собой Lu, и x удовлетворяет следующей формуле:
0,01 ≤ x ≤ 0,6.
6. Монокристалл по п.5, в котором y и z в химической формуле удовлетворяют следующим формулам:
0 ≤ y ≤ 0,5; и
-0,5 ≤ z ≤ 0,5.
7. Монокристалл по п.6, в котором y и z в химической формуле удовлетворяют следующим формулам:
0 ≤ y ≤ 0,2; и
-0,2 ≤ z ≤ 0,2.
8. Монокристалл по п.6 или 7, в котором y равен 0.
9. Способ изготовления монокристалла для изолятора, содержащий: нагревание и плавление порошкообразного исходного материала, содержащего оксид тербия, оксид алюминия и оксид лютеция; и получение монокристалла по п.1 из итогового расплава способом выращивания из расплава.
10. Оптический изолятор, содержащий монокристалл по любому из пп.1-8.
11. Оптический процессор, содержащий:
источник лазерного излучения; и
оптический изолятор, расположеный на световом пути лазерного излучения, излучаемого из источника лазерного излучения,
в котором оптический изолятор представляет собой оптический изолятор по п.10.
12. Оптический процессор по п.11, в котором длина волны излучения источника лазерного излучения составляет 1064 нм.
13. Оптический процессор по п.11, в котором длина волны излучения источника лазерного излучения составляет от 400 нм до 700 нм.
RU2012120750/05A 2009-10-21 2010-10-20 Монокристалл, способ его изготовления, оптический изолятор и использующий его оптический процессор RU2527082C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-242433 2009-10-21
JP2009242433 2009-10-21
PCT/JP2010/068422 WO2011049102A1 (ja) 2009-10-21 2010-10-20 単結晶、その製造方法、光アイソレータ及びこれを用いた光加工器

Publications (2)

Publication Number Publication Date
RU2012120750A true RU2012120750A (ru) 2013-12-10
RU2527082C2 RU2527082C2 (ru) 2014-08-27

Family

ID=43900325

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012120750/05A RU2527082C2 (ru) 2009-10-21 2010-10-20 Монокристалл, способ его изготовления, оптический изолятор и использующий его оптический процессор

Country Status (7)

Country Link
US (1) US9051662B2 (ru)
EP (1) EP2492379B1 (ru)
JP (3) JP5681113B2 (ru)
CN (1) CN102575382B (ru)
CA (1) CA2778173C (ru)
RU (1) RU2527082C2 (ru)
WO (1) WO2011049102A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834554B (zh) * 2010-04-20 2016-04-13 株式会社藤仓 石榴石型单晶、光隔离器以及光加工器
AU2011283819B2 (en) 2010-07-26 2013-11-14 Fujikura Ltd. Garnet single crystal, optical isolator and laser processing machine
JP5907538B2 (ja) 2011-03-28 2016-04-27 国立研究開発法人物質・材料研究機構 光加工器
JP2013230958A (ja) * 2012-05-01 2013-11-14 National Institute For Materials Science 光アイソレータ材料、その製造方法、光アイソレータ及び光加工器
JP6029095B2 (ja) * 2012-05-01 2016-11-24 国立研究開発法人物質・材料研究機構 Uv光励起黄色発光材料、その製造方法及び発光装置
US9617470B2 (en) 2012-05-01 2017-04-11 National Institute For Materials Science Optical material used in light-emitting device, optical isolator, and optical processing apparatus, and manufacturing method thereof
GB201218681D0 (en) 2012-10-17 2012-11-28 Tomtom Int Bv Methods and systems of providing information using a navigation apparatus
JP5935764B2 (ja) * 2013-06-17 2016-06-15 住友金属鉱山株式会社 ガーネット型単結晶とその製造方法
US9744578B2 (en) * 2015-04-20 2017-08-29 Siemens Medical Solutions Usa, Inc. Crystal growth crucible re-shaper
CN108085743A (zh) * 2017-12-25 2018-05-29 吉林建筑大学 掺镱镥钇钆铝石榴石晶体及其制备方法
JP6894865B2 (ja) * 2018-04-09 2021-06-30 信越化学工業株式会社 ガーネット型結晶の製造方法
JP6881390B2 (ja) * 2018-05-18 2021-06-02 信越化学工業株式会社 常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
WO2020219554A1 (en) * 2019-04-23 2020-10-29 Regents Of The University Of Minnesota High gyrotropy photonic isolators directly on substrate
WO2023112508A1 (ja) * 2021-12-17 2023-06-22 信越化学工業株式会社 磁気光学素子用透明セラミックス、及び磁気光学素子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3342205A1 (de) * 1983-11-23 1985-05-30 Günter Prof. Dr. 2000 Hamburg Huber Durchstimmbare cr-al-granat- und cr-sensibilisierte nd-al-granat-laser
US5245689A (en) 1991-05-28 1993-09-14 Allied-Signal Inc. Magneto-optical waveguides of aluminum garnet
US5175787A (en) 1991-05-28 1992-12-29 Allied-Signal Inc. Birefringent optical waveguides of aluminum garnet
US5113472A (en) 1991-05-28 1992-05-12 Allied-Signal Inc. Optical waveguides of aluminum garnet
JPH0789797A (ja) * 1993-09-20 1995-04-04 Mitsubishi Heavy Ind Ltd テルビウムアルミニウムガーネット単結晶の製造方法
JPH07206593A (ja) * 1994-01-07 1995-08-08 Mitsubishi Gas Chem Co Inc 光アイソレータ用ファラデー回転子
JP2001226196A (ja) * 2000-02-17 2001-08-21 Tokin Corp テルビウム・アルミニウム・ガーネット単結晶およびその製造方法
JP2002293693A (ja) * 2001-03-30 2002-10-09 Nec Tokin Corp テルビウム・アルミニウム・ガーネット単結晶及びその製造方法
US6596195B2 (en) * 2001-06-01 2003-07-22 General Electric Company Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
US6793848B2 (en) 2001-10-11 2004-09-21 General Electric Company Terbium or lutetium containing garnet scintillators having increased resistance to radiation damage
US6630077B2 (en) 2001-10-11 2003-10-07 General Electric Company Terbium- or lutetium - containing garnet phosphors and scintillators for detection of high-energy radiation
US7008558B2 (en) 2001-10-11 2006-03-07 General Electric Company Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
US7166162B2 (en) * 2002-09-27 2007-01-23 Murata Manufacturing Co., Ltd. Terbium type paramagnetic garnet single crystal and magneto-optical device
CN1245472C (zh) * 2003-04-09 2006-03-15 南帝化学工业股份有限公司 磁光晶体荧光粉及其制造方法
US7054408B2 (en) * 2003-04-30 2006-05-30 General Electric Company CT detector array having non pixelated scintillator array
US7560046B2 (en) 2005-12-22 2009-07-14 General Electric Company Scintillator material and radiation detectors containing same
JP2008013607A (ja) 2006-07-03 2008-01-24 Fujifilm Corp Tb含有発光性化合物、これを含む発光性組成物と発光体、発光素子、固体レーザ装置
CN1927996B (zh) * 2006-09-08 2012-05-09 北京宇极科技发展有限公司 一种荧光粉材料及其制备方法和白光led电光源

Also Published As

Publication number Publication date
CA2778173C (en) 2015-10-13
JP5681113B2 (ja) 2015-03-04
AU2010309004A1 (en) 2012-04-26
CN102575382A (zh) 2012-07-11
WO2011049102A1 (ja) 2011-04-28
US20120200920A1 (en) 2012-08-09
US9051662B2 (en) 2015-06-09
JP5715271B2 (ja) 2015-05-07
EP2492379A4 (en) 2013-08-28
CA2778173A1 (en) 2011-04-28
CN102575382B (zh) 2015-07-01
JP2014097926A (ja) 2014-05-29
EP2492379A8 (en) 2012-10-24
EP2492379A1 (en) 2012-08-29
JPWO2011049102A1 (ja) 2013-03-14
EP2492379B1 (en) 2018-02-28
JP2015057365A (ja) 2015-03-26
RU2527082C2 (ru) 2014-08-27

Similar Documents

Publication Publication Date Title
RU2012120750A (ru) Монокристалл, способ его изготовления, оптический изолятор и использующий его оптический процессор
RU2012149213A (ru) Монокристалл граната, оптический изолятор и оптический процессор
Chai et al. Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er 3+/Yb 3+ co-doped ZnWO 4
Alahraché et al. Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization
Zekri et al. Experimental and theoretical studies of Dy3+ doped alkaline earth aluminosilicate glasses
Dawaud et al. Optical and structural properties of lithium sodium borate glasses doped Dy3+ ions
Martín-Rodríguez et al. Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+− Yb3+ and Eu3+− Yb3+
Karunakaran et al. Structural, optical absorption and luminescence properties of Nd3+ ions in NaO-NaF borate glasses
Kaur et al. Modifier role of cerium in lithium aluminium borate glasses
Li et al. Nd3+, Y3+-codoped SrF2 laser ceramics
RU2013107008A (ru) Монокристалл со структурой типа граната, оптический изолятор и устройство для лазерной обработки
Zhang et al. Investigation of dopant concentration and excitation power on sensitivities of Y4. 67 (SiO4) 3O: Yb3+, Er3+ upconversion phosphors for optical thermometer
Ge et al. Tunable dual-mode photoluminescences from SrAl2O4: Eu/Yb nanofibers by different atmospheric annealing
Kesavulu et al. Optical and upconversion properties of Er3+-doped oxyfluoride transparent glass-ceramics containing SrF2 nanocrystals
Souza et al. Heavy metal oxide glass-ceramics containing luminescent gallium-garnets single crystals for photonic applications
Hong et al. Luminescence properties of Ce/Tb/Sm co-doped Tellurite glass for White Leds application
Obayes et al. Strontium ion concentration effects on structural and spectral properties of Li4Sr (BO3) 3 glass
Urata et al. Fiber-like lanthanum tungstate crystal for efficient stimulated Raman scattering
CN104386730A (zh) 一种Ho3+/Yb3+双掺杂α-NaYF4激光晶体及其制备方法
Chen et al. Luminescence properties and energy transfer of Ce3+/Eu3+ doped GSBA glass
Lu et al. Growth and spectroscopic properties of Er3+/Yb3+: LaCa4O (BO3) 3 crystals
Yu et al. Near infrared photoluminescence of Mg, Ca doped Bi4Ge3O12 crystals and glasses
Yang et al. Luminescent properties of stoichiometric Er: LiTaO3 submicron particles synthesized by a modified solid-state combustion route
Kesavulu et al. Upconversion properties of Er3+-doped oxyfluoride glass-ceramics containing SrF2 nanocrystals
Xu et al. Enhanced photoluminescence of Eu2+–Pr3+ ions in Ga2S3 nanocrystals embedded chalcohalide glasses ceramics