RU2010130169A - Настройка приемника между пакетами пилот-сигналов - Google Patents

Настройка приемника между пакетами пилот-сигналов Download PDF

Info

Publication number
RU2010130169A
RU2010130169A RU2010130169/08A RU2010130169A RU2010130169A RU 2010130169 A RU2010130169 A RU 2010130169A RU 2010130169/08 A RU2010130169/08 A RU 2010130169/08A RU 2010130169 A RU2010130169 A RU 2010130169A RU 2010130169 A RU2010130169 A RU 2010130169A
Authority
RU
Russia
Prior art keywords
sub
segment
sinr
time interval
segments
Prior art date
Application number
RU2010130169/08A
Other languages
English (en)
Other versions
RU2452109C2 (ru
Inventor
Араш МИРБАХЕРИ (US)
Араш МИРБАХЕРИ
Цзюнь МА (US)
Цзюнь Ма
Минси ФАНЬ (US)
Минси Фань
Original Assignee
Квэлкомм Инкорпорейтед (US)
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед (US), Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед (US)
Publication of RU2010130169A publication Critical patent/RU2010130169A/ru
Application granted granted Critical
Publication of RU2452109C2 publication Critical patent/RU2452109C2/ru

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03114Arrangements for removing intersymbol interference operating in the time domain non-adaptive, i.e. not adjustable, manually adjustable, or adjustable only during the reception of special signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03783Details of reference signals
    • H04L2025/03796Location of reference signals

Abstract

1. Способ функционирования приемника в системе беспроводной связи, содержащий этапы, на которых: ! принимают кадр, включающий в себя множество временных интервалов, причем каждый временной интервал из множества временных интервалов содержит два временных полуинтервала, при этом каждый временной полуинтервал содержит два сегмента трафика и пакеты пилот-сигнала между двумя сегментами трафика, при этом множество временных интервалов содержит первый временной полуинтервал и второй временной полуинтервал, следующий за первым временным полуинтервалом, причем первый временной полуинтервал содержит первый пакет пилот-сигнала и первый сегмент трафика, следующий за первым пакетом пилот-сигнала, второй временной полуинтервал содержит второй сегмент трафика и второй пакет пилот-сигнала, следующий за вторым сегментом трафика; ! разделяют первый и второй сегменты трафика на множество подсегментов, причем множество подсегментов содержит первый подсегмент и второй подсегмент, следующий за первым подсегментом; ! регулируют эквалайзер приемника на первом пакете пилот-сигнала, чтобы получить первое множество отрегулированных коэффициентов отвода; ! регулируют эквалайзер приемника на втором пакете пилот-сигнала, чтобы получить второе множество отрегулированных коэффициентов отвода; ! интерполируют между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить первый набор интерполированных коэффициентов отвода для первого подсегмента; и ! корректируют первый подсегмент с использованием первого набора интерполированных коэффициентов отвода. ! 2. Способ по п.1, в котором первый времен

Claims (62)

1. Способ функционирования приемника в системе беспроводной связи, содержащий этапы, на которых:
принимают кадр, включающий в себя множество временных интервалов, причем каждый временной интервал из множества временных интервалов содержит два временных полуинтервала, при этом каждый временной полуинтервал содержит два сегмента трафика и пакеты пилот-сигнала между двумя сегментами трафика, при этом множество временных интервалов содержит первый временной полуинтервал и второй временной полуинтервал, следующий за первым временным полуинтервалом, причем первый временной полуинтервал содержит первый пакет пилот-сигнала и первый сегмент трафика, следующий за первым пакетом пилот-сигнала, второй временной полуинтервал содержит второй сегмент трафика и второй пакет пилот-сигнала, следующий за вторым сегментом трафика;
разделяют первый и второй сегменты трафика на множество подсегментов, причем множество подсегментов содержит первый подсегмент и второй подсегмент, следующий за первым подсегментом;
регулируют эквалайзер приемника на первом пакете пилот-сигнала, чтобы получить первое множество отрегулированных коэффициентов отвода;
регулируют эквалайзер приемника на втором пакете пилот-сигнала, чтобы получить второе множество отрегулированных коэффициентов отвода;
интерполируют между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить первый набор интерполированных коэффициентов отвода для первого подсегмента; и
корректируют первый подсегмент с использованием первого набора интерполированных коэффициентов отвода.
2. Способ по п.1, в котором первый временной полуинтервал и второй временной полуинтервал не разделяются никаким другим временным полуинтервалом, способ дополнительно содержит этап, на котором пользователю предоставляют, по меньшей мере, некоторые данные во множестве подсегментов.
3. Способ по п.2, в котором этап интерполирования содержит этап, на котором используют линейную интерполяцию.
4. Способ по п.2, в котором этап, на котором интерполируют, содержит этап, на котором используют кубическую интерполяцию.
5. Способ по п.2, в котором этап, на котором интерполируют, содержит этап, на котором объединяют линейную интерполяцию с усреднением.
6. Способ по п.2, в котором этап, на котором разделяют, выполняется, чтобы второй подсегмент содержал первую часть из первого временного полуинтервала и вторую часть из второго временного полуинтервала.
7. Способ по п.2, в котором:
первый временной полуинтервал принадлежит первому временному интервалу;
второй временной полуинтервал принадлежит второму временному интервалу, следующему за первым временным интервалом; и
этап, на котором разделяют, выполняется, чтобы второй подсегмент содержал первую часть из первого временного полуинтервала и вторую часть из второго временного полуинтервала.
8. Способ по п.2, в котором этап, на котором разделяют, выполняется, чтобы множество подсегментов дополнительно содержало третий подсегмент, предшествующий первому подсегменту, при этом способ дополнительно содержит этапы, на которых:
интерполируют между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить второй набор интерполированных коэффициентов отвода для второго подсегмента;
корректируют второй подсегмент с использованием второго набора интерполированных коэффициентов отвода;
интерполируют между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить третий набор интерполированных коэффициентов отвода для третьего подсегмента; и
корректируют третий подсегмент с использованием третьего набора интерполированных коэффициентов отвода.
9. Способ по п.2, в котором этап, на котором разделяют, выполняется, чтобы множество подсегментов дополнительно содержало третий подсегмент, предшествующий первому подсегменту, при этом способ дополнительно содержит этапы, на которых:
корректируют второй подсегмент с использованием второго множества отрегулированных коэффициентов отвода; и
корректируют третий подсегмент с использованием первого множества отрегулированных коэффициентов отвода.
10. Способ по п.2, дополнительно содержащий этапы, на которых:
определяют, когда в эквалайзере возникает смещение отвода между первым и вторым пакетами пилот-сигнала;
сдвигают коэффициенты эквалайзера в направлении, указанном смещением отвода, перед этапом, на котором регулируют эквалайзер на втором пакете пилот-сигнала; и
сдвигают предысторию эквалайзера в направлении, указанном смещением отвода.
11. Способ по п.2, дополнительно содержащий этапы, на которых:
измеряют отношение уровня сигнала к совокупному уровню помех и шумов у первого пакета пилот-сигнала, чтобы получить первое измеренное отношение уровня сигнала к совокупному уровню помех и шумов (SINR);
измеряют отношение уровня сигнала к совокупному уровню помех и шумов у второго пакета пилот-сигнала, чтобы получить второе измеренное SINR; и
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить первое интерполированное SINR для первого подсегмента.
12. Способ по п.11, дополнительно содержащий этапы, на которых:
с помощью первого интерполированного SINR масштабируют выходной сигнал эквалайзера, соответствующий первому подсегменту, чтобы получить первый набор масштабированных данных;
вычисляют первое логарифмическое отношение правдоподобия у первого набора масштабированных данных; и
декодируют первый подсегмент с использованием первого логарифмического отношения правдоподобия.
13. Способ по п.12, в котором этап, на котором интерполируют между первым измеренным SINR и вторым измеренным SINR, содержит интерполирование в линейной области.
14. Способ по п.12, в котором этап, на котором разделяют, выполняется, чтобы множество подсегментов дополнительно содержало третий подсегмент, предшествующий первому подсегменту, при этом способ дополнительно содержит этапы, на которых:
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить второе интерполированное SINR для второго подсегмента;
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить третье интерполированное SINR для третьего подсегмента;
с помощью второго интерполированного SINR масштабируют выходной сигнал эквалайзера, соответствующий второму подсегменту, чтобы получить второй набор масштабированных данных;
с помощью третьего интерполированного SINR масштабируют выходной сигнал эквалайзера, соответствующий третьему подсегменту, чтобы получить третий набор масштабированных данных;
вычисляют логарифмическое отношение правдоподобия у второго набора масштабированных данных; и
вычисляют логарифмическое отношение правдоподобия у третьего набора масштабированных данных.
15. Способ по п.12, в котором этап, на котором разделяют, выполняется, чтобы множество подсегментов дополнительно содержало третий подсегмент, предшествующий первому подсегменту, при этом способ дополнительно содержит этапы, на которых:
с помощью второго измеренного SINR масштабируют выходной сигнал эквалайзера, соответствующий второму подсегменту, чтобы получить второй набор масштабированных данных;
с помощью первого измеренного SINR масштабируют выходной сигнал эквалайзера, соответствующий третьему подсегменту, чтобы получить третий набор масштабированных данных;
вычисляют логарифмическое отношение правдоподобия у второго набора масштабированных данных; и
вычисляют логарифмическое отношение правдоподобия у третьего набора масштабированных данных.
16. Способ функционирования приемника в системе беспроводной связи, содержащий этапы, на которых:
принимают кадр, включающий в себя множество временных интервалов, причем каждый временной интервал из множества временных интервалов содержит два временных полуинтервала, каждый временной полуинтервал содержит два сегмента трафика и пакеты пилот-сигнала между двумя сегментами трафика, причем множество временных интервалов содержит первый временной полуинтервал и второй временной полуинтервал, следующий за первым временным полуинтервалом, причем первый временной полуинтервал содержит первый пакет пилот-сигнала и первый сегмент трафика, следующий за первым пакетом пилот-сигнала, второй временной полуинтервал содержит второй сегмент трафика и второй пакет пилот-сигнала, следующий за вторым сегментом трафика;
разделяют первый и второй сегменты трафика на множество подсегментов, причем множество подсегментов содержит первый подсегмент и второй подсегмент, следующий за первым подсегментом;
измеряют отношение уровня сигнала к совокупному уровню помех и шумов у первого пакета пилот-сигнала, чтобы получить первое измеренное SINR;
измеряют отношение уровня сигнала к совокупному уровню помех и шумов у второго пакета пилот-сигнала, чтобы получить второе измеренное SINR;
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить первое интерполированное SINR для первого подсегмента; и
предоставляют пользователю, по меньшей мере, некоторые данные во множестве подсегментов.
17. Способ по п.16, в котором приемник содержит эквалайзер, при этом способ дополнительно содержит этапы, на которых:
с помощью первого интерполированного SINR масштабируют выходной сигнал эквалайзера, соответствующий первому подсегменту, чтобы получить первый набор масштабированных данных;
вычисляют первое логарифмическое отношение правдоподобия у первого набора масштабированных данных; и
декодируют первый подсегмент с использованием первого логарифмического отношения правдоподобия.
18. Способ по п.17, в котором этап, на котором интерполируют между первым измеренным SINR и вторым измеренным SINR, содержит этап, на котором интерполируют в линейной области.
19. Способ по п.17, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, при этом способ дополнительно содержит этапы, на которых:
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить второе интерполированное SINR для второго подсегмента;
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить третье интерполированное SINR для третьего подсегмента;
с помощью второго интерполированного SINR масштабируют выходной сигнал эквалайзера, соответствующий второму подсегменту, чтобы получить второй набор масштабированных данных;
с помощью третьего интерполированного SINR масштабируют выходной сигнал эквалайзера, соответствующий третьему подсегменту, чтобы получить третий набор масштабированных данных;
вычисляют логарифмическое отношение правдоподобия у второго набора масштабированных данных; и
вычисляют логарифмическое отношение правдоподобия у третьего набора масштабированных данных.
20. Способ по п.17, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, при этом способ дополнительно содержит этапы, на которых:
с помощью второго измеренного SINR масштабируют выходной сигнал эквалайзера, соответствующий второму подсегменту, чтобы получить второй набор масштабированных данных;
с помощью первого измеренного SINR масштабируют выходной сигнал эквалайзера, соответствующий третьему подсегменту, чтобы получить третий набор масштабированных данных;
вычисляют логарифмическое отношение правдоподобия у второго набора масштабированных данных; и
вычисляют логарифмическое отношение правдоподобия у третьего набора масштабированных данных.
21. Беспроводной терминал, содержащий:
приемник;
запоминающее устройство; и
контроллер, соединенный с приемником и запоминающим устройством, причем контроллер выполнен с возможностью:
приема множества временных интервалов, причем каждый временной интервал из множества временных интервалов содержит два временных полуинтервала, каждый временной полуинтервал содержит два сегмента трафика и пакет пилот-сигнала между двумя сегментами трафика, причем множество временных интервалов содержит первый временной полуинтервал и второй временной полуинтервал, следующий за первым временным полуинтервалом, причем первый временной полуинтервал содержит первый пакет пилот-сигнала и первый сегмент трафика, следующий за первым пакетом пилот-сигнала, второй временной полуинтервал содержит второй сегмент трафика и второй пакет пилот-сигнала, следующий за вторым сегментом трафика;
разделения первого и второго сегментов трафика на множество подсегментов, причем множество подсегментов содержит первый подсегмент и второй подсегмент, следующий за первым подсегментом;
регулировки эквалайзера на первом пакете пилот-сигнала, чтобы получить первое множество отрегулированных коэффициентов отвода;
регулировки эквалайзера на втором пакете пилот-сигнала, чтобы получить второе множество отрегулированных коэффициентов отвода;
интерполирования между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить первый набор интерполированных коэффициентов отвода для первого подсегмента; и
коррекции первого подсегмента с использованием эквалайзера с первым набором интерполированных коэффициентов отвода.
22. Беспроводной терминал по п.21, в котором первый временной полуинтервал и второй временной полуинтервал не разделяются никаким другим временным полуинтервалом, и контроллер дополнительно выполнен с возможностью предоставления пользователю, по меньшей мере, некоторых данных в трех или более подсегментах.
23. Беспроводной терминал по п.22, в котором контроллер выполнен с возможностью интерполирования с использованием линейной интерполяции.
24. Беспроводной терминал по п.22, в котором контроллер выполнен с возможностью интерполирования с использованием кубической интерполяции.
25. Беспроводной терминал по п.22, в котором контроллер выполнен с возможностью интерполирования путем объединения линейной интерполяции с усреднением.
26. Беспроводной терминал по п.22, в котором контроллер выполнен с возможностью разделения, чтобы второй подсегмент содержал первую часть из первого временного полуинтервала и вторую часть из второго временного полуинтервала.
27. Беспроводной терминал по п.22, в котором:
первый временной полуинтервал принадлежит первому временному интервалу;
второй временной полуинтервал принадлежит второму временному интервалу, следующему за первым временным интервалом; и
контроллер выполнен с возможностью разделения, таким образом, чтобы второй подсегмент содержал первую часть из первого временного полуинтервала и вторую часть из второго временного полуинтервала.
28. Беспроводной терминал по п.22, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и контроллер дополнительно выполнен с возможностью:
интерполирования между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить второй набор интерполированных коэффициентов отвода для второго подсегмента;
коррекции второго подсегмента с использованием второго набора интерполированных коэффициентов отвода;
интерполирования между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить третий набор интерполированных коэффициентов отвода для третьего подсегмента; и
коррекции третьего подсегмента с использованием третьего набора интерполированных коэффициентов отвода.
29. Беспроводной терминал по п.22, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и контроллер дополнительно выполнен с возможностью:
коррекции второго подсегмента с использованием второго множества отрегулированных коэффициентов отвода; и
коррекции третьего подсегмента с использованием первого множества отрегулированных коэффициентов отвода.
30. Беспроводной терминал по п.22, в котором контроллер дополнительно выполнен с возможностью:
определения, когда в эквалайзере возникает смещение отвода между первым и вторым пакетами пилот-сигналов;
сдвига коэффициентов эквалайзера в направлении, указанном смещением отвода, перед регулировкой эквалайзера на втором пакете пилот-сигнала; и
сдвига предыстории эквалайзера в направлении, указанном смещением отвода.
31. Беспроводной терминал по п.22, в котором контроллер дополнительно выполнен с возможностью:
измерения отношения уровня сигнала к совокупному уровню помех и шумов у первого пакета пилот-сигнала, чтобы получить первое измеренное SINR;
измерения отношения уровня сигнала к совокупному уровню помех и шумов у второго пакета пилот-сигнала, чтобы получить второе измеренное SINR; и
интерполирования между первым измеренным SINR и вторым измеренным SINR, чтобы получить первое интерполированное SINR для первого подсегмента.
32. Беспроводной терминал по п.31, в котором контроллер дополнительно выполнен с возможностью:
масштабирования выходного сигнала эквалайзера, соответствующего первому подсегменту, с помощью первого интерполированного SINR, чтобы получить первый набор масштабированных данных;
вычисления первого логарифмического отношения правдоподобия у первого набора масштабированных данных; и
декодирования первого подсегмента с использованием первого логарифмического отношения правдоподобия.
33. Беспроводной терминал по п.32, в котором интерполирование между первым измеренным SINR и вторым измеренным SINR содержит интерполирование в линейной области.
34. Беспроводной терминал по п.32, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и контроллер дополнительно выполнен с возможностью:
интерполирования между первым измеренным SINR и вторым измеренным SINR, чтобы получить второе интерполированное SINR для второго подсегмента;
интерполирования между первым измеренным SINR и вторым измеренным SINR, чтобы получить третье интерполированное SINR для третьего подсегмента;
масштабирования выходного сигнала эквалайзера, соответствующего второму подсегменту, с помощью второго интерполированного SINR, чтобы получить второй набор масштабированных данных;
масштабирования выходного сигнала эквалайзера, соответствующего третьему подсегменту, с помощью третьего интерполированного SINR, чтобы получить третий набор масштабированных данных;
вычисления логарифмического отношения правдоподобия у второго набора масштабированных данных; и
вычисления логарифмического отношения правдоподобия у третьего набора масштабированных данных.
35. Беспроводной терминал по п.32, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и контроллер дополнительно выполнен с возможностью:
масштабирования выходного сигнала эквалайзера, соответствующего второму подсегменту, с помощью второго измеренного SINR, чтобы получить второй набор масштабированных данных;
масштабирования выходного сигнала эквалайзера, соответствующего третьему подсегменту, с помощью первого измеренного SINR, чтобы получить третий набор масштабированных данных;
вычисления логарифмического отношения правдоподобия у второго набора масштабированных данных; и
вычисления логарифмического отношения правдоподобия у третьего набора масштабированных данных.
36. Беспроводной терминал, содержащий:
приемник;
запоминающее устройство; и
контроллер, соединенный с приемником и запоминающим устройством, причем контроллер выполнен с возможностью:
приема множества временных интервалов, причем каждый временной интервал из множества временных интервалов содержит два временных полуинтервала, каждый временной полуинтервал содержит два сегмента трафика и пакет пилот-сигнала между двумя сегментами трафика, причем множество временных интервалов содержит первый временной полуинтервал и второй временной полуинтервал, следующий за первым временным полуинтервалом, при этом отсутствует временной полуинтервал, разделяющий первый временной полуинтервал и второй временной полуинтервал, причем первый временной полуинтервал содержит первый пакет пилот-сигнала и первый сегмент трафика, следующий за первым пакетом пилот-сигнала, второй временной полуинтервал содержит второй сегмент трафика и второй пакет пилот-сигнала, следующий за вторым сегментом трафика;
разделения первого и второго сегментов трафика на множество подсегментов, причем множество подсегментов содержит первый подсегмент и второй подсегмент, следующий за первым подсегментом;
измерения отношения уровня сигнала к совокупному уровню помех и шумов у первого пакета пилот-сигнала, чтобы получить первое измеренное SINR;
измерения отношения уровня сигнала к совокупному уровню помех и шумов у второго пакета пилот-сигнала, чтобы получить второе измеренное SINR;
интерполирования между первым измеренным SINR и вторым измеренным SINR, чтобы получить первое интерполированное SINR для первого подсегмента; и
предоставления пользователю, по меньшей мере, некоторых данных во множестве подсегментов.
37. Беспроводной терминал по п.36, в котором контроллер дополнительно выполнен с возможностью:
масштабирования выходного сигнала эквалайзера, соответствующего первому подсегменту, с помощью первого интерполированного SINR, чтобы получить первый набор масштабированных данных;
вычисления первого логарифмического отношения правдоподобия у первого набора масштабированных данных; и
декодирования первого подсегмента с использованием первого логарифмического отношения правдоподобия.
38. Беспроводной терминал по п.37, в котором контроллер выполнен с возможностью интерполирования между первым измеренным SINR и вторым измеренным SINR путем интерполирования в линейной области.
39. Беспроводной терминал по п.37, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и контроллер дополнительно выполнен с возможностью:
интерполирования между первым измеренным SINR и вторым измеренным SINR, чтобы получить второе интерполированное SINR для второго подсегмента;
интерполирования между первым измеренным SINR и вторым измеренным SINR, чтобы получить третье интерполированное SINR для третьего подсегмента;
масштабирования выходного сигнала эквалайзера, соответствующего второму подсегменту, с помощью второго интерполированного SINR, чтобы получить второй набор масштабированных данных;
масштабирования выходного сигнала эквалайзера, соответствующего третьему подсегменту, с помощью третьего интерполированного SINR, чтобы получить третий набор масштабированных данных;
вычисления логарифмического отношения правдоподобия у второго набора масштабированных данных; и
вычисления логарифмического отношения правдоподобия у третьего набора масштабированных данных.
40. Беспроводной терминал по п.37, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и контроллер дополнительно выполнен с возможностью:
масштабирования выходного сигнала эквалайзера, соответствующего второму подсегменту, с помощью второго измеренного SINR, чтобы получить второй набор масштабированных данных;
масштабирования выходного сигнала эквалайзера, соответствующего третьему подсегменту, с помощью первого измеренного SINR, чтобы получить третий набор масштабированных данных;
вычисления логарифмического отношения правдоподобия у второго набора масштабированных данных; и
вычисления логарифмического отношения правдоподобия у третьего набора масштабированных данных.
41. Беспроводной терминал, содержащий:
средство для приема беспроводного сигнала;
средство для коррекции;
средство для хранения данных; и
средство для обработки, причем средство для обработки соединено со средством для приема, средством для коррекции и средством для хранения, где средство для обработки выполнено с возможностью:
приема множества временных интервалов, причем каждый временной интервал из множества временных интервалов содержит два временных полуинтервала, каждый временной полуинтервал содержит два сегмента трафика и пакет пилот-сигнала между двумя сегментами трафика, причем множество временных интервалов содержит первый временной полуинтервал и второй временной полуинтервал, следующий за первым временным полуинтервалом, при этом отсутствует временной полуинтервал, разделяющий первый временной полуинтервал и второй временной полуинтервал, причем первый временной полуинтервал содержит первый пакет пилот-сигнала и первый сегмент трафика, следующий за первым пакетом пилот-сигнала, второй временной полуинтервал содержит второй сегмент трафика и второй пакет пилот-сигнала, следующий за вторым сегментом трафика;
разделения первого и второго сегментов трафика на множество подсегментов, причем множество подсегментов содержит первый подсегмент и второй подсегмент, следующий за первым подсегментом;
регулировки средства для коррекции на первом пакете пилот-сигнала, чтобы получить первое множество отрегулированных коэффициентов отвода;
регулировки средства для коррекции на втором пакете пилот-сигнала, чтобы получить второе множество отрегулированных коэффициентов отвода;
интерполирования между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить первый набор интерполированных коэффициентов отвода для первого подсегмента;
коррекции первого подсегмента с использованием первого набора интерполированных коэффициентов отвода; и
предоставления пользователю, по меньшей мере, некоторых данных во множестве подсегментов.
42. Беспроводной терминал, содержащий:
средство для приема беспроводного сигнала;
средство для коррекции;
средство для хранения данных; и
средство для обработки, причем средство для обработки соединено со средством для приема, средством для коррекции и средством для хранения, причем средство для обработки выполнено с возможностью:
приема множества временных интервалов, причем каждый временной интервал из множества временных интервалов содержит два временных полуинтервала, каждый временной полуинтервал содержит два сегмента трафика и пакет пилот-сигнала между двумя сегментами трафика, при этом множество временных интервалов содержит первый временной полуинтервал и второй временной полуинтервал, следующий за первым временным полуинтервалом, при этом отсутствует временной полуинтервал, разделяющий первый временной полуинтервал и второй временной полуинтервал, причем первый временной полуинтервал содержит первый пакет пилот-сигнала и первый сегмент трафика, следующий за первым пакетом пилот-сигнала, второй временной полуинтервал содержит второй сегмент трафика и второй пакет пилот-сигнала, следующий за вторым сегментом трафика;
разделения первого и второго сегментов трафика на множество подсегментов, причем множество подсегментов содержит первый подсегмент и второй подсегмент, следующий за первым подсегментом;
измерения отношения уровня сигнала к совокупному уровню помех и шумов у первого пакета пилот-сигнала, чтобы получить первое измеренное SINR;
измерения отношения уровня сигнала к совокупному уровню помех и шумов у второго пакета пилот-сигнала, чтобы получить второе измеренное SINR;
интерполирования между первым измеренным SINR и вторым измеренным SINR, чтобы получить первое интерполированное SINR для первого подсегмента; и
предоставления пользователю, по меньшей мере, некоторых данных во множестве подсегментов.
43. Машиночитаемый носитель, содержащий команды, которые при выполнении, по меньшей мере, одним процессором в беспроводном терминале доступа побуждают терминал доступа выполнять этапы, на которых:
принимают множество временных интервалов, причем каждый временной интервал из множества временных интервалов содержит два временных полуинтервала, каждый временной полуинтервал содержит два сегмента трафика и пакет пилот-сигнала между двумя сегментами трафика, причем множество временных интервалов содержит первый временной полуинтервал и второй временной полуинтервал, следующий за первым временным полуинтервалом, причем первый временной полуинтервал содержит первый пакет пилот-сигнала и первый сегмент трафика, следующий за первым пакетом пилот-сигнала, второй временной полуинтервал содержит второй сегмент трафика и второй пакет пилот-сигнала, следующий за вторым сегментом трафика;
разделяют первый и второй сегменты трафика на множество подсегментов, причем множество подсегментов содержит первый подсегмент и второй подсегмент, следующий за первым подсегментом;
регулируют эквалайзер на первом пакете пилот-сигнала, чтобы получить первое множество отрегулированных коэффициентов отвода;
регулируют эквалайзер на втором пакете пилот-сигнала, чтобы получить второе множество отрегулированных коэффициентов отвода;
интерполируют между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить первый набор интерполированных коэффициентов отвода для первого подсегмента; и
корректируют первый подсегмент с использованием первого набора интерполированных коэффициентов отвода.
44. Машиночитаемый носитель по п.43, в котором:
первый временной полуинтервал и второй временной полуинтервал не разделяются никаким другим временным полуинтервалом; и
этапы дополнительно содержат предоставление пользователю, по меньшей мере, некоторых данных во множестве подсегментов.
45. Машиночитаемый носитель по п.44, в котором этап интерполирования содержит использование линейной интерполяции.
46. Машиночитаемый носитель по п.44, в котором этап интерполирования содержит использование кубической интерполяции.
47. Машиночитаемый носитель по п.44, в котором этап интерполирования содержит этап, на котором объединяют линейную интерполяцию с усреднением.
48. Машиночитаемый носитель по п.44, в котором этап разделения выполняется, чтобы второй подсегмент содержал первую часть из первого временного полуинтервала и вторую часть из второго временного полуинтервала.
49. Машиночитаемый носитель по п.44, в котором:
первый временной полуинтервал принадлежит первому временному интервалу;
второй временной полуинтервал принадлежит второму временному интервалу, следующему за первым временным интервалом; и
этап разделения выполняется, так чтобы второй подсегмент содержал первую часть из первого временного полуинтервала и вторую часть из второго временного полуинтервала.
50. Машиночитаемый носитель по п.44, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и этапы дополнительно содержат этапы, на которых:
интерполируют между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить второй набор интерполированных коэффициентов отвода для второго подсегмента;
корректируют второй подсегмент с использованием второго набора интерполированных коэффициентов отвода;
интерполируют между первым и вторым множествами отрегулированных коэффициентов отвода, чтобы получить третий набор интерполированных коэффициентов отвода для третьего подсегмента; и
корректируют третий подсегмент с использованием третьего набора интерполированных коэффициентов отвода.
51. Машиночитаемый носитель по п.44, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и этапы дополнительно содержат этапы, на которых:
корректируют второй подсегмент с использованием второго множества отрегулированных коэффициентов отвода; и
корректируют третий подсегмент с использованием первого множества отрегулированных коэффициентов отвода.
52. Машиночитаемый носитель по п.44, в котором этапы дополнительно содержат этапы, на которых:
определяют, когда в эквалайзере возникает смещение отвода между первым и вторым пакетами пилот-сигналов;
сдвигают коэффициенты эквалайзера в направлении, указанном смещением отвода, перед этапом регулировки эквалайзера приемника на втором пакете пилот-сигнала; и
сдвигают предысторию эквалайзера в направлении, указанном смещением отвода.
53. Машиночитаемый носитель по п.44, в котором этапы дополнительно содержат этапы, на которых:
измеряют отношение уровня сигнала к совокупному уровню помех и шумов у первого пакета пилот-сигнала, чтобы получить первое измеренное SINR;
измеряют отношение уровня сигнала к совокупному уровню помех и шумов у второго пакета пилот-сигнала, чтобы получить второе измеренное SINR; и
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить первое интерполированное SINR для первого подсегмента.
54. Машиночитаемый носитель по п.53, в котором этапы дополнительно содержат этапы, на которых:
масштабируют выходной сигнал эквалайзера, соответствующий первому подсегменту, с помощью первого интерполированного SINR, чтобы получить первый набор масштабированных данных;
вычисляют первое логарифмическое отношение правдоподобия у первого набора масштабированных данных; и
декодируют первый подсегмент с использованием первого логарифмического отношения правдоподобия.
55. Машиночитаемый носитель по п.54, в котором этап интерполирования между первым измеренным SINR и вторым измеренным SINR содержит этап, на котором интерполируют в линейной области.
56. Машиночитаемый носитель по п.54, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и этапы дополнительно содержат этапы, на которых:
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить второе интерполированное SINR для второго подсегмента;
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить третье интерполированное SINR для третьего подсегмента;
масштабируют выходной сигнал эквалайзера, соответствующий второму подсегменту, с помощью второго интерполированного SINR, чтобы получить второй набор масштабированных данных;
масштабируют выходной сигнал эквалайзера, соответствующий третьему подсегменту, с помощью третьего интерполированного SINR, чтобы получить третий набор масштабированных данных;
вычисляют логарифмическое отношение правдоподобия у второго набора масштабированных данных; и
вычисляют логарифмическое отношение правдоподобия у третьего набора масштабированных данных.
57. Машиночитаемый носитель по п.54, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и этапы дополнительно содержат этапы, на которых:
масштабируют выходной сигнал эквалайзера, соответствующий второму подсегменту, с помощью второго измеренного SINR, чтобы получить второй набор масштабированных данных;
масштабируют выходной сигнал эквалайзера, соответствующий третьему подсегменту, с помощью первого измеренного SINR, чтобы получить третий набор масштабированных данных;
вычисляют логарифмическое отношение правдоподобия у второго набора масштабированных данных; и
вычисляют логарифмическое отношение правдоподобия у третьего набора масштабированных данных.
58. Машиночитаемый носитель, содержащий команды, которые при выполнении, по меньшей мере, одним процессором в беспроводном терминале доступа побуждают беспроводной терминал доступа выполнять этапы, на которых:
принимают множество временных интервалов, причем каждый временной интервал из множества временных интервалов содержит два временных полуинтервала, каждый временной полуинтервал содержит два сегмента трафика и пакет пилот-сигнала между двумя сегментами трафика, причем множество временных интервалов содержит первый временной полуинтервал и второй временной полуинтервал, следующий за первым временным полуинтервалом, при этом отсутствует временной полуинтервал, разделяющий первый временной полуинтервал и второй временной полуинтервал, причем первый временной полуинтервал содержит первый пакет пилот-сигнала и первый сегмент трафика, следующий за первым пакетом пилот-сигнала, второй временной полуинтервал содержит второй сегмент трафика и второй пакет пилот-сигнала, следующий за вторым сегментом трафика;
разделяют первый и второй сегменты трафика на множество подсегментов, причем множество подсегментов содержит первый подсегмент и второй подсегмент, следующий за первым подсегментом;
измеряют отношение уровня сигнала к совокупному уровню помех и шумов у первого пакета пилот-сигнала, чтобы получить первое измеренное SINR;
измеряют отношение уровня сигнала к совокупному уровню помех и шумов у второго пакета пилот-сигнала, чтобы получить второе измеренное SINR;
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить первое интерполированное SINR для первого подсегмента; и
предоставляют пользователю, по меньшей мере, некоторые данных во множестве подсегментов.
59. Машиночитаемый носитель по п.58, в котором этапы дополнительно содержат этапы, на которых:
масштабируют выходной сигнал эквалайзера, соответствующий первому подсегменту, с помощью первого интерполированного SINR, чтобы получить первый набор масштабированных данных;
вычисляют первое логарифмическое отношение правдоподобия у первого набора масштабированных данных; и
декодируют первый подсегмент с использованием второго логарифмического отношения правдоподобия.
60. Машиночитаемый носитель по п.59, в котором этап интерполирования между первым измеренным SINR и вторым измеренным SINR содержит этап, на котором интерполируют в линейной области.
61. Машиночитаемый носитель по п.59, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и этапы дополнительно содержат этапы, на которых:
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить второе интерполированное SINR для второго подсегмента;
интерполируют между первым измеренным SINR и вторым измеренным SINR, чтобы получить третье интерполированное SINR для третьего подсегмента;
масштабируют выходной сигнал эквалайзера, соответствующий второму подсегменту, с помощью второго интерполированного SINR, чтобы получить второй набор масштабированных данных;
масштабируют выходной сигнал эквалайзера, соответствующий третьему подсегменту, с помощью третьего интерполированного SINR, чтобы получить третий набор масштабированных данных;
вычисляют логарифмическое отношение правдоподобия у второго набора масштабированных данных; и
вычисляют логарифмическое отношение правдоподобия у третьего набора масштабированных данных.
62. Машиночитаемый носитель по п.59, в котором множество подсегментов дополнительно содержит третий подсегмент, предшествующий первому подсегменту, и этапы дополнительно содержат этапы, на которых:
масштабируют выходной сигнал эквалайзера, соответствующий второму подсегменту, с помощью второго измеренного SINR, чтобы получить второй набор масштабированных данных;
масштабируют выходной сигнал эквалайзера, соответствующий третьему подсегменту, с помощью первого измеренного SINR, чтобы получить третий набор масштабированных данных;
вычисляют логарифмическое отношение правдоподобия у второго набора масштабированных данных; и
вычисляют логарифмическое отношение правдоподобия у третьего набора масштабированных данных.
RU2010130169/08A 2007-12-20 2008-12-17 Настройка приемника между пакетами пилот-сигналов RU2452109C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/962,040 US8098767B2 (en) 2007-12-20 2007-12-20 Receiver adjustment between pilot bursts
US11/962,040 2007-12-20
EP08006320A EP2073470A3 (en) 2007-12-20 2008-03-31 Receiver adjustment between pilot bursts
EP08006320.9 2008-03-31

Publications (2)

Publication Number Publication Date
RU2010130169A true RU2010130169A (ru) 2012-01-27
RU2452109C2 RU2452109C2 (ru) 2012-05-27

Family

ID=40548798

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010130169/08A RU2452109C2 (ru) 2007-12-20 2008-12-17 Настройка приемника между пакетами пилот-сигналов

Country Status (10)

Country Link
US (1) US8098767B2 (ru)
EP (2) EP2073470A3 (ru)
JP (1) JP5096592B2 (ru)
KR (1) KR101148318B1 (ru)
CN (2) CN101904131B (ru)
BR (1) BRPI0821095A2 (ru)
CA (2) CA2707614C (ru)
RU (1) RU2452109C2 (ru)
TW (1) TWI420861B (ru)
WO (1) WO2009085869A2 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957418B2 (en) * 2007-07-31 2011-06-07 Research In Motion Limited Data burst communication techniques for use in increasing data throughput to mobile communication devices
US9048950B2 (en) * 2010-07-07 2015-06-02 LGS Innovations LLC Multiple-input method and apparatus of free-space optical communication
EP2503726A3 (en) * 2011-03-25 2017-05-03 Broadcom Corporation Upstream burst noise measurement and characterization
US20140293393A1 (en) 2013-03-28 2014-10-02 Barthelemy Fondeur Flat-top tunable filter
US10686709B2 (en) * 2014-07-14 2020-06-16 Qualcomm Incorporated Methods and apparatus for channel usage indication
US9673948B2 (en) 2014-10-29 2017-06-06 Qualcomm Incorporated Hybrid pilot design for low latency communication
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
WO2020112840A1 (en) 2018-11-27 2020-06-04 XCOM Labs, Inc. Non-coherent cooperative multiple-input multiple-output communications
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
WO2020181039A1 (en) 2019-03-06 2020-09-10 XCOM Labs, Inc. Local breakout architecture
US11032841B2 (en) 2019-04-26 2021-06-08 XCOM Labs, Inc. Downlink active set management for multiple-input multiple-output communications
US10756782B1 (en) 2019-04-26 2020-08-25 XCOM Labs, Inc. Uplink active set management for multiple-input multiple-output communications
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175747A (en) 1989-10-31 1992-12-29 Mitsubishi Denki Kabushiki Kaisha Equalizer
GB2247812B (en) 1990-09-06 1994-08-31 Motorola Inc Equalizer for linear modulated signal
US6175588B1 (en) * 1997-12-30 2001-01-16 Motorola, Inc. Communication device and method for interference suppression using adaptive equalization in a spread spectrum communication system
JP3029030B2 (ja) * 1998-08-05 2000-04-04 日本電気株式会社 パイロット信号を含む受信信号の復調方法およびその装置
MY128734A (en) * 1999-03-22 2007-02-28 Golden Bridge Tech Inc Common packet channel
DE19926504C2 (de) 1999-06-10 2003-10-16 Siemens Ag Verfahren und Vorrichtung zum Abschätzen von Gewichtungsfaktoren verschiedener Übertragungspfade eines Nachrichtensignals
US6778507B1 (en) * 1999-09-01 2004-08-17 Qualcomm Incorporated Method and apparatus for beamforming in a wireless communication system
EP1130792A1 (en) * 2000-03-03 2001-09-05 Lucent Technologies Inc. A method and rake receiver for phasor estimation in communication systems
US7082174B1 (en) 2000-07-24 2006-07-25 Qualcomm, Incorporated Method and apparatus for processing a modulated signal using an equalizer and a rake receiver
US6522683B1 (en) 2000-08-10 2003-02-18 Qualcomm, Incorporated Method and apparatus for adaptive linear equalization for walsh covered modulation
US7099384B1 (en) 2000-09-01 2006-08-29 Qualcomm, Inc. Method and apparatus for time-division power assignments in a wireless communication system
US7043259B1 (en) * 2000-09-29 2006-05-09 Arraycomm, Inc. Repetitive paging from a wireless data base station having a smart antenna system
RU2232466C2 (ru) * 2000-11-17 2004-07-10 Самсунг Электроникс Ко., Лтд. Устройство и способ для измерения задержки на распространение в системе мобильной связи уп-двр мдкр
US7106792B2 (en) 2001-06-04 2006-09-12 Qualcomm, Inc. Method and apparatus for estimating the signal to interference-plus-noise ratio of a wireless channel
US6745052B2 (en) 2001-07-27 2004-06-01 Qualcomm, Incorporated Method and apparatus for signal equalization in a communication system with multiple receiver antennas
US7012952B2 (en) 2001-08-01 2006-03-14 Qualcomm Incorporated Method and apparatus for adjusting delay in systems with time-burst pilot and fractionally spaced equalizers
US7136428B2 (en) 2001-08-06 2006-11-14 Qualcomm, Inc. Systems and techniques for measuring the performance of a communications system
US7440489B2 (en) 2001-08-07 2008-10-21 Ericsson Inc. Method and apparatus for selective demodulation and decoding of communications signals
US20030048753A1 (en) 2001-08-30 2003-03-13 Ahmad Jalali Method and apparatus for multi-path elimination in a wireless communication system
US6983125B2 (en) 2001-09-25 2006-01-03 Qualcomm Incorporated Method and apparatus for varying the length of an adaptive equalizer based on doppler frequency
US7012883B2 (en) 2001-11-21 2006-03-14 Qualcomm Incorporated Rate selection for an OFDM system
US7027503B2 (en) 2002-06-04 2006-04-11 Qualcomm Incorporated Receiver with a decision feedback equalizer and a linear equalizer
US7046726B2 (en) 2002-07-18 2006-05-16 Qualcomm, Inc. Method and apparatus for hybrid decision feedback equalization
US7035329B2 (en) 2002-07-18 2006-04-25 Qualcomm, Inc. Soft slicer in a hybrid decision feedback equalizer
US7054396B2 (en) * 2002-08-20 2006-05-30 Rf Micro Devices, Inc. Method and apparatus for multipath signal compensation in spread-spectrum communications systems
US6968001B2 (en) 2002-08-21 2005-11-22 Qualcomm Incorporated Communication receiver with virtual parallel equalizers
US7301990B2 (en) 2003-02-21 2007-11-27 Qualcomm Incorporated Equalization of multiple signals received for soft handoff in wireless communication systems
US7006800B1 (en) 2003-06-05 2006-02-28 National Semiconductor Corporation Signal-to-noise ratio (SNR) estimator in wireless fading channels
EP1703686B1 (en) 2005-03-17 2007-12-12 Sony Deutschland GmbH Maximum likelihood equalization with interpolation for complexity reduction
FR2891682B1 (fr) 2005-10-05 2008-02-08 Eads Telecom Soc Par Actions S Interpolation de puissance de bruit dans un systeme multi-porteuses
KR100817592B1 (ko) * 2005-12-30 2008-03-31 포스데이타 주식회사 무선통신 시스템의 이동 단말기의 채널 추정 방법 및 채널추정기
US8498192B2 (en) 2006-02-21 2013-07-30 Qualcomm Incorporated Spatial pilot structure for multi-antenna wireless communication
EP2002622A1 (en) * 2006-04-03 2008-12-17 National ICT Australia Limited Channel estimation for rapid dispersive fading channels

Also Published As

Publication number Publication date
RU2452109C2 (ru) 2012-05-27
WO2009085869A2 (en) 2009-07-09
WO2009085869A3 (en) 2009-11-12
EP2073470A3 (en) 2010-07-14
KR20100095025A (ko) 2010-08-27
TWI420861B (zh) 2013-12-21
CA2707614C (en) 2014-09-09
CN103220245B (zh) 2016-05-18
EP2073470A2 (en) 2009-06-24
CN101904131B (zh) 2016-02-10
US20090161746A1 (en) 2009-06-25
CN103220245A (zh) 2013-07-24
JP5096592B2 (ja) 2012-12-12
BRPI0821095A2 (pt) 2015-06-16
US8098767B2 (en) 2012-01-17
EP2239878A3 (en) 2011-07-06
KR101148318B1 (ko) 2012-05-21
EP2239878A2 (en) 2010-10-13
CN101904131A (zh) 2010-12-01
TW200943847A (en) 2009-10-16
CA2707614A1 (en) 2009-07-09
CA2854581A1 (en) 2009-07-09
JP2011509566A (ja) 2011-03-24
CA2854581C (en) 2016-06-28

Similar Documents

Publication Publication Date Title
RU2010130169A (ru) Настройка приемника между пакетами пилот-сигналов
US7929627B2 (en) OFDM receiver, integrated circuit and receiving method
US8576964B2 (en) Radio receiver
KR100913870B1 (ko) 직교 주파수 분할 시스템에서의 채널 추정 방법 및 장치
US9258167B2 (en) Transmitting apparatus, receiving apparatus and control methods thereof
CN101257472B (zh) 正交频分复用接收机系统及其自动增益控制方法
TW201338471A (zh) 具有時域通道估計之正交分頻多工接收器
JP2010506463A5 (ru)
US7577216B2 (en) Guard interval and FFT mode detector in DVB-T receiver
CN103873397A (zh) 一种新的联合时域和频域正交频分复用接收信道估计方法
ES2376016T3 (es) Aparato y procedimiento para tomar en cuenta de los efectos de las discontinuidades en la salida del control autom�?tico de ganancia en un sistema de múltiples portadoras.
JP3930525B2 (ja) デジタル復調装置、その制御方法、その制御用プログラム、その制御用プログラムを記録した記録媒体及びデジタル受信装置
JP4452731B2 (ja) デジタル復調装置、その制御方法、プログラム、そのプログラムを記録した記録媒体、及び、デジタル受信装置。
CN109617573A (zh) 电力线脉冲噪声的实时检测与抑制方法
JP5832652B2 (ja) 受信機、受信機による伝送路の周波数応答推定方法
JP2008227622A (ja) 受信装置及び通信方法
WO2014057924A1 (ja) 送信装置、受信装置、送信方法、受信方法及びチップ
WO2007142091A1 (ja) Ofdm受信装置とこれを用いたofdm受信機器
US8942303B1 (en) Pilot assisted channel estimation
US20100301931A1 (en) Recursive demodulation apparatus and method
JP2003229831A (ja) Ofdm信号受信装置
CN104052692A (zh) 数据信号校正电路、接收器和数据信号校正方法
KR100820814B1 (ko) 휴대용 디지털 비디오 방송 수신장치에서의 채널 추정,보상 방법 및 장치
JP2008271302A (ja) デジタル信号受信機およびデジタル信号受信機におけるフレーム同期保護回数制御方法
US8433012B2 (en) Timing synchronization method and apparatus in a wireless communication system