RU2010101798A - Способ и прибор для ручного неразрушающего контроля полых шкворней оси, обладающих профилями поперечного сечения с переменными внутренним и внешним радиусами - Google Patents

Способ и прибор для ручного неразрушающего контроля полых шкворней оси, обладающих профилями поперечного сечения с переменными внутренним и внешним радиусами Download PDF

Info

Publication number
RU2010101798A
RU2010101798A RU2010101798/28A RU2010101798A RU2010101798A RU 2010101798 A RU2010101798 A RU 2010101798A RU 2010101798/28 A RU2010101798/28 A RU 2010101798/28A RU 2010101798 A RU2010101798 A RU 2010101798A RU 2010101798 A RU2010101798 A RU 2010101798A
Authority
RU
Russia
Prior art keywords
wall
contact sensor
analysis
relative
king pin
Prior art date
Application number
RU2010101798/28A
Other languages
English (en)
Other versions
RU2453837C2 (ru
Inventor
Фредерик ЛЕЗАЖ (FR)
Фредерик Лезаж
Александр НОЭЛЬ (FR)
Александр Ноэль
ДЕ ПАУЛА Ренато НОГЕЙРА (FR)
де Паула Ренато Ногейра
Original Assignee
В э М ФРАНС (FR)
В Э М Франс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by В э М ФРАНС (FR), В Э М Франс filed Critical В э М ФРАНС (FR)
Publication of RU2010101798A publication Critical patent/RU2010101798A/ru
Application granted granted Critical
Publication of RU2453837C2 publication Critical patent/RU2453837C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Способ контроля шкворней оси посредством ультразвуковых контактных датчиков, отличающийся тем, что он включает в себя следующие этапы: ! а) размещения ручным способом, по меньшей мере, одного ультразвукового контактного датчика (SU) в первом месте, которое выбирают на внешней (SE) или внутренней (SI) поверхности стенки (PA) полого шкворня оси (AE), причем упомянутая стенка (PA) имеет профили поперечного сечения с переменными и известными внешним и внутренним радиусами, причем каждое первое место выбирают в зависимости от упомянутых профилей поперечного сечения и возможных габаритных размеров и условий эксплуатации упомянутого шкворня (АЕ), затем проведения анализа при помощи каждого контактного датчика (SU) первого выбранного участка упомянутой стенки (РА) в первом выбранном угловом секторе, ориентированном в первом продольном или поперечном направлении, для получения результатов анализа для различных относительных угловых положений упомянутого шкворня (АЕ) относительно контактного датчика (SU); ! b) установки вручную, по меньшей мере, одного контактного датчика (SU) во втором месте, которое выбирают в зависимости от профилей поперечного сечения стенки (РА) и упомянутых возможных габаритных размеров и условий эксплуатации шкворня (АЕ), затем проведения анализа при помощи каждого установленного вручную контактного датчика (SU) второго выбранного участка упомянутой стенки (РА) во втором выбранном угловом секторе, ориентированном во втором направлении, противоположном упомянутому первому направлению, для получения других результатов анализа для различных относительных угловых положений упомянутого шкворня (АЕ) относ

Claims (35)

  1. Способ контроля шкворней оси посредством ультразвуковых контактных датчиков, отличающийся тем, что он включает в себя следующие этапы:
    а) размещения ручным способом, по меньшей мере, одного ультразвукового контактного датчика (SU) в первом месте, которое выбирают на внешней (SE) или внутренней (SI) поверхности стенки (PA) полого шкворня оси (AE), причем упомянутая стенка (PA) имеет профили поперечного сечения с переменными и известными внешним и внутренним радиусами, причем каждое первое место выбирают в зависимости от упомянутых профилей поперечного сечения и возможных габаритных размеров и условий эксплуатации упомянутого шкворня (АЕ), затем проведения анализа при помощи каждого контактного датчика (SU) первого выбранного участка упомянутой стенки (РА) в первом выбранном угловом секторе, ориентированном в первом продольном или поперечном направлении, для получения результатов анализа для различных относительных угловых положений упомянутого шкворня (АЕ) относительно контактного датчика (SU);
    b) установки вручную, по меньшей мере, одного контактного датчика (SU) во втором месте, которое выбирают в зависимости от профилей поперечного сечения стенки (РА) и упомянутых возможных габаритных размеров и условий эксплуатации шкворня (АЕ), затем проведения анализа при помощи каждого установленного вручную контактного датчика (SU) второго выбранного участка упомянутой стенки (РА) во втором выбранном угловом секторе, ориентированном во втором направлении, противоположном упомянутому первому направлению, для получения других результатов анализа для различных относительных угловых положений упомянутого шкворня (АЕ) относительно контактного датчика (SU);
    с) составления из полученных упомянутых результатов анализа карт, на которых отображены поперечные и продольные направленности и положения индикаций отраженных сигналов внутри упомянутой стенки (РА).
  2. 2. Способ по п.1, отличающийся тем, что осуществляют первый раз этапы а)-с) путем размещения вручную каждого ультразвукового контактного датчика (SU) на внешней поверхности (SE) упомянутой стенки (РА) для составления карт, отображающих положения и направленности индикаций отраженных сигналов внутри упомянутой стенки (РА); затем выполняются второй раз, по меньшей мере, этапы а) и с) путем размещения вручную, по меньшей мере, одного ультразвукового контактного датчика (SU) на внутренней поверхности (SI) упомянутой стенки (РА) в третьем месте, которое выбирают в зависимости от ее профилей поперечного сечения, а затем исследуют при помощи каждого контактного датчика (SU) третий выбранный участок упомянутой стенки (РА) в третьем выбранном угловом секторе, ориентированном, по меньшей мере, в одном выбранном продольном или поперечном направлении, для получения результатов анализа для различных относительных угловых положений шкворня (АЕ) относительно контактного датчика (SU), и составляют карты, отображающие положения и направленности индикаций отраженных сигналов внутри упомянутой стенки (РА).
  3. 3. Способ по любому из пп.1 или 2, отличающийся тем, что этапы а)-с) осуществляют, по меньшей мере, один раз путем размещения вручную каждого ультразвукового контактного датчика (SU) на внешней (SE) или внутренней (SI) поверхности упомянутой стенки (PA) для проведения ультразвукового анализа в угловом секторе, ориентированном в продольном направлении, и, таким образом, составляют карты, отображающие поперечные направленности и положения индикаций отраженных сигналов внутри упомянутой стенки (РА), затем повторно выполняют также, по меньшей мере, один раз этапы а)-с) путем размещения вручную, по меньшей мере, одного ультразвуковой контактного датчика (SU) на внешней (SE) или внутренней (SI) упомянутой поверхности стенки (PA) для выполнения ультразвукового анализа в угловом секторе, ориентированном в поперечном направлении, и, таким образом, составляют карты, отображающие продольные направленности и положения индикаций отраженных сигналов внутри упомянутой стенки (РА).
  4. 4. Способ по п.1, отличающийся тем, что после выполнения этапа с) предусматривают этап d), в ходе которого проводят анализ, по меньшей мере, внешней (SE) поверхности упомянутой стенки (РА) посредством другой технологии анализа, отличающейся от технологии, базирующейся на ультразвуковых колебаниях, для получения результатов анализа для различных относительных угловых положений, по меньшей мере, одного контактного датчика (SU) относительно упомянутого шкворня (АЕ).
  5. 5. Способ по п.4, отличающийся тем, что после выполнения этапа d) предусматривают этап е), в ходе которого на основании этих полученных результатов анализа составляют карты, отображающие положения и направленности индикаций поверхности упомянутой стенки (РА).
  6. 6. Способ по п.4 или 5, отличающийся тем, что упомянутую другую технологию анализа выбирают из группы, содержащей технологию так называемого потока рассеяния и технологию так называемых вихревых токов.
  7. 7. Способ по п.1, отличающийся тем, что после выполнения этапа с) предусматривают этап d), в ходе которого проводят анализ, по меньшей мере, одной внешней (SE) поверхности упомянутой стенки (РА) с использованием технологии так называемой проверки намагниченными частицами (или MPI) для получения результатов анализа поверхности для различных относительных угловых положений упомянутого шкворня (АЕ) относительно контактного датчика (SU).
  8. 8. Способ по п.1, отличающийся тем, что проводят анализ каждого из первых, вторых и, возможно, третьих участков упомянутой стенки путем относительного продольного перемещения, по меньшей мере, одного контактного датчика (SU) относительно упомянутого шкворня (AE) и/или путем электронного сканирования посредством, по меньшей мере, одного контактного датчика (SU).
  9. 9. Способ по п.1, отличающийся тем, что в процессе, по меньшей мере, одного из этапов а), b) и d) достигают различных относительных угловых положений упомянутого шкворня (АЕ) относительно каждого контактного датчика (SU), приводя вручную во вращение каждый контактный датчик (SU) относительно упомянутого шкворня (АЕ).
  10. 10. Способ по п.1, отличающийся тем, что он содержит этап f), в ходе которого проводят сравнение данных карт, полученных на этапе с), с данными первых эталонных карт, которые были сняты на первом эталонном шкворне такого же типа, что и контролируемый, но не имеющем изъянов, для получения только данных, содержащих индикации отраженных сигналов, которые не представлены в упомянутых первых эталонных картах, и составления, таким образом, корригированных карт.
  11. 11. Способ по п.1, отличающийся тем, что он содержит этап g), в ходе которого проводят сравнение данных карт, полученных на этапе с) или f), с данными вторых эталонных карт, которые были сняты на втором эталонном шкворне такого же типа, что и контролируемый, но имеющем известные изъяны, для получения только данных, содержащих индикации отраженных сигналов с известными изъянами, которые были представлены во вторых упомянутых эталонных картах, и составления, таким образом, карт изъянов.
  12. 12. Способ по п.1, отличающийся тем, что он содержит этап h), в ходе которого проводят сравнение c выбранной амплитудой, имеющей пороговую величину, амплитуд с данными карт, которые были получены на этапе с) или f), для получения только данных, содержащих индикации отраженных сигналов, амплитуды которых выше упомянутой амплитуды, имеющей пороговую величину и сообщающей информацию о наличии изъянов, и составления, таким образом, карт изъянов.
  13. 13. Способ по п.12, отличающийся тем, что в случае выявления амплитуды, которая выше упомянутой амплитуды, имеющей пороговую величину, вырабатывают сигнал о нарушении.
  14. 14. Способ по п.1, отличающийся тем, что он содержит этап i), в ходе которого на экран (ЕС) дисплея выводят, по меньшей мере, одну карту.
  15. 15. Способ по п.1, отличающийся тем, что используют контактные датчики (SU), выполненные с возможностью излучения ультразвуковых колебаний только в одном направлении с переменным углом.
  16. 16. Способ по п.15, отличающийся тем, что упомянутый угол меняется от приблизительно 0° до приблизительно 70° относительно продольного или поперечного направления.
  17. 17. Способ по п.1, отличающийся тем, что используют контактные датчики (SU) типа так называемой фазированной решетки, выполненные с возможностью излучения ультразвуковых колебаний в направлениях, которые заключены в заданном угловом секторе.
  18. 18. Способ по п.17, отличающийся тем, что упомянутый угловой сектор составляет от приблизительно 0° до приблизительно 70° относительно продольного или поперечного направления.
  19. 19. Прибор для контроля шкворней оси, отличающийся тем, что он содержит: I) по меньшей мере, один ультразвуковой контактный датчик (SU), устанавливаемый для проведения анализа в выбранном угловом секторе выбранных участков стенки (РА), имеющей профили поперечного сечения с известными и переменными внешним и внутренним радиусами, полого шкворня оси (АЕ) и получения, таким образом, результатов анализа; II) средства контроля (МС), устанавливаемые для определения, в зависимости от упомянутых профилей поперечного сечения и возможных габаритных размеров и условий эксплуатации упомянутого шкворня, по меньшей мере, первого и, по меньшей мере, второго выбранных мест на внешней (SE) или внутренней (SI) поверхности стенки (PA), где вручную должен быть размещен каждый контактный датчик (SU) таким образом, чтобы он осуществлял анализ, по меньшей мере, первого и, по меньшей мере, второго выбранных участков упомянутой стенки (РА) соответственно, по меньшей мере, в первом и, по меньшей мере, во втором выбранных угловых секторах, ориентированных в первом и втором противоположных продольном и поперечном направлениях, и получал, таким образом, результаты анализа для различных относительных угловых положений упомянутого шкворня (АЕ) относительно него (SU) и III) средства обработки (МТ), устанавливаемые для составления на основании полученных результатов анализа карт, отображающих поперечные или продольные направленности и положения индикации отраженных сигналов внутри упомянутой стенки (РА).
  20. 20. Прибор по п.19, отличающийся тем, что упомянутые средства контроля (МС) устанавливаются для определения перед применением вручную на каждом контактном датчике (SU) первого перемещения относительно внешней (SE) поверхности упомянутой стенки (РА) для получения результатов анализа для различных относительных угловых положений упомянутого шкворня (АЕ) относительно контактного датчика (SU), затем для определения перед применением вручную, по меньшей мере, на одном контактном датчике (SU) второго перемещения относительно внутренней (SI) поверхности упомянутой стенки (РА) для проведения им анализа, по меньшей мере, третьего выбранного участка упомянутой стенки (РА), по меньшей мере, в третьем выбранном угловом секторе, ориентированном в выбранном продольном или поперечном направлении, и для получения им, таким образом, других результатов анализа для различных относительных угловых положений упомянутого шкворня (АЕ) относительно контактного датчика (SU), а также тем, что упомянутые средства обработки (МТ) устанавливаются для составления на основании упомянутых полученных результатов анализа карт, отображающих положения и направленности индикаций отраженных сигналов внутри упомянутой стенки (РА).
  21. 21. Прибор по любому из пп.19 или 20, отличающийся тем, что упомянутые средства контроля (МС) устанавливаются I) для определения перед применением вручную на каждом контактном датчике (SU) первого перемещения относительно внешней (SE) или внутренней (SI) поверхности упомянутой стенки (РА) для выполнения ультразвукового анализа в угловом секторе, ориентированном в продольном направлении, и для получения результатов анализа, на основании которых упомянутые средства обработки (МТ) составят карты, отображающие поперечные направленности и положения индикаций отраженных сигналов, а затем II) для определения перед применением вручную на каждом контактном датчике (SU), по меньшей мере, второго перемещения относительно внешней (SE) или внутренней (SI) поверхности упомянутой стенки (PA) для выполнения им ультразвукового анализа в угловом секторе, ориентированном в поперечном направлении, и для получения им результатов анализа, на основании которых упомянутые средства обработки (МТ) составят карты, отображающие продольные направленности и положения индикаций отраженных сигналов.
  22. 22. Прибор по п.19, отличающийся тем, что он содержит средства анализа поверхности, устанавливаемые для проведения анализа, по меньшей мере, внешней (SE) поверхности упомянутой стенки (PA) путем другой технологии анализа, отличающейся от технологии, базирующейся на ультразвуковых колебаниях, для получения результатов анализа для различных относительных положений упомянутого шкворня (AE) относительно контактного датчика (SU).
  23. 23. Прибор по п.22, отличающийся тем, что упомянутые средства обработки (МТ) устанавливаются для составления на основании упомянутых результатов анализа, полученных посредством упомянутых средств анализа поверхности (MAS), карт, отображающих положения и направленности индикаций поверхности упомянутой стенки (РА).
  24. 24. Прибор по любому из пп.22 или 23, отличающийся тем, что упомянутые средства анализа поверхности выбираются в группе, содержащей средства анализа потока рассеяния и средства анализа методом вихревых токов.
  25. 25. Прибор по п.19, отличающийся тем, что он содержит средства анализа поверхности, устанавливаемые для выполнения анализа, по меньшей мере, внешней (SE) поверхности упомянутой стенки (РА) путем проверки намагниченными частицами (или MPI) для получения результатов анализа поверхности для различных относительных угловых положений упомянутого шкворня (АЕ) относительно упомянутых контактных датчиков (SU).
  26. 26. Прибор по п.19, отличающийся тем, что упомянутые средства контроля (МС) устанавливаются для осуществления электронного сканирования посредством, по меньшей мере, одного контактного датчика (SU) для выполнения им анализа части, по меньшей мере, упомянутых первых, вторых и, возможно, третьих участков упомянутой стенки (РА).
  27. 27. Прибор по п.19, отличающийся тем, что упомянутые средства обработки (МТ) устанавливаются для осуществления сравнения данных карт, снятых с упомянутого контролируемого шкворня (АЕ), с данными первых эталонных карт, которые были получены на первом эталонном шкворне такого же типа, что и контролируемый, но не имеющем изъянов, для сохранения только данных, содержащих индикации отраженных сигналов, которые не представлены в упомянутых первых эталонных картах, и составления, таким образом, корригированных карт.
  28. 28. Прибор по п.19, отличающийся тем, что упомянутые средства обработки (МТ) устанавливаются для осуществления сравнения данных карт, полученных на упомянутом контролируемом шкворне (АЕ), с данными вторых эталонных карт, которые были сняты со второго эталонного шкворня такого же типа, что и контролируемый, но имеющем известные изъяны, и для сохранения только данных, содержащих индикации отраженных сигналов с известными изъянами, которые были представлены в упомянутых вторых эталонных картах, и составления, таким образом, карт изъянов.
  29. 29. Прибор по п.19, отличающийся тем, что упомянутые средства обработки (МТ) устанавливаются для проведения сравнения c выбранной амплитудой, имеющей пороговую величину, амплитуд с данными карт, которые были получены на упомянутом контролируемом шкворне (АЕ), и сохранения только данных, содержащих индикации отраженных сигналов, амплитуды которых выше имеющей пороговую величину упомянутой амплитуды, и сообщающих информацию о наличии изъянов, и составления, таким образом, карт изъянов.
  30. 30. Прибор по п.29, отличающийся тем, что упомянутые средства обработки (МТ) устанавливаются для выработки сигнала о нарушении в случае определения амплитуды, которая выше амплитуды, имеющей пороговую величину.
  31. 31. Прибор по п.19, отличающийся тем, что он содержит экран (ЕС) дисплея, предназначенный для выведения на него, по меньшей мере, некоторых упомянутых карт, составленных упомянутыми средствами обработки (МТ).
  32. 32. Прибор по п.19, отличающийся тем, что каждый контактный датчик (SU) предназначен для излучения ультразвуковых колебаний только в одном направлении с переменным углом.
  33. 33. Прибор по п.32, отличающийся тем, что упомянутый угол меняется от приблизительно 0° до приблизительно 70° относительно продольного или поперечного направления.
  34. 34. Прибор по п.19, отличающийся тем, что каждый контактный датчик (SU) относится к типу фазированной решетки и предназначен для излучения ультразвуковых колебаний в направлениях, которые заключены в выбранном угловом секторе.
  35. 35. Прибор по п.34, отличающийся тем, что упомянутый угловой сектор заключен в диапазоне от приблизительно 0° до приблизительно 70° относительно продольного или поперечного направления.
RU2010101798/28A 2007-06-21 2008-06-16 Способ и прибор для ручного неразрушающего контроля полых шкворней оси, обладающих профилями поперечного сечения с переменными внутренним и внешним радиусами RU2453837C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704436 2007-06-21
FR0704436A FR2917833B1 (fr) 2007-06-21 2007-06-21 Procede et appareil de controle non destructif manuel d'axes d'essieu tubulaires a profils de rayons interne et externe variables

Publications (2)

Publication Number Publication Date
RU2010101798A true RU2010101798A (ru) 2011-07-27
RU2453837C2 RU2453837C2 (ru) 2012-06-20

Family

ID=38920716

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010101798/28A RU2453837C2 (ru) 2007-06-21 2008-06-16 Способ и прибор для ручного неразрушающего контроля полых шкворней оси, обладающих профилями поперечного сечения с переменными внутренним и внешним радиусами

Country Status (16)

Country Link
US (1) US8966984B2 (ru)
EP (1) EP2158478B1 (ru)
JP (1) JP5475654B2 (ru)
CN (1) CN101765769B (ru)
AR (1) AR067089A1 (ru)
AU (1) AU2008277580B2 (ru)
BR (1) BRPI0812903B1 (ru)
CA (1) CA2691213A1 (ru)
CL (1) CL2008001854A1 (ru)
EG (1) EG26203A (ru)
ES (1) ES2523306T3 (ru)
FR (1) FR2917833B1 (ru)
RU (1) RU2453837C2 (ru)
UA (1) UA100024C2 (ru)
WO (1) WO2009010654A2 (ru)
ZA (1) ZA200909039B (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917832B1 (fr) * 2007-06-21 2009-10-30 V & M France Soc Par Actions S Procede et appareil de controle non destructif automatique d'axes d'essieu tubulaires a profils de rayons interne et externe variables
EP2847584B1 (de) * 2012-05-11 2018-01-03 Basf Se Verfahren zur erfassung von schädigungen an einer hohlwelle
US10197536B2 (en) 2012-05-11 2019-02-05 Basf Se Method for detecting damage to a hollow shaft
US9027405B2 (en) 2012-11-20 2015-05-12 General Electric Company Ultrasonic inspection of an axle
NL2012363C2 (en) * 2014-03-05 2015-01-29 Ntgen Tech Dienst B V R Ultrasonic phased array approach.
RS57473B1 (sr) * 2014-03-27 2018-09-28 Lucchini Rs Spa Osovina slogova točkova i odgovarajući postupak za ultrazvučnu kontrolu
JP6854677B2 (ja) * 2017-03-17 2021-04-07 三菱パワー株式会社 超音波探触子、超音波探傷装置、及び超音波探傷方法
FR3096286B1 (fr) * 2019-05-20 2021-06-11 Vallourec Tubes France Procédé de génération d’un indice de compatibilité entre deux extrémités de deux tubes, tube muni d’un indicateur de compatibilité

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1350320A (fr) * 1962-03-09 1964-01-24 Appareil pour détecter des défauts par ultra-sons, du type à réflexion de signaux
US3685350A (en) * 1970-12-28 1972-08-22 Giuseppe Pettinato Ultrasonic probe
JPS5720660A (en) 1980-07-11 1982-02-03 Sumitomo Metal Ind Ltd Apparatus and method of ultrasonic flaw detection
JPS5757346U (ru) * 1980-09-20 1982-04-03
JPS5924458B2 (ja) 1980-09-24 1984-06-09 富士通株式会社 エラ−訂正回路のチェック方式
US4404853A (en) * 1981-03-12 1983-09-20 Livingston Waylon A Method and apparatus for ultrasonic testing of tubular goods
JPS5834358A (ja) * 1981-08-24 1983-02-28 Kubota Ltd 管等の超音波探傷装置
JPH0419558A (ja) * 1990-05-15 1992-01-23 Tokyo Gas Co Ltd 超音波探傷試験における画像処理方法
FR2678385B1 (fr) * 1991-06-28 1994-08-05 Valdunes Procede et dispositif de controle par ultrasons de l'etat de surface d'un alesage, notamment de l'alesage d'un essieu-axe de chemin de fer.
RU2086975C1 (ru) * 1993-08-10 1997-08-10 Лобанов Вячеслав Васильевич Способ ультразвукового контроля изделий, имеющих сложную форму тел вращения
RU2084889C1 (ru) * 1993-08-10 1997-07-20 Вячеслав Васильевич Лобанов Способ ультразвукового контроля изделий, имеющих сложную форму тел вращения с наличием напрессованных деталей
US5481916A (en) * 1994-07-22 1996-01-09 Tsi Sensor Incorporated Combined ultrasonic and rotating eddy current probe and method of non-destructive testing of materials
FR2738636B1 (fr) * 1995-09-08 1997-11-28 Framatome Sa Dispositif de controle non destructif par ultrasons d'une piece de forme allongee comportant un transducteur d'ultrasons et un miroir, et ses utilisations
US5915277A (en) * 1997-06-23 1999-06-22 General Electric Co. Probe and method for inspecting an object
JP2002082099A (ja) * 2000-09-07 2002-03-22 Central Japan Railway Co 中ぐり軸の超音波探傷装置
JP2002257798A (ja) * 2001-02-28 2002-09-11 Sumitomo Metal Ind Ltd 中実軸部材の探傷方法及び探傷装置
JP2003004710A (ja) * 2001-06-21 2003-01-08 Daido Steel Co Ltd 肉盛管の検査方法
CN1570620A (zh) * 2003-07-23 2005-01-26 Pii派普特罗尼克斯有限公司 用于检测管道的方法和设备
US6886407B1 (en) 2003-08-22 2005-05-03 Westinghouse Electric Company Llc Nondestructive examination of high pressure turbine cylinders
JP4351568B2 (ja) 2004-03-30 2009-10-28 財団法人鉄道総合技術研究所 超音波探傷方法及び装置
CN100405056C (zh) * 2004-07-08 2008-07-23 武汉市铁辆高新技术有限公司 双制动盘型轮轴镶入部内侧裂纹的检测方法
WO2006099397A2 (en) * 2005-03-14 2006-09-21 Transportation Technology Center, Inc. System for non-contact interrogation of railroad axles using laser-based ultrasonic inspection
CN1712951A (zh) * 2005-06-21 2005-12-28 吴来政 火车轮轴超声瑞利波探伤方法
RU2313784C1 (ru) * 2006-05-10 2007-12-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт мостов и дефектоскопии Федерального агентства железнодорожного транспорта" (НИИ мостов) Способ ультразвукового контроля осей колесных пар
FR2903187B1 (fr) * 2006-06-30 2008-09-26 Setval Sarl Controle non destructif, en particulier pour des tubes en cours de fabrication ou a l'etat fini
US7757559B2 (en) * 2007-05-25 2010-07-20 Magnetic Analysis Corporation Oblique flaw detection using ultrasonic transducers
FR2917832B1 (fr) * 2007-06-21 2009-10-30 V & M France Soc Par Actions S Procede et appareil de controle non destructif automatique d'axes d'essieu tubulaires a profils de rayons interne et externe variables

Also Published As

Publication number Publication date
AR067089A1 (es) 2009-09-30
EP2158478A2 (fr) 2010-03-03
AU2008277580A1 (en) 2009-01-22
US20100180683A1 (en) 2010-07-22
CN101765769B (zh) 2013-07-03
WO2009010654A2 (fr) 2009-01-22
CN101765769A (zh) 2010-06-30
JP5475654B2 (ja) 2014-04-16
WO2009010654A3 (fr) 2009-03-19
FR2917833B1 (fr) 2010-03-26
CL2008001854A1 (es) 2008-12-26
BRPI0812903A2 (pt) 2016-12-06
CA2691213A1 (fr) 2009-01-22
ZA200909039B (en) 2010-09-29
RU2453837C2 (ru) 2012-06-20
EP2158478B1 (fr) 2014-08-13
US8966984B2 (en) 2015-03-03
UA100024C2 (ru) 2012-11-12
ES2523306T3 (es) 2014-11-24
JP2010530529A (ja) 2010-09-09
AU2008277580B2 (en) 2013-10-17
FR2917833A1 (fr) 2008-12-26
BRPI0812903B1 (pt) 2018-10-16
EG26203A (en) 2013-04-21

Similar Documents

Publication Publication Date Title
RU2010101798A (ru) Способ и прибор для ручного неразрушающего контроля полых шкворней оси, обладающих профилями поперечного сечения с переменными внутренним и внешним радиусами
US9146214B2 (en) Leakage magnetic flux flaw inspection method and device
RU2010101796A (ru) Способ и устройство автоматического неразрушаемого контроля трубчатых колесных осей с профилями с переменными внутренним и наружным радиусами
Huang et al. Design of an eddy-current array probe for crack sizing in steam generator tubes
US10845339B2 (en) Method and system for determination of geometric features in objects
CN103353480A (zh) 一种机车轮轴超声自动探伤方法及装置
RU2014129915A (ru) Способ и устройство для обнаружения и анализа отложений
CN104501750A (zh) 一种超声相控阵测量u肋焊缝熔深的方法
JP2013156104A (ja) 溶接部の超音波探傷装置及び超音波探傷方法
JP2010048624A (ja) 低周波電磁誘導式の欠陥測定装置
CN104956218A (zh) 用于在不规则的测量时改善saft分析的方法和装置
RU2697061C1 (ru) Способ и система для выявления нарушения непрерывности материала в намагничиваемом изделии
de Castro et al. Baseline-free damage imaging algorithm using spatial frequency domain virtual time reversal
KR20130138237A (ko) 기계 부품 내부에 존재하는 결함의 방향을 측정하기 위한 방법 및 그 장치
WO2016076316A1 (ja) 渦電流探傷装置および渦電流探傷方法
US20210072187A1 (en) Non-destructive inspection device
US10775346B2 (en) Virtual channels for eddy current array probes
JP4784556B2 (ja) 超音波検査の感度補正方法
US20220313216A1 (en) Augmented reality in ultrasonic inspection
US20180120263A1 (en) Joining quality diagnosis device of panel element
JP4738243B2 (ja) 超音波探傷システム
JP6173636B1 (ja) 超音波検査方法及び超音波検査装置
US20210364471A1 (en) Method for Creating an Evaluation Table for an Ultrasonic Inspection and Method for Ultrasonic Inspection
Jiang et al. Quantitative Detection of Internal Flaws of Action Rod Based on Ultrasonic Technology
US11841329B2 (en) Object damage inspecting device and inspecting method using the same

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170617