PT2200196E - Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal - Google Patents
Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal Download PDFInfo
- Publication number
- PT2200196E PT2200196E PT09161816T PT09161816T PT2200196E PT 2200196 E PT2200196 E PT 2200196E PT 09161816 T PT09161816 T PT 09161816T PT 09161816 T PT09161816 T PT 09161816T PT 2200196 E PT2200196 E PT 2200196E
- Authority
- PT
- Portugal
- Prior art keywords
- data
- preamble
- symbols
- time
- header
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000011664 signaling Effects 0.000 claims description 102
- 230000008569 process Effects 0.000 claims description 50
- 238000004049 embossing Methods 0.000 claims 1
- 108091006146 Channels Proteins 0.000 description 61
- 230000005540 biological transmission Effects 0.000 description 49
- 238000003780 insertion Methods 0.000 description 27
- 230000037431 insertion Effects 0.000 description 27
- 239000000969 carrier Substances 0.000 description 24
- 230000000875 corresponding effect Effects 0.000 description 23
- 238000001228 spectrum Methods 0.000 description 14
- 230000000295 complement effect Effects 0.000 description 13
- 238000012937 correction Methods 0.000 description 10
- 238000013507 mapping Methods 0.000 description 10
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 10
- 230000001788 irregular Effects 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 6
- 238000004904 shortening Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000000153 supplemental effect Effects 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000003987 high-resolution gas chromatography Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H20/00—Arrangements for broadcast or for distribution combined with broadcast
- H04H20/65—Arrangements characterised by transmission systems for broadcast
- H04H20/76—Wired systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H20/00—Arrangements for broadcast or for distribution combined with broadcast
- H04H20/86—Arrangements characterised by the broadcast information itself
- H04H20/95—Arrangements characterised by the broadcast information itself characterised by a specific format, e.g. an encoded audio stream
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Error Detection And Correction (AREA)
- Radar Systems Or Details Thereof (AREA)
- Television Signal Processing For Recording (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Description
ΡΕ2200196 1
DESCRIÇÃO "DISPOSITIVO PARA A TRANSMISSÃO E RECEPÇÃO DE UM SINAL E PROCESSO PARA A TRANSMISSÃO E RECEPÇÃO DE UM SINAL"
Antecedentes da invenção
Campo da invenção A presente invenção refere-se a um processo para a transmissão e recepção de um sinal e a um dispositivo para a transmissão e recepção de um sinal, e mais particularmente, a um processo para a transmissão e recepção de um sinal e a um dispositivo para transmissão e recepção de um sinal, que são passíveis de melhorar a eficiência da transmissão de dados.
Descrição da técnica relacionada
Com o desenvolvimento da tecnologia de transmissão digital, os utilizadores passaram a receber uma imagem em movimento de alta definição (HD) . Com o desenvolvimento contínuo de um algoritmo de compressão e alto desempenho de hardware, será proporcionado aos utilizadores um melhor ambiente no futuro. Um sistema de televisão digital (DTV) pode receber um sinal de radiodifusão digital e fornecer uma variedade de serviços ΡΕ2200196 adicionais aos utilizadores, bem como um sinal de video e um sinal de áudio. A codificação e modulação de canal de estrutura de quadro de radiodifusão de video digital (Digital Video Broadcasting - DVB) ETSI para um sistema de radiodifusão terrestre digital da segunda geração, Junho de 2008, descrevem a codificação e modulação para serviços de televisão digital. A radiodifusão de video digital (Digital Video Broadcasting (DVB) - C2) é a terceira especificação a unir-se à família DVB de sistemas de transmissão de segunda geração. Desenvolvida em 1994, a DVB-C actual encontra-se implantada em mais de 50 milhões de sintonizadores de cabo em todo o mundo. Em consonância com os outros sistemas de segunda geração DVB, o DVB-C2 utiliza uma combinação de códigos de baixa densidade com controlo de paridade (Low-density parity-check - LDPC) e BCH. Este potente código de correcção de erros (Forward Error correction - FEC) proporciona cerca de 5 dB de melhoramento de rácio de portadora-ruido em relação a DVB-C. Esquemas de intercalação de bits apropriados optimizam a robustez global do sistema FEC. Prolongado por um cabeçalho, esses quadros são denominados de condutas de camada física (Physical Layer Pipes - PLP) . Uma ou mais dessas PLPs são multiplexadas transformando-se numa fatia de dados. Dois intercalamentos dimensionais (nos domínios do tempo e da frequência) são aplicados a cada parcela permitindo ao receptor eliminar o impacto das deficiências das rajadas e da interferência selectiva da frequência tal como entrada 3 ΡΕ2200196 de uma única frequência.
Com o desenvolvimento dessas tecnologias de radiodifusão digital, aumentou a exigência por um serviço, tal como um sinal de vídeo e um sinal de áudio e a dimensão dos dados desejados pelos utilizadores ou o número de canais de transmissão aumentou gradualmente.
Sumário da invenção
Sendo assim, a presente invenção refere-se a um processo para a transmissão e recepção de um sinal e a um dispositivo para a transmissão e recepção de um sinal que substancialmente evita um ou mais problemas devido às limitações e desvantagens da técnica relacionada.
Um objecto da presente invenção é o de proporcionar um processo de transmitir sinal de radiodifusão para um receptor, compreendendo o processo: codificar os dados do preâmbulo; intercalar no tempo os dados de preâmbulo codificados de um modo torcido linha-coluna, em que o modo torcido de linha-coluna que compreende células de entrada são escritos em série para dentro da memória de intercalação numa direcção diagonal, e lidos em série em linha, sem sem considerar as posições piloto; construir um quadro de sinal baseado nos dados de preâmbulo intercalados no tempo; modular o quadro do sinal por um processo de multiplexagem por divisão de frequência ortogonal (OFDM) ; e transmitir o quadro de sinal modulado. 4 ΡΕ2200196
Um outro aspecto da presente invenção proporciona um processo de receber sinal de radiodifusão, compreendendo o processo: desmodular o sinal recebido utilizando um processo de multiplexagem por divisão de frequência ortogonal (OFDM); obter um quadro de sinal dos sinais desmodulados, compreendendo o quadro do sinal símbolos de preâmbulo e símbolos de dados, compreendendo os símbolos do preâmbulo informação de sinalização Ll para sinalizar os símbolos de dados; desintercalar no tempo os símbolos de preâmbulo de um modo torcido linha-coluna, em que o modo torcido de linha-coluna que compreende células de entrada são escritos em série para dentro da memória de intercalação numa direcção diagonal, e lidos em série em linha, em que a intercalação no tempo adicionalmente sem considerar a posição piloto; desmapear os símbolso de preâmbulo desintercalados no tempo em bits; e descodifciar os bits por um esquema de descodificação encurtado e puncionado (low density parity check - verificação de paridade de baixa densidade).
Ainda um outro aspecto da presente invenção proporciona um transmissor para transmitir um sinal de radiodifusão para um receptor, compreendendo o transmissor: um codificador configurado para codificar os dados do preâmbulo; um intercalador no tempo configurado para intercalar no tempo os dados do preâmbulo codificados de um modo torcido linha-coluna, em que as células de entrada são escritas em série para dentro da memória de intercalação numa direcção diagonal, e lidos em série em linha, em que a 5 ΡΕ2200196 intercalação no tempo é executada sem considerar a posição piloto; um construtor de quadros configurado para construir um quadro de sinal baseado nos dados do preâmbulo intercalados no tempo; um modulador configurado para modular o quadro do sinal por um processo de multiplexagem por divisão de frequência ortogonal (OFDM) ; e uma unidade de transmissão configurada para transmitir o quadro de sinal modulado.
Um outro aspecto da presente invenção proporciona um processo de receber sinal de radiodifusão, compreendendo o processo: desmodular o sinal recebido utilizando um processo de multiplexagem por divisão de frequência ortogonal (OFDM); obter um quadro de sinal dos sinais desmodulados, compreendendo o quadro do sinal símbolos de preâmbulo e símbolos de dados, compreendendo os símbolos do preâmbulo informação de sinalização LI para sinalizar os símbolos de dados; desintercalar no tempo os símbolos de preâmbulo de um modo torcido linha-coluna, em que o modo torcido de linha-coluna que compreende células de entrada são escritos em série na memória de intercalação numa direcção diagonal, e lidos em série em linha, em que a intrcalação no tempo adicionalmente sem considerar a posição piloto; desmapear os símbolso de preâmbulo desintercalados no tempo em bits; e descodifciar os bits por um esquema de descodificação encurtado e puncionado (low densíty parity check - verificação de paridade de baixa densidade). ΡΕ2200196 6
Breve descrição dos desenhos
Os desenhos anexos, que se encontrara incluídos para proporcionar uma maior compreensão da invenção e se encontram incorporados e constituem uma parte deste pedido, ilustram forma(s) de realização da invenção e juntamente com a descrição servem para explicar o princípio da invenção. As figuras representam:
Figura 1 exemplo de modulação de amplitude em quadradatura 64 (QAM) utilizada no DVB-T europeu.
Figura 2 processo do código binário Gray reflectido (BRGC).
Figura 3 saída próxima de gaussiana modificando a 64-QAM utilizada em DVB-T.
Figura 4 distância de Hamming entre o par reflectido no BRGC.
Figura 5 Figura 6 Figura 7 Figuras 8-9
Figuras 10-11 características em QAM, onde existe par reflectido para cada eixo I e eixo Q. processo para modificar a QAM utilizando o par reflectido do BRGC. exemplo de 64/256/1024/4096-QAAí modificado. exemplos de 64-QAM modificada utilizando o par reflectido do BRGC. exemplos de 256-QAM modificada utilizando o par reflectido do BRGC.
Figuras ΡΕ2200196 7 12-13
Figuras 14-15
Figuras 16-17
Figuras 18-19
Figuras 20-21
Figuras 22-23
Figuras 24-25 Figuras 26-27 exemplos de 1024-QAM modificada utilizando o par reflectido do RRGC(0-511). exemplos de 1024-QAM modificada utilizando o par reflectido do RRGC(512-1023). exemplos de 4096-QÃM modificada utilizando o par reflectido do HRGC(0-51). exemplos de 4096-QÃM modificada utilizando o par reflectido do RRGC(512-1023). exemplos de 4096-QÃM modificada utilizando o par reflectido do BRGC (1024-1535). exemplos de 4096-QÃM modificada utilizando o par reflectido do BRGC (1536-2047). exemplos de 4096-QAM modificada utilizando o par reflectido do BRGC(2048-2559). exemplos de 4096-QÃM modificada utilizando o par reflectido do BRGC(2560-3071).
Figuras 28-29 exemplos de 4096-QAM modificada utilizando o par reflectido do BRGC (3072-3583).
Figuras 30-31 exemplos de 4096-QÃM modificada utilizando o par reflectido do RRGC(3584-4095). ΡΕ2200196
Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura
Figura Figura Figura Figura Figura Figura Figura Figura Figura 32 exemplo do mapeamento de bits da QAM modificada onde 256-QAM é modificada utilizando o BRGC. 33 exemplo de transformação de MQAM numa constelação não uniforme. 34 exemplo de sistema de transmissão digital. 35 exemplo de um processador de entrada. 36 informação que pode ser incluída na banda base (BB) . 37 exemplo de BICM. 38 exemplo de codificador encurtado/puncionado. 39 exemplo de aplicação de várias constelações. 40 outro exemplo de casos onde é considerada a compatibilidade entre os sistemas convencionais. 41 estrutura de quadro que compreende o preâmbulo para a sinalização LI e símbolo de dados para dados PLP. 42 exemplo de construtor de quadros. 43 exemplo de inserção piloto (404) apresentada na figura 4. 44 estrutura de SP. 45 nova estrutura SP ou padrão piloto {PP) 5'. 46 estrutura PP5' sugerida. 47 relacionamento entre símbolo de dados e preâmbulo. 48 outro relacionamento entre símbolo de dados e preâmbulo. 49 exemplo de perfil de atrasos de canal por cabo. 50 estrutura piloto dispersa que utiliza z=56 e z=l12 . 9 ΡΕ2200196
Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura 51 exemplo de modulador baseado em OFDM. 52 exemplo de estrutura de preâmbulo. 53 exemplo de descodificação do preâmbulo. 54 processo para conceber preâmbulo mais optimizado. 55 outro exemplo de estrutura de preâmbulo 56 outro exemplo de descodificação de preâmbulo. 57 exemplo de estrutura de preâmbulo. 58 exemplo de descodificação Ll. 59 exemplo de processador analógico. 60 exemplo de sistema de recepção digital. 61 exemplo de processador analógico utilizado no receptor. 62 exemplo de desmodulador. 63 exemplo de analisador sintáctico de quadros. 64 exemplo de desmodulador BICM. 65 exemplo de descodificação LDPC utilizando encurtamento / puncionagem. 66 exemplo de processador de saída. 67 exemplo de taxa de repetição de bloco Ll de 8 MHz. 68 exemplo de taxa de repetição de bloco Ll de 8 MHz. 69 nova taxa de repetição de bloco Ll de 7,61 MHz. 7 0 exemplo de sinalização Ll que é transmitida no cabeçalho do quadro. 71 resultado do preâmbulo e simulação da estrutura Ll. 72 exemplo de intercalador de símbolos. 73 exemplo de uma transmissão de bloco Ll. 10 outro exemplo de sinalização Ll transmitida dentro de um cabeçalho de quadro. exemplo de intercalamento/desintercalamento de frequência ou no tempo. quadro analisando a informação complementar da sinalização Ll, que é transmitida no cabeçalho FECFRAME no módulo de inserção de cabeçalho ModCod (307) no trajecto de dados do módulo BICM apresentado na figura 3. estrutura para cabeçalho FECFRAME para minimizar a informação complementar. desempenho de uma taxa de erro nos bits (BER) da protecção Ll acima mencionada. exemplos de um quadro de transmissão e estrutura de quadro FEC. exemplo de sinalização Ll. exemplo de pré-sinalização Ll. estrutura do bloco de sinalização Ll. intercalação no tempo Ll. exemplo de extracção de informação de modulação e código. outro exemplo de pré-sinalização Ll. exemplo de agendamento de bloco de pré- sinalização Ll que é transmitido no preâmbulo. exemplo de pré-sinalização Ll onde é considerado um reforço da potência. exemplo de pré-sinalização Ll. outro exemplo de extracção de informação de modulação e código. ΡΕ2200196
Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura 100 Figura 101 Figura 102 Figura 103 Figura 104 Figura 105 90 outro exemplo de extracção de informação de modulação e código. 91 exemplo de pré-sincronização LI. 92 exemplo de pré-sinalização LI. 93 exemplo de sinalização LI. 94 exemplo de trajecto de sinalização LI. 95 exemplo de sinalização LI transmitida dentro de um cabeçalho de quadro. 96 exemplo de sinalização LI transmitida dentro de um cabeçalho de quadro. 97 exemplo de sinalização LI transmitida dentro de um cabeçalho de quadro. 98 exemplo de sinalização LI. 99 exemplo de intercalador de símbolos. desempenho de intercalação do intercalador no tempo da figura 99. exemplo de intercalador de símbolos. desempenho de intercalação do intercalador no tempo da figura 101. exemplo de desintercalador de símbolos. exemplo de intercalador no tempo. resultado de intercalação utilizando o processo mostrado na figura 104. ΡΕ2200196
Figura 106 exemplo de processo de endereçamento da figura 105. Figura 107 exemplo de intercalador no tempo LI. Figura 108 exemplo de desintercalador de símbolos. Figura 109 exemplo de desintercalador. Descrição das formas de realização preferidas Será feita agora referência pormenorizada às formas de realização preferidas da presente invenção, exemplos esses que se encontram ilustrados nos desenhos anexos. Sempre que possível, serão utilizados os mesmos números de referência em todos os desenhos para designar as mesmas ou peças semelhantes.
Na descrição a seguir, o termo "serviço" é indicativo de qualquer conteúdo difundido que pode ser transmitido/recebido pelo dispositivo de transmissão/recepção de sinal. A modulação de amplitude por quadratura (QAM) utilizando código binário Gray reflectido (BRGC) é utilizada como modulação num ambiente de transmissão de radiodifusão onde é utilizada a modulação codificada de intercalamento de bits (BICM) . A figura 1 mostra um exemplo 13 ΡΕ2200196 de 64-QAM utilizada no DVB-T europeu. 0 BRGC pode ser realizado utilizando o processo mostrado na figura 2. Um BRGC de n bits pode ser realizado pela adição de um código inverso de BRGC (n-1) bit (ou seja código reflectido) para uma traseira de (n-1) bit, adicionando Os a uma frente de BRGC (n-1) bit original, e adicionando ls a uma frente de código reflectido. 0 código BRGC feito por este processo tem uma distância Hamming, entre códigos contíguos, de um (1). Adicionalmente, guando BRGC é aplicado a QAM, a distância Hamming entre um ponto e os guatro pontos que se encontram mais próximas contíguas ao ponto, é um (1) e a distância Hamming entre o ponto e outros quatro pontos que são os segundos mais próximos contíguos ao ponto, é dois (2) . Tais características de distância Hamming entre um ponto de constelação específico e outros pontos contíguos podem ser denominadas como regra de mapeamento Gray em QAM.
Para tornar um sistema robusto contra ruído aditivo gaussiano branco (Additive White Gaussian Noise -AWGN) , a distribuição de sinais transmitidos de um transmissor pode ser feita perto da distribuição Gaussiana. Para ser passível de fazer isso, podem ser modificadas as localizações dos pontos na constelação. A figura 3 mostra uma saída próxima da gaussiana modificando 64-QAM utilizado em DVB-T. Tal constelação pode ser denominada como QAM não uniforme (NU-QAM) . ΡΕ2200196 14
Para tornar uma constelação QAM não-uniforme pode ser utilizada uma função gaussiana de distribuição cumulativa (Cumulative Distribution Function - CDF) . No caso de 64, 256, ou 1024 QAM, i.e., 2ΛΝ AMs, a QAM pode ser dividida em duas N-PAM independentes. Ao dividir a CDF gaussiana em N secções de probabilidade idêntica e ao permitir a um ponto de sinal em cada secção que represente a secção, pode ser realizada uma constelação que apresenta a distribuição gaussiana. Por outras palavras, a coordenada xj da NAPM não uniforme recém-definida, pode ser definida da seguinte forma:
(Eq. 1) A figura 3 é um exemplo de transformação 64QAM de DVB-T em NU-64QAM utilizando os processos acima. A figura 3 representa o resultado da modificação das coordenadas de cada eixo I e eixo Q utilizando os processos acima e correspondendo os pontos de constelação anteriores às recém-def inidas coordenadas. No caso de 32, 128, ou 512 QAM, i.e., QAM transversal, que não é 2ΛΝ QAM, ao modificar Pj apropriadamente, pode ser encontrada uma nova coordenada.
Uma forma de realização da presente invenção pode modificar QAM utilizando BRGC empregando as caracteristicas de BRGC. Tal como apresentado na figura 4, a distância de Hamming entre o par reflectido em BRGC é um porque difere 15 ΡΕ2200196 somente em um bit que é adicionado à frente de cada código. A figura 5 mostra as caracteristicas em QAM, onde existe o par reflectido para cada eixo I e eixo Q. Nesta figura, existe o par reflectido em cada lado da linha preta pontilhada.
Ao utilizar pares reflectidos existentes na QAM, pode ser reduzida uma potência média de uma constelação QAM mantendo simultaneamente a regra de mapeamento Gray em QAM. Por outras palavras, numa constelação onde uma potência média é normalizada como 1, pode ser aumentada na constelação a distância euclidiana mínima. Quando esta QAM modificada é aplicada aos sistemas de transmissão ou de comunicação, é possível implementar um sistema mais robusto ao ruído utilizando a mesma energia que um sistema convencional ou um sistema com o mesmo desempenho que um sistema convencional, mas que consome menos energia. A figura 6 mostra um processo para modificar QAM utilizando um par reflectido do BRGC. A figura 6a mostra uma constelação e a figura 6b mostra um fluxograma para modificar QAM utilizando um par reflectido do BRGC. Em primeiro lugar, é necessário ser encontrado entre os pontos da constelação um ponto alvo que tem a potência mais elevada. Os pontos candidatos são os pontos onde esse ponto alvo pode mover-se e são os pontos contíguos mais próximos do par reflectido do ponto alvo. Depois tem que ser encontrado entre os pontos candidatos um ponto vazio (ou seja, um ponto que ainda não está tomado por outros pontos) ΡΕ2200196 que tiver a menor potência, sendo comparadas a potência do ponto-alvo e a potência de um ponto candidato. Se a potência do ponto candidato for menor, o ponto-alvo move-se o ponto candidato. Estes processos são repetidos até que uma potência média de pontos na constelação atinja um mínimo, mantendo a regra de mapeamento Gray. A figura 7 mostra um exemplo de 64/256/1024/4096-QAM modificado. Os valores Gray correspondidos, correspondem às figuras 8~31 respectivamente. Adicionalmente a estes exemplos, podem ser realizados outros tipos de QAM modificada que permitem que possa ser realizada a optimização idêntica da potência. Isto porque um ponto de destino pode mover-se para vários pontos candidatos. A QAM modificada sugerida pode ser aplicada a, não somente a 64/256/1024/4096-QAM, mas também a QAM transversal, uma QAM de tamanho maior, ou modulações utilizando outro BRGC diferente de QAM. A figura 32 mostra um exemplo de mapeamento de bits de QAM modificada onde 256-QAM é modificada utilizando BRGC. A figura 32a e figura 32b mostram o mapeamento dos bits mais significativos {MSB) . Os pontos designados como círculos cheios representam os mapeamentos de uns e os pontos designados como círculos em branco representam os mapeamentos de zeros. De um mesmo modo, cada bit é correspondido tal como apresentado nas figuras de (a) a (h) na figura 32, até que os bits menos significativos (Least Significant Bits - LSB) estejam correspondidos. Tal como 17 ΡΕ2200196 apresentado na figura 32, a QAM modificada pode habilitar a decisão de bit utilizando somente os eixos I e Q como QAM convencional, excepto para um bit que se encontra próximo de MSB (figura 32c e figura 32d). Ao utilizar estas características, pode ser realizado um receptor simples modificando parcialmente um receptor para QAM. Pode ser implementado um receptor eficiente verificando ambos os valores I e Q somente na determinação do bit próximo do MSB e calculando somente I ou Q para o resto dos bits. Este processo pode ser aplicado para LLR aproximado, LLR exacto, ou decisão difícil.
Ao utilizar o QAM modificado ou MQAM, que utiliza as características do BRGC acima, pode ser realizada a constelação não uniforme ou NU-MQAM. Na equação acima onde é utilizada a CDF gaussiana, Pj pode ser modificado para caber MQAM. Assim como a QAM, em MQAM, podem ser considerados dois PAMs que apresentam o eixo I e eixo Q. No entanto, ao contrário de QAM onde vários pontos que correspondem a um valor de cada eixo PAM são idênticos, o número de pontos altera-se na MQAM. Se um número de pontos que corresponde ao j° valor de PAM se encontra definido como nj num MQAM onde existe um total de M pontos de constelação, então Pj pode ser definido tal como se segue:
X
(Eg. 2} 18 ΡΕ2200196
Ao utilizar o Pj recém-definido, a MQAM pode ser transformada em constelação não uniforme. Pj pode ser definido tal como se segue para o exemplo de 256-MQAM. | 2.5 >0 22 36 5 } 67 S4_ Kfâ il$.5 136.5 154 172 189 205 220 234 246 253.5 P/€ [256^256'256*256’ 256’256'256*256 ’ 256 ' 256 ’256*256*256*256’256*256’256* 256 A figura 33 é um exemplo de transformação de MQAM numa constelação não uniforme. A NU-MQAM realizada utilizando estes processos pode reter caracteristicas dos receptores MQAM com coordenadas modificadas de cada PAM. Deste modo, pode ser implementado um receptor eficiente. Adicionalmente, pode ser implementado um sistema mais robusto ao ruido do que o anterior NU-QAM. Para um sistema mais eficiente de transmissão de radiodifusão, é possível a hibridação MQAM e NU-MQAM. Por outras palavras, pode ser implementado um sistema mais robusto ao ruído utilizando MQAM para um ambiente onde um código de correcção de erro com elevada taxa de código é utilizado e empregando de outro modo NU-MQAM. Para um tal caso, um transmissor pode permitir que um receptor possua informação da taxa de código de um código de correcção de erro actualmente utilizado e um género de modulação actualmente utilizado de tal forma que o receptor pode desmodular de acordo com a modulação actualmente utilizada. A figura 34 mostra um exemplo de sistema de transmissão digital. As entradas podem incluir um número de fluxos MPEG-TS ou fluxos GSE (General Stream 19 ΡΕ2200196
Encapsulation) . Um módulo 101 de processador de entrada pode adicionar parâmetros de transmissão ao fluxo de entrada e executar o agendamento para um módulo BICM 102. O módulo BICM 102 pode adicionar redundância e intercalar dados para correcção de erros no canal de transmissão. Um construtor de quadros 103 pode construir quadros adicionando a informação de sinalização da camada física e pilotos. Um modulador 104 pode executar a modulação nos símbolos de entrada em processos eficientes. Um processador analógico 105 pode executar vários processos para converter sinais de entrada digitais em sinais de saída analógicos. A figura 35 mostra um exemplo de um processador de entrada. O fluxo de entrada MPEG-TS ou GSE pode ser transformado pelo pré-processador de entrada num total de n fluxos que serão processados independentemente. Cada um destes fluxos pode ser um quadro TS completo que inclui componentes de vários serviços ou um quadro TS mínimo que inclui componente de serviço (site é vídeo ou áudio). Além disso, cada um destes fluxos pode ser um fluxo GSE que transmite vários serviços ou um único serviço. O módulo de interface de entrada 202-1 pode atribuir vários bits de entrada iguais à capacidade máxima do campo de dados de um quadro de banda base {BB). Uma zona de preenchimento pode ser inserida para completar a capacidade do bloco de código LDPC/BCH. O módulo de sincronismo do fluxo de entrada 203-1 pode proporcionar um mecanismo para regenerar, no receptor, o relógio do fluxo 20 ΡΕ2200196 de transporte (ou fluxo genérico em pacotes), a fim de garantir taxas e atrasos de bits constantes extremidade-a-extremidade .
De modo a permitir a recombinação do fluxo de transporte sem exigir memória adicional no receptor, os fluxos de transporte de entrada são atrasados por compensadores de atraso 204-l~n considerando os parâmetros da intercalação dos PLPs de dados num grupo e o PLP comum correspondente. O módulo de apagar 205-l~n de pacote de tamanho zero pode aumentar a eficiência de transmissão através da remoção de pacotes de tamanho zero inseridos em caso de serviço VBR (variable bit rate - taxa de bits variável). Os módulos codificadores de verificação cíclica de redundância (Cyclic Redundancy Check - CRC) 206-l~n podem adicionar paridade CRC para aumentar a confiabilidade da transmissão de quadro BB. Os módulos 207-l~n de inserção de cabeçalho BB podem adicionar o cabeçalho do quadro numa parte inicial do quadro BB. A informação que pode ser incluída no cabeçalho BB encontra-se apresentada na figura 36.
Um módulo de fusão/corte 208 pode executar o corte em fatias do quadro BB de cada PLP, fundindo quadros BB de vários PLPs, e agendando cada quadro BB dentro de um quadro de transmissão. Por isso, o módulo de fusão/corte 208 pode emitir informação de sinalização LI que se refere à atribuição de PLP no quadro. Por último, um módulo misturador BB 209 pode randomizar fluxos de bits de entrada 21 ΡΕ2200196 para minimizar a correlação entre os bits dentro de fluxos de bits. Os módulos a sombreado na figura 35 são módulos usados quando o sistema de transmissão utiliza um único PLP, sendo os outros módulos na figura 35 módulos usados quando o dispositivo de transmissão utiliza vários PLPs. A figura 37 mostra um exemplo do módulo BICM. A figura 37a mostra o trajecto dos dados e a figura 37b mostra o trajecto Ll do módulo BICM. Um módulo codificador externo 301 e um módulo codificador interno 303 podem adicionar redundância a fluxos de bits de entrada para correcção de erros. Um módulo intercalador externo 302 e um módulo intercalador interno 304 podem intercalar bits para evitar erro de rajada. 0 módulo intercalador externo 302 pode ser omitido se o BICM for especificamente para DVB-C2. Um módulo desmultiplexador de bits 305 pode controlar a fiabilidade de cada bit emitido pelo módulo intercalador interno 304. Um módulo de mapeamento de símbolo 306 pode corresponder os fluxos de bits de entrada a fluxos de símbolos. Nesse momento, é possível utilizar qualquer de uma QAM convencional, uma MQAM que utiliza o BRGC acima descrito para a melhoria do desempenho, uma NU-QAM que utiliza modulação não-uniforme, ou uma NU-MQAM que utiliza BRGC aplicado de modulação não-uniforme para melhoria do desempenho. Para construir um sistema que é mais robusto contra o ruído, podem ser consideradas as combinações de modulações que utilizam MQAM e/ou NU-MQAM dependendo da taxa de código do código de correcção de erros e da capacidade de constelação. Nesse momento, o módulo de 22 ΡΕ2200196 mapeamento de símbolos 306 pode utilizar uma constelação adequada de acordo com a taxa de código e capacidade da constelação. A figura 39 mostra um exemplo de tais combinações. O caso 1 mostra um exemplo de utilização exclusiva de NU-MQAM à taxa de código baixa para implantação simplificada do sistema. O caso 2 mostra um exemplo de utilização de constelação optimizada a cada taxa de código. O transmissor pode enviar informação sobre a taxa de código do código de correcção de erros e sobre a capacidade da constelação para o receptor de tal forma que o receptor pode utilizar uma constelação adequada. A figura 4 0 mostra um outro exemplo de casos em que a compatibilidade entre os sistemas convencionais é considerada. Adicionalmente aos exemplos são possíveis combinações adicionais para optimizar o sistema. O módulo de inserção 307 do cabeçalho ModCod apresentado na figura 37 pode obter informação de retorno de codificação e modulação adaptativa (Adaptive coding and modulation - ACM) / de codificação e modulação variável (Variable coding and modulation - VCM) e adicionar informações de parâmetro utilizadas na codificação e modulação para um bloco FEC como cabeçalho. O cabeçalho do tipo de modulação/taxa de código (ModCod) pode incluir a seguinte informação: * Tipo de FEC (1 bit) - LDPC longo ou curto 23 ΡΕ2200196 * Taxa de código (3 bits)
* Modulação (3 bits) - até 64K QAM * Identificador PLP (8 bits) 0 módulo intercalador de símbolos 308 pode realizar a intercalação no domínio do símbolo para obter efeitos adicionais de intercalação. Processos semelhantes realizados no trajecto dos dados podem ser realizados no trajecto de sinalização LI mas possivelmente com parâmetros diferentes 301-1 ~ 308-1. Neste ponto pode ser utilizado, um módulo de código encurtado/puncionado (303-1) para código interno. A figura 38 mostra um exemplo de codificação LDPC utilizando encurtamento / puncionagem. O processo de encurtamento pode ser realizado em blocos de entrada que apresentam menos bits do que um número necessário de bits para a codificação LDPC dado que tantos zero bits necessários para a codificação LDPC podem ser colocados em zonas de preenchimento (301c). Fluxos de bits de entrada de zonas de preenchimento a zero podem apresentar bits de paridade através da codificação LDPC (302c) . Nesse momento, para fluxos de bits que correspondem a fluxos de bits originais, os zeros podem ser removidos (303c) e para fluxos de bits de paridade, o puncionamento (304C) pode ser executado de acordo com as taxas de código. Estes fluxos processados de bits de informação e fluxos de bits de paridade podem ser multiplexados em sequências originais e emitidos (305c). 24 ΡΕ2200196 A figura 41 mostra uma estrutura de quadro que compreende o preâmbulo para a sinalização LI e símbolo de dados para dados PLP. Pode-se observar que o preâmbulo e os símbolos de dados são gerados ciclicamente, utilizando um quadro como uma unidade. Os símbolos de dados incluem PLP tipo 0 que é transmitido utilizando uma modulação/codificação fixa e PLP tipo 1 que é transmitido utilizando uma modulação/codificação variável. Para PLP tipo 0, a informação tal como a modulação, tipo de FEC, e taxa de código FEC são transmitidos no preâmbulo (veja figura 42 inserção de cabeçalho do quadro 401) . Para PLP tipo 1, a informação correspondente pode ser transmitida num cabeçalho de bloco FEC de um símbolo de dados (veja figura 37 inserção do cabeçalho ModCod 307). Pela separação de tipos PLP, a informação complementar do ModCod pode ser reduzida em 3~4% de uma taxa de transmissão total, para PLP typeO que é transmitido a uma taxa de bits fixa. Num receptor, para a modulação fixa/codificação PLP do PLP tipo 0, o removedor de cabeçalho do quadro r401 apresentado na figura 63 pode extrair informação sobre a modulação e taxa do código FEC e fornecer a informação extraída a um módulo de descodificação BICM. Para modulação/codificação variável PLP do PLP tipo 1, os módulos de extracção ModCod, r307 e r307-l apresentados na figura 64 pode extrair e fornecer os parâmetros necessários para a descodificação BICM. A figura 42 mostra um exemplo de um construtor de quadros. Um módulo de inserção de cabeçalho de quadro 401 25 ΡΕ2200196 pode construir um quadro de fluxos de símbolos de entrada e pode adicionar o cabeçalho do quadro na frente de cada quadro transmitido. 0 cabeçalho do quadro pode incluir a seguinte informação: * Number of bonded channels (4 bits) * Guard interval (2 bits) * PAPR (2 bits) * Pilot pattern (2 bits) * Digital System Identification (16 bits) * Frame Identification (16 bits) * Frame length (16 bits) - number of Orthogonal Frequency Division Multiplexing (OFDM) symbols per frame * Superframe length (16 bits) - number of frames per superframe * number of PLPs (8 bits)
* for each PLP PLP Identification (8 bits)
Channel bonding id (4 bits) PLP start (9 bits) PLP type (2 bits) - common PLP or others PLP payload type (5 bits) MC type (1 bit) - fixed/variable modulation & coding íf MC type == fixed modulation & coding FEC type (1 bits) - long or short LDPC Coderate (3 bits)
Modulation (3 bits) - up-to 64K QAM end if; 26 ΡΕ2200196
Number of notch channels (2 bits) for each notch
Notch start (9 bits)
Notch width (9 bits) end for; PLP width (9 bits) - max number of FEC blocks of PLP PLP time interleaving type (2 bits) end for; * CRC-32 (32 bits) 0 ambiente de ligação de canal é assumido para informação LI transmitida no cabeçalho do quadro, sendo os dados que correspondem a cada fatia de dados definidos como PLP. Por isso, a informação tal como o identificador PLP, identificador de ligação de canal, e endereço de inicio de PLP é necessária para cada canal utilizado na ligação. Uma forma de realização da presente invenção sugere transmitir o campo ModCod no cabeçalho do quadro FEC se o tipo PLP suportar modulação variável/codificação e transmitir campo ModCod no cabeçalho do quadro se o tipo PLP suportar modulação fixa/codificação para reduzir a informação complementar da sinalização. Adicionalmente, se existir uma banda de entalhe para cada PLP, ao transmitir o endereço de inicio do entalhe e a sua largura, podem tornar-se desnecessárias as portadoras correspondentes de descodificação no receptor. A figura 43 mostra um exemplo de padrão piloto 5 {PP5) aplicado num ambiente de ligação de canal. Tal como 27 ΡΕ2200196 apresentado, se as posições SP forem coincidentes com as posições do preâmbulo piloto, pode surgir uma estrutura piloto irregular. A figura 43a mostra um exemplo de módulo de inserção de piloto 404 tal como apresentado na figura 42. Tal como representado na figura 43, se for utilizada uma banda de uma só frequência (por exemplo 8 MHz), a largura de banda disponível é de 7,61 MHz, mas se se encontrarem ligadas várias bandas de frequência, as bandas de guarda pode ser removidas, sendo que, deste modo, a eficiência da frequência pode aumentar consideravelmente. A figura 43b é um exemplo do módulo de inserção do preâmbulo 504 tal como apresentado na figura 51 que é transmitido na parte frontal do quadro e mesmo com ligação de canal , o preâmbulo apresenta uma taxa de repetição de 7, 61 MHz, que é a largura de banda do bloco LI. Esta é uma estrutura considerando a largura de banda de um sintonizador que executa o varrimento inicial do canal.
Existem padrões piloto para ambos, o preâmbulo, e os símbolos de dados. Para símbolo de dados, podem ser usados padrões piloto difundidos (scattered pilot - SP) . Os padrões piloto 5 {PP5) e padrões piloto 7 {PP7) de T2 podem ser bons candidatos para a interpolação somente de frequência. PPb tem x=12, y=4, z=48 para (71=1/64 e ΡΡΊ tem x=24, y=4, z=96 para (71=1/128. É também possível interpolação adicional no tempo para uma melhor estimativa de canal. Os padrões piloto para preâmbulo podem cobrir 28 ΡΕ2200196 todas as posições piloto possíveis para a aquisição inicial do canal. Adicionalmente, as posições do preâmbulo piloto devem ser coincidentes com as posições SP, sendo desejado um padrão piloto único para ambos, o preâmbulo e o SP. Os preâmbulos piloto podem também ser utilizados para a interpolação no tempo e todos os preâmbulos podem apresentar um padrão piloto idêntico. Estes requisitos são importantes para a detecção de C2 no varrimento e necessários para a estimativa offset da frequência com correlação da sequência de codificação. Num ambiente de ligação de canal, a coincidência nas posições piloto deve também ser mantida para a ligação do canal porque a estrutura piloto irregular pode prejudicar o desempenho da interpolação.
Em pormenor, se uma distância z entre pilotos difundidos (SPs) num símbolo OFDM for de 48 e se uma distância y entre SPs que correspondem a uma portadora SP específica ao longo do eixo do tempo for de 4, uma distância efectiva x após a interpolação no tempo torna-se 12. Isto é quando a fracção do intervalo de guarda (GJ) é de 1/64. Se a fracção GJ for de 1/128, pode ser utilizado x=24, y=4, e z=96. Se a fracção GJ for de 1/128, pode ser utilizado x=24, y=4, e z=96. Se for utilizada a ligação de canal, as posições SP podem ser realizadas coincidentes com as posições do preâmbulo piloto gerando pontos não-contínuos na estrutura piloto difundida.
Nesse momento, as posições do preâmbulo piloto 29 ΡΕ2200196 podem ser coincidentes com todas as posições de SP do símbolo de dados. Quando é utilizada a ligação do canal, a fatia de dados onde um serviço é transmitido, pode ser determinada independentemente da granularidade da largura de banda de 8 MHz. Contudo, para reduzir a informação complementar para o endereçamento da fatia de dados, pode ser escolhida a transmissão que inicia na posição SP e que termina na posição SP.
Quando um receptor recebe tais SPs, se necessário, o módulo da estimativa de canal r501 apresentado na figura 62 pode executar a interpolação no tempo para obter os pilotos apresentados em linhas a ponteado na figura 43 e executar a interpolação da frequência. Nesse momento, para os pontos não-contínuos dos quais os intervalos se encontram assinalados como 32 na figura 43, pode ser implementada a execução de interpolações à esquerda e direita separadamente ou executar interpolações em apenas um lado, executando depois a interpolação no outro lado utilizando as posições piloto já interpoladas, em que pode ser implementado o intervalo de 12 como ponto de referência. Nesse momento, a largura da fatia de dados pode variar dentro de 7,61 MHz, sendo que deste modo um receptor pode minimizar o consumo de energia executando a estimativa de canal e descodificando apenas as subportadoras necessárias. A figura 44 mostra um outro exemplo de PP 5 aplicado no ambiente de ligação de canal ou uma estrutura 30 ΡΕ2200196 de SP para manter a distância efectiva x como 12 para evitar a estrutura SP irregular apresentada na figura 43 quando é utilizada a ligação de canal. A figura 44a é uma estrutura de SP para o símbolo de dados e a figura 44b é uma estrutura de SP para o símbolo de preâmbulo.
Tal como apresentado, se a distância SP for mantida consistente em caso de ligação de canal, não haverá qualquer problema na interpolação da frequência mas as posições piloto entre os símbolos de dados e preâmbulo podem não ser coincidentes. Por outras palavras, esta estrutura não necessita de estimativa adicional de canal para uma estrutura SP irregular, no entanto, as posições SP utilizadas na ligação de canal e posições do preâmbulo piloto tornam-se diferentes para cada canal. A figura 45 mostra uma nova estrutura SP ou PP5' para proporcionar uma solução aos dois problemas acima mencionados no ambiente de ligação de canal. Especificamente, uma distância piloto de x=16 pode solucionar aqueles problemas. Para preservar a densidade piloto ou para manter a mesma informação complementar, um PP5' pode apresentar x=16, y=3, z=48 para GX=l/64 e um PP7' pode apresentar x=16, y=6, z=96 para <31=1/128. A capacidade de interpolação somente da frequência pode ainda ser mantida. As posições piloto encontram-se representadas na figura 45 para comparação com a estrutura PP5. A figura 4 6 mostra um exemplo de um novo padrão 31 ΡΕ2200196 SP ou estrutura PP5 em ambiente de ligação de canal. Tal como apresentado na figura 46, se for utilizado um canal simples ou ligação de canal, pode ser proporcionada uma distância piloto x=16 eficaz. Adicionalmente, porque as posições SP podem ser realizadas coincidentes com as posições do preâmbulo piloto, pode ser evitada a deterioração da estimativa do canal provocada pela irregularidade SP ou posições SP não coincidentes. Por outras palavras, não existe qualquer posição SP irregular para o interpolador de frequência, encontrando-se proporcionada a coincidência entre o preâmbulo e as posições SP.
Consequentemente, os novos padrões SP propostos podem ser vantajosos em que um único padrão SP pode ser utilizado para ambos o canal único e canal ligado; não pode ser provocada qualquer estrutura piloto irregular, sendo deste modo possível uma boa estimativa de canal; ambas as posições do preâmbulo e as posições piloto SP podem ser mantidas coincidentes, a densidade dos pilotos pode ser mantida a mesma que para PP5 e PPl respectivamente, podendo também ser preservada a capacidade de interpolação somente da frequência.
Adicionalmente, a estrutura do preâmbulo pode corresponder aos requisitos de modo que as posições do preâmbulo piloto devem cobrir todas as posições SP possíveis para aquisição inicial do canal; o número máximo de portadoras deve ser de 3409 (7,61 MHz) para o varrimento 32 ΡΕ2200196 inicial; exactamente os mesmos padrões piloto e sequência de codificação devem ser utilizados para detecção de C2, não sendo necessário nenhum preâmbulo especifico de detecção tal como PI em T2.
Em termos de relação com a estrutura do quadro, a granularidade da posição da fatia de dados pode ser alterada para 16 portadoras em vez de 12, sendo que deste modo pode surgir menos informação complementar para endereçamento de posição, não se esperando qualquer outro problema no que se refere à condição da fatia de dados, podendo ser esperada condição de ranhura zero, etc.
Por isso, no módulo de estimativa de canal r501 da figura 62, os pilotos em todos os preâmbulos podem ser utilizados quando é executada a interpolação no tempo SP dos símbolos de dados. Por isso, a aquisição de canal e estimativa de canal nos limites do quadro podem ser melhoradas.
Agora, no que se refere aos requisitos relacionados com o preâmbulo e a estrutura piloto, existe consenso em que as posições dos preâmbulos piloto e SPs devem coincidir independentemente da ligação do canal; o número total de portadoras no bloco LI deve ser divisível pela distância piloto para evitar a estrutura irregular na extremidade da banda; os blocos LI devem ser repetidos no domínio da frequência; e os blocos LI devem ser sempre descodificáveis na posição da janela de sintonia 33 ΡΕ2200196 arbitrária. Os requisitos adicionais deveriam ser que as posições piloto e padrões devem ser repetidos por períodos de 8 MHz; o desvio correcto da frequência portadora deve ser estimado sem o conhecimento da ligação de canal; e a descodificação Ll (reordenamento) impossível antes de o desvio da frequência ser compensado. A figura 47 mostra um relacionamento entre o símbolo de dados e preâmbulo quando são utilizadas as estruturas do preâmbulo tal como apresentado na figura 52 e figura 53. O bloco LI pode ser repetido por períodos de 6 MHz. Para a descodificação Ll, devem ser encontrados tanto o desvio da frequência como o padrão da deslocação do preâmbulo. A descodificação Ll não é possível na posição arbitrária do sintonizador sem informação sobre a ligação de canal e um receptor não consegue diferenciar entre o valor de deslocação do preâmbulo e desvio da frequência.
Deste modo, um receptor, especificamente para o removedor r401 do cabeçalho do quadro apresentado na figura 63 para executar a descodificação de sinal Ll, tem que ser obtida a estrutura de ligação de canal. Dado que é conhecida a quantidade esperada de deslocação do preâmbulo em duas regiões sombreadas verticalmente na figura 47, o módulo de sincronização tempo/frequência r505 na figura 62 pode estimar o desvio da frequência portadora. Com base na estimativa, o trajecto de sinalização Ll (r308-l- r301-l) na figura 64 pode descodificar Ll. 34 ΡΕ2200196 A figura 48 mostra um relacionamento entre o símbolo de dados e o preâmbulo quando é utilizada a estrutura de preâmbulo tal como apresentada na figura 55. 0 bloco LI pode ser repetido por períodos de 8 MHz. Para a descodificação LI é necessário ser encontrado somente o desvio da frequência, sendo que pode não ser necessário o conhecimento da ligação do canal. 0 desvio da frequência pode ser facilmente estimado utilizando uma sequência binária pseudo-aleatória (Pseudo Random Binary Sequence -PRBS) . Tal como apresentado na figura 48, o preâmbulo e símbolos de dados encontram-se alinhados, sendo que deste modo a procura da sincronização adicional pode tornar-se desnecessária. Por isso, para um receptor, especificamente para o módulo removedor r401 do cabeçalho do quadro apresentado na figura 63, é possível que tenha que ser obtido somente o pico de correlação com sequência de codificação do piloto para executar a descodificação do sinal LI. 0 módulo de sincronização tempo/frequência r505 na figura 62 pode estimar o desvio da frequência portadora da posição pico. A figura 49 mostra um exemplo de perfil de atraso de canal por cabo.
Do ponto de vista da concepção piloto, o GI actual já sobreprotege a dispersão dos tempos de propagação do canal de cabo. No pior dos casos, redesenhar o modelo de canal pode ser uma opção. Para repetir o padrão exactamente a cada 8 MHz, a distância piloto deve ser um divisor de 35 ΡΕ2200196 3584 portadoras (z=32 ou 56). Uma densidade piloto de z=32 pode aumentar a informação complementar piloto, deste modo pode ser escolhido z=56. Uma cobertura do tempo de propagação ligeiramente menor pode não ser importante no canal de cabo. Por exemplo, pode ser 8 ps para PP5' e 4 ps para PP 1' comparado com 9,3 ps (PP5) e 4,7 ps (PP7) . Atrasos significativos podem ser cobertos por ambos os padrões piloto no pior dos casos. Para a posição do preâmbulo piloto, não são necessários mais do que todas as posições SP no símbolo de dados.
Se o trajecto de atraso de -40 dB puder ser ignorado, a distribuição actual dos tempos de propagação pode tornar-se 2,5 ps, 1/64 GI = 7 ps, ou 1/128 GI = 3,5 ps. Isso mostra que o parâmetro da distância piloto, z=56 pode ser um valor suficientemente bom. Adicionalmente, z=56 pode ser um valor conveniente para estruturar o padrão piloto que permite a estrutura preâmbulo apresentada na figura 48. A figura 50 mostra uma estrutura piloto dispersa que utiliza z=56 e Z=112 que é construída no módulo de inserção de piloto 404 na figura 42. São propostos PPb' II >1 \—1 II X z=56) e ΡΡΊ' (x=28, y=4, z=l12) . Podem ser inseridas portadoras de extremidade para o fecho da extremidade.
Tal como apresentado na figura 50, os pilotos encontram-se alinhados a 8 MHz de cada extremidade da 36 ΡΕ2200196 banda, podendo cada posição piloto e estrutura piloto ser repetida a cada 8 MHz. Deste modo, esta estrutura pode suportar a estrutura do preâmbulo apresentada na figura 48. Adicionalmente, pode ser utilizada uma estrutura piloto comum entre o preâmbulo e símbolos de dados. Por isso, o módulo de estimativa de canal r501 na figura 62 pode executar a estimativa de canal utilizando a interpolação no preâmbulo e símbolos de dados porque não pode surgir qualquer padrão piloto irregular, independentemente da posição da janela que é decidida pelos locais das fatias de dados. Nesse momento, utilizar somente a interpolação na frequência pode ser suficiente para compensar a distorção de canal da dispersão dos tempos de propagação. Se a interpolação no tempo for adicionalmente executada, pode ser realizada uma estimativa de canal mais precisa.
Por conseguinte, no novo padrão piloto proposto, a posição piloto e padrão podem ser repetidos com base num período de 8 MHz. Pode ser utilizado um único padrão piloto para ambos, o preâmbulo e os símbolos de dados. A descodificação LI pode sempre ser possível sem o conhecimento da ligação do canal. Adicionalmente, o padrão-piloto proposto pode não afectar vulgarmente com T2 porque pode ser utilizada a mesma estratégia piloto de padrão piloto difundido; T2 já utiliza 8 padrões piloto diferentes, sendo que nenhuma complexidade significativa do receptor pode ser aumentada por padrões piloto modificados. Para uma sequência de codificação piloto, o período de PRBS pode ser 2047 (sequência-m) ; a geração de PRBS pode ser 37 ΡΕ2200196 reinicializada a cada 8 MHz, em que o período é de 3584; a taxa de repetição piloto de 56 pode ser também co-primo com 2047; não sendo esperado qualquer problema PAPR . A fiqura 51 mostra um exemplo de um modulador baseado em OFDM. Os fluxos de símbolos de entrada podem ser transformados em domínio do tempo pelo módulo IFFT 501. Se necessário, a relação potência de pico/potência média (peak-to-average power ratío - PAPR ) pode ser reduzida no módulo 502 redutor de PAPR . Para os processos PAPR , podem ser utilizadas a extensão da constelação activa (ACE) ou reserva de tom. O módulo insersor de GI 503 pode copiar uma última parte do símbolo OFDM efectivo para preencher o intervalo de guarda numa forma de prefixo cíclico. O módulo insersor de preâmbulo 504 pode inserir preâmbulo na frente de cada quadro transmitido de modo que um receptor pode detectar o sinal digital, quadro e adquirir a aquisição do desvio de tempo/frequência. Nesse momento, o sinal do preâmbulo pode executar a sinalização da camada física tal como dimensão FFT (3 bits) e dimensão de intervalo de guarda (3 bits) . O módulo de inserção do preâmbulo 504 pode ser omitido se o modulador for especificamente para DVB-C2. em qualquer A figura 52 mostra um exemplo de uma estrutura de preâmbulo para ligação de canal, gerado no módulo de inserção do preâmbulo 504 na figura 51. Um bloco LI completo deve ser "sempre descodificável" 38 ΡΕ2200196 posição arbitrária de janela de sintonia 7,61 MHz e não deve ter lugar qualquer perda da sinalização LI independentemente da posição da janela do sintonizador. Tal como apresentado, os blocos LI podem ser repetidos no domínio da frequência por períodos de 6 MHz. 0 símbolo de dados pode ser ligado por canal a cada canal de 8 MHz. Se, para a descodificação LI, um receptor utilizar um sintonizador tal como o sintonizador r603 representado na figura 61 que utiliza uma largura de banda de 7,61 MHz, o removedor de cabeçalho r401 de quadro na figura 63 precisa de reorganizar o bloco recebido LI deslocado ciclicamente (figura 53) para a sua forma original. Este rearranjo é possível porque o bloco LI é repetido para cada bloco de 6MHz. A figura 53a pode ser reordenada transformando-se na figura 53b. A figura 54 mostra um processo para conceber um preâmbulo mais optimizado. A estrutura de preâmbulo da figura 52 utiliza apenas 6MHz de largura de banda total de 7,61 MHz do sintonizador para descodificação LI. Em termos de eficiência de espectro, a largura de banda de 7, 61 MHz não é totalmente utilizada. Portanto, pode haver uma maior optimização na eficiência espectral. A figura 55 mostra um outro exemplo da estrutura preâmbulo ou estrutura preâmbulo dos símbolos para a eficiência completa do espectro, gerada no módulo 401 de inserção do cabeçalho no quadro na figura 42. Tal como o símbolo de dados, os blocos LI podem ser repetidos no 39 ΡΕ2200196 domínio da frequência por períodos de 8 MHz. Um bloco Ll completo encontra-se ainda "sempre descodificável" em qualquer posição arbitrária da janela de sintonia de 7,61 MHz. Após a sintonia, os dados a 7,61 MHz podem ser vistos como um código virtualmente puncionado. Tendo exactamente a mesma largura de banda para ambos o preâmbulo e os símbolos de dados e exactamente a mesma estrutura piloto para ambos o preâmbulo e símbolos de dados, pode maximizar a eficiência do espectro. Outras características tais como a propriedade deslocada ciclicamente e não enviar o bloco LI em caso de não haver fatias de dados, podem ser mantidas inalteradas. Por outras palavras, a largura de banda dos símbolos preâmbulo pode ser idêntica à largura de banda dos símbolos de dados ou, tal como apresentado na figura 57, a largura de banda dos símbolos preâmbulo pode ser a largura de banda do sintonizador (aqui é de 7,61 MHz). A largura de banda do sintonizador pode ser definida como uma largura de banda que corresponde a um número de portadoras activas totais quando é utilizado um único canal. Quer dizer, a largura de banda do símbolo preâmbulo pode corresponder ao número de portadoras activas totais (aqui é de 7,61 MHz). A figura 56 mostra um código virtualmente puncionado. Os dados de 7,61 MHz entre o bloco Ll de 8 MHz pode ser considerado como código puncionado. Quando um sintonizador r603 mostrado na figura 61 utiliza uma largura de banda de 7,61 MHz para a descodificação Ll, o removedor de cabeçalho r401 de quadro na figura 63 precisa de reorganizar o bloco Ll recebido, deslocado ciclicamente 40 ΡΕ2200196 para a sua forma original tal como apresentado na figura 56. Nesse momento, é executada a descodificação LI utilizando toda a largura de banda do sintonizador. Assim que o bloco LI estiver rearranjado, um espectro do bloco LI reorganizado pode apresentar uma região em branco dentro do espectro tal como apresentado na parte superior direita da figura 56 porque um tamanho original do bloco LI apresenta 8 MHz de largura de banda.
Assim que a região vazia se encontrar preenchida com zeros, após o desintercalamento no domínio dos símbolos pelo desintercalador de frequência r403 na figura 63 ou pelo desintercalador de símbolos r308-l na figura 64 ou após o desintercalamento no domínio de bits pelo desmapeador de símbolos r306-l, multiplexador de bits 305-1, e desintercalador interno r304-l na figura 64, o bloco pode apresentar uma forma que parece ser puncionada tal como apresentado no lado direito inferior da figura 56.
Este bloco LI pode ser descodificado no módulo de descodificação puncionado/encurtado r303-l na figura 64. Ao utilizar esta estrutura preâmbulo, pode ser utilizada toda a largura de banda do sintonizador, podendo deste modo ser aumentados a eficiência do espectro e o ganho da codificação. Adicionalmente pode ser utilizada uma largura de banda idêntica e estrutura piloto comum para o preâmbulo e símbolos de dados.
Adicionalmente, se a largura de banda do 41 ΡΕ2200196 preâmbulo ou a largura de banda dos símbolos do preâmbulo se encontrar definida como uma largura de banda de sintonizador como apresentado na figura 58, (é de 7,61 MHz no exemplo) , pode ser obtido um bloco Ll completo após a reorganização mesmo sem o puncionamento. Por outras palavras, para um quadro que apresenta símbolos de preâmbulo, onde os símbolos do preâmbulo apresentam pelo menos um bloco de camada 1 {Ll), pode-se dizer que o bloco LI tem 3408 subportadoras activas e as 3408 subportadoras activas correspondem a 7,61 MHz de 8MHz de banda de frequência de rádio (RF).
Deste modo, a eficiência do espectro e desempenho da descodificação Ll pode ser maximizada. Por outras palavras, no receptor, a descodificação pode ser realizada no módulo descodificador puncionado/encurtado r303-l na figura 64, após a realização de apenas desintercalamento no domínio dos símbolos.
Consequentemente, a nova estrutura preâmbulo proposta pode ser vantajosa por ser totalmente compatível com o preâmbulo utilizado anteriormente excepto que a largura de banda é diferente; os blocos Ll são repetidos por períodos de 8 MHz; o bloco Ll pode ser sempre descodificável independentemente da posição da janela do sintonizador; pode ser utilizada para descodificação Ll a largura de banda completa do sintonizador; a eficiência máxima do espectro pode garantir mais ganho de código; o bloco Ll incompleto pode ser considerado como codificado 42 ΡΕ2200196 puncionado; pode ser utilizada uma estrutura piloto simples e a mesma para ambos, o preâmbulo, e os dados; e largura de banda idêntica pode ser utilizada para ambos o preâmbulo e dados. A figura 59 mostra um exemplo de um processador analógico. Um módulo DAC 601 pode converter uma entrada de sinal digital em sinal analógico. Após a largura de banda da frequência de transmissão ter sido convertida para cima (602) e filtrada analogicamente (603) o sinal pode ser transmitido. A figura 60 mostra um exemplo de um sistema de recepção digital. O sinal recebido é convertido em sinal digital num módulo rl05 de processo analógico. Um desmodulador rl04 pode converter o sinal em dados no domínio da frequência. Um analisador de quadros rl03 pode remover pilotos e cabeçalhos e activar a selecção de informação de serviço que necessita de ser descodificada. Um desmodulador BICM rl02 pode corrigir erros no canal de transmissão. Um processador de saída rlOl pode restaurar o fluxo de serviço transmitido originalmente e informação de temporização. A figura 61 mostra um exemplo de processador analógico utilizado no receptor. Um módulo/sintonizador AGC r603 pode seleccionar a largura de banda de frequência desejada a partir do sinal recebido. Um módulo de conversão para baixo r602 pode restaurar a banda de base. Um módulo 43 ΡΕ2200196 ADC r601 pode converter um sinal analógico em sinal digital. A figura 62 mostra um exemplo de desmodulador. Um módulo de detecção de quadro r506 pode detectar o preâmbulo, verificar se existe um sinal digital correspondente, e detectar o inicio de um quadro. Um módulo de sincronização de tempo/frequência r505 pode executar a sincronização nos domínios do tempo e frequência. Nesse momento, para a sincronização no domínio do tempo, pode ser utilizada uma correlação de intervalo de guarda. Para a sincronização no domínio da frequência, pode ser utilizada a correlação ou o desvio pode ser estimado a partir da informação da fase de uma subportadora que é transmitida no domínio da frequência. Um módulo removedor de preâmbulo r504 pode remover o preâmbulo da frente do quadro detectado. Um módulo de remoção de GJ, r503, pode remover o intervalo de guarda. Um módulo FFT, r501, pode transformar o sinal no domínio do tempo em sinal no domínio da frequência. Um módulo de estimativa/equalização de canal r501 pode compensar erros estimando a distorção no canal de transmissão utilizando o símbolo piloto. 0 módulo de remoção do preâmbulo r504 pode ser omitido se o desmodulador for especificamente para DVB-C2. A figura 63 mostra um exemplo de analisador de quadros. Um módulo removedor de piloto r404 pode remover símbolo piloto. Um módulo de desintercalamento de frequência r403 pode executar o desintercalamento no 44 ΡΕ2200196 domínio da frequência. Um concentrador de símbolos OFDM r402 pode restaurar o quadro de dados de fluxos de símbolos transmitidos em símbolos OFDM. Um módulo r401 removedor de cabeçalho de quadro pode extrair sinalização de camada física do cabeçalho de cada quadro transmitido e remover o cabeçalho. A informação extraída pode ser utilizada como parâmetros para os seguintes processos no receptor. A figura 64 mostra um exemplo de um desmodulador BICM. A figura 64a mostra um trajecto de dados e a figura 64b mostra um trajecto de sinalização LI. Um desintercalador de símbolos r308 pode executar o desintercalamento no domínio dos símbolos. Um extracto ModCod r307 pode extrair parâmetros ModCod da frente de cada quadro BB e tornar os parâmetros disponíveis para a seguinte desmodulação adaptativa/variável e processos de descodificação. Um desmapeador r306 de símbolo pode desmapear fluxos símbolos de entrada transformando em fluxos de bits Log-Likelyhood Ratio (LLR) . Os fluxos LLR de bits de saída podem ser calculados utilizando uma constelação utilizada num mapeador de símbolos 306 do transmissor como ponto de referência. Neste ponto, quando é utilizado o anteriormente referido MQAM ou NU-MQAM, ao calcular ambos o eixo I e eixo Q quando se calcula o bit mais próximo de MSB e ao calcular o eixo I ou eixo Q quando se calcula os bits residuais, pode ser implementado um desmapeador de símbolos eficiente. Este processo pode ser aplicado a, por exemplo, LLR aproximado, LLR exacto, ou decisão difícil. 45 ΡΕ2200196
Quando é utilizada uma constelação optimizada de acordo com a capacidade da constelação e taxa de código do código de correcção de erro no mapeador de símbolos 306 do transmissor, o desmapeador de símbolos r306 do receptor pode obter uma constelação utilizando a taxa de código e informação sobre a capacidade da constelação transmitida do transmissor. O multiplexador de bits r305 do receptor pode executar uma função inversa do desmultiplexador de bits 305 do transmissor. O desintercalador interno r304 e desintercalador externo r302 do receptor pode executar funções inversas do intercalador interno 304 e intercalador externo 302 do transmissor, para obter respectivamente a corrente de bits na sua sequência original. O desintercalador externo r302 pode ser omitido se o desmodulador BICM for especificamente para DVB-C2. O descodificador interno r303 e o descodificador externo r301 do receptor podem executar os processos de descodificação correspondentes para o codificador interno 303 e código externo 301 do transmissor, respectivamente, para corrigir erros no canal de transmissão. Processos semelhantes realizados no trajecto dos dados podem ser realizados no trajecto de sinalização Ll mas com parâmetros diferentes 308-1 ~ 301-1. Neste ponto, tal como explicado na parte do preâmbulo, pode ser utilizado um módulo de código encurtado/puncionado r303-l para descodificação do sinal Ll. 46 ΡΕ2200196 A figura 65 mostra um exemplo de descodificação LDPC utilizando encurtamento / puncionagem. Um desmultiplexador r301a a pode emitir separadamente parte de informação e parte de paridade de código sistemático a partir de fluxos de bits de entrada. Para a parte de informação, pode ser realizada uma zona de preenchimento a zero (r302a) de acordo com uma série de fluxos de bits de entrada do descodificador LDPC, para a parte da paridade, fluxos de bits de entrada para (r303a) o descodificador LDPC podem ser gerados por despuncionagem da parte puncionada. A descodificação LDPC (r304a) pode ser executada em fluxos de bits gerados, podendo ser removidos os zeros na parte da informação e emitidos (r305a). A figura 66 mostra um exemplo de processador de salda. Um descodificador BB, r209, pode restaurar fluxos de bits codificados (209) no transmissor. Um divisor r208 pode restaurar quadros BB que correspondem a vários PLP's que são multiplexados e transmitidos a partir do transmissor de acordo com o trajecto PLP. Para cada trajecto PLP, um removedor de cabeçalho BB r207-l~n pode remover o cabeçalho que é transmitido na frente do quadro BB. Um descodificador CRC r206-l~n pode executar a descodificação CRC e tornar quadros BB fiáveis, disponíveis para selecção. Um módulo de inserção de pacote zero r205-l~n pode restaurar pacotes zero que foram removidos para uma maior eficiência de transmissão no seu local original. Um módulo de recuperação de atraso r204-l~n pode restaurar um tempo de propagação que existe entre cada trajecto PLP. 47 ΡΕ2200196
Um módulo de recuperação de relógio de saída r203-l~n pode restaurar a temporização original do fluxo de serviço a partir da informação de temporização transmitida do módulo de sincronização 203-l~n do fluxo de entrada. Um módulo de interface de saída r202-l~n pode restaurar dados em pacote TS/GS de fluxos de bits de entrada que se encontram divididos em parcelas no quadro BB. Um módulo de pós-processamento de saída r201-l~n pode restaurar vários fluxos TS/GS convertendo-os num fluxo TS/GS completo, se necessário. Os blocos sombreados mostrados na figura 66 representam módulos que podem ser usados quando um único PLP é processado num período e o resto dos blocos representam os módulos que podem ser utilizados quando vários PLPs são simultaneamente processados.
Os padrões do preâmbulo piloto foram cuidadosamente projectados para evitar o aumento PAPR , sendo que, deste modo, se a taxa de repetição Ll aumentar é necessário ser considerado o PAPR . 0 número de bits de informação Ll varia dinamicamente de acordo com a ligação de canal, o número de PLPs, etc. Em pormenor, é necessário considerar coisas tais como o tamanho fixo do bloco Ll pode introduzir informação complementar desnecessária; a sinalização Ll deve ser protegida mais fortemente do que os símbolos de dados; e a intercalação no tempo do bloco Ll pode melhorar a robustez em relação a danos no canal tal como a necessidade de ruído impulsivo.
Para uma taxa de repetição de bloco Ll de 8 MHz, 48 ΡΕ2200196 tal como apresentado na figura 67 é exibida a eficiência do espectro completo (26,8% de aumento de BW) com puncionamento virtual mas o PAPR pode ser ampliado dado que a largura de banda LI é a mesma que a dos símbolos de dados. Para a taxa de repetição de 8 MHz, pode ser utilizado a intercalação de frequência 4K-FFT DVB-T2 para a uniformização, podendo o mesmo padrão repetir-se a um período de 8 MHz após a intercalação.
Para uma taxa de repetição de bloco LI de 6 MHz, tal como apresentado na figura 68, pode ser exibida uma eficiência reduzida de espectro sem puncionamento virtual. Pode ocorrer um problema semelhante de PAPR como para o caso de 8MHz dado que as larguras de banda de LI e dos símbolos de dados partilham LCM= 24 MHz. Para a taxa de repetição de 6 MHz, pode ser utilizado a intercalação de frequência 4K-FFT DVB-T2 para a uniformização, podendo o mesmo padrão repetir-se a um período de 24 MHz após a intercalação. A figura 69 mostra uma nova taxa de repetição de bloco LI de 7,61 MHz ou uma largura de banda completa de sintonizador. Uma eficiência de espectro largo (aumento de 26.8% de BW) pode ser obtida sem puncionamento virtual. Não pode haver qualquer problema com o PAPR dado que LI e larguras de banda de símbolo de dados partilham LCM 1704 MHz. Para a taxa de repetição de 7,61 MHz, pode ser utilizado a intercalação de frequência 4K-FFT DVB-T2 para a uniformização, podendo o mesmo padrão repetir-se a um 49 ΡΕ2200196 período de cerca de 1704 MHz após a intercalação. A figura 70 é um exemplo de sinalização Ll que é transmitida no cabeçalho do quadro. Cada informação na sinalização LI pode ser transmitida para o receptor e pode ser utilizada como um parâmetro de descodificação. Em especial, a informação pode ser utilizada no trajecto de sinal Ll apresentado na figura 64, podendo os PLPs ser transmitidos em cada fatia de dados. Pode ser obtido um aumento da robustez para cada PLP. A figura 72 é um exemplo de um intercalador de símbolos 308-1 tal como apresentado no trajecto de sinalização Ll na figura 37 e também pode ser um exemplo do seu desintercalador de símbolos r308-l correspondente tal como apresentado no trajecto de sinalização Ll na figura 64. Os blocos com linhas inclinadas representam blocos Ll e os blocos sólidos representam portadoras de dados. Os blocos Ll podem ser transmitidos não somente dentro de um único preâmbulo, mas também podem ser transmitidos dentro de vários blocos OFDM. Dependendo do tamanho do bloco Ll, o tamanho do bloco de intercalamento pode variar. Por outras palavras, num_Ll_sym e amplitude Ll podem ser diferentes umas das outras. Para minimizar a informação complementar desnecessária, podem ser transmitidos dados no resto das portadoras dos símbolos OFDM onde o bloco Ll é transmitido. Neste ponto, pode ser garantida a eficiência completa do espectro porque o ciclo de repetição do bloco Ll é ainda um sintonizador de largura de banda completa. Na figura 72, os 50 ΡΕ2200196 números em blocos com linhas inclinadas representam a ordem dos bits dentro de um único bloco LDPC.
Consequentemente, quando os bits são escritos numa memória de intercalamento no sentido da linha de
acordo com um índice de símbolo tal como apresentado na figura 72 e lidos na direcção da coluna de acordo com um índice de portadora, pode ser obtido um efeito de intercalamento de bloco. Por outras palavras, um bloco LDPC pode ser intercalado no domínio do tempo e no domínio da frequência e depois ser transmitido. Num_LI_sym pode ser um valor predeterminado, por exemplo um número entre 2-4 pode ser definido como uma série de símbolos OFDM. Neste ponto, para aumentar a granularidade da dimensão do bloco Ll, pode ser utilizado para protecção do Ll um código LDPC puncionado/encurtado que apresenta um comprimento mínimo da palavra-chave. A figura 73 é um exemplo de uma transmissão de bloco Ll. A figura 73 ilustra a figura 72 no domínio do quadro. Tal como apresentado na figura 73a, os blocos Ll podem ser gerados em largura de banda completa de sintonizador ou tal como apresentado na figura 73b, os blocos Ll podem ser parcialmente gerados e o resto das portadoras pode ser utilizado para o transporte de dados. Em ambos os casos, pode ser verificado que a taxa de repetição do bloco Ll pode ser idêntico a uma largura de banda completa do sintonizador. Adicionalmente, para os símbolos OFDM que utilizam a sinalização Ll incluindo o 51 ΡΕ2200196 preâmbulo, só pode ser executado a intercalação de símbolos enquanto não se permite a transmissão de dados nesses símbolos OFDM. Por conseguinte, para o símbolo OFDM utilizado para a sinalização Ll, um receptor pode descodificar Ll realizando o desintercalamento sem a descodificação de dados. Neste ponto, o bloco Ll pode transmitir a sinalização Ll do quadro actual ou sinalização Ll de um quadro subsequente. No lado do receptor, os parâmetros Ll descodificados, do trajecto de descodificação da sinalização Ll apresentado na figura 64, podem ser utilizados para o processo de descodificação para o trajecto de dados do analisador de quadros do quadro subsequente.
Em resumo, num transmissor, os blocos de intercalação da região Ll podem ser executados por blocos de escrita numa memória numa direcção em linha e leitura dos blocos escritos da memória no sentido da coluna. Num receptor, os blocos de desintercalamento da região Ll podem ser executados escrevendo blocos numa memória numa direcção de coluna e a leitura dos blocos escritos da memória no sentido da linha. As indicações de leitura e escrita do transmissor e receptor podem ser intercambiadas.
Quando a simulação é realizada com suposições tais como serem realizados CR=l/2 para protecção Ll e para a uniformização T2; a correspondência de símbolo 16-QAM; densidade piloto de 6 no preâmbulo; o número de LDPC curto implica que seja efectuada a quantidade necessária de 52 ΡΕ2200196 puncionagem/ encurtamento, resultados ou conclusões tais como somente preâmbulo para a transmissão Ll podem não ser suficientes; o número de símbolos OFDM depende da quantidade da dimensão do bloco LI; a palavra-chave LDPC mais curta (por exemplo 192 bits de informação) entre o código encurtado/puncionado pode ser utilizada para flexibilidade e granularidade fina; podendo ser adicionada a zona de preenchimento, se necessário, com informações complementares negligenciáveis. 0 resultado encontra-se resumido na figura 71.
Consequentemente, para uma taxa de repetição de bloco Ll, a largura de banda completa do sintonizador sem puncionamento virtual pode ser uma boa solução e ainda não surgir qualquer problema do PAPR com a eficiência total do espectro. Para a sinalização Ll, uma estrutura de sinalização eficiente pode permitir a configuração máxima num ambiente de 8 ligações de canal, 32 entalhes, 256 fatias de dados, e 256 PLPs. Para a estrutura de bloco Ll, pode ser implementada a sinalização Ll flexível de acordo com a dimensão do bloco Ll. A intercalação no tempo pode ser executada para melhor robustez para a uniformização T2. Menos informação complementar pode permitir a transmissão de dados no preâmbulo.
Para uma melhor robustez pode ser executado a intercalação de blocos do bloco Ll. A intercalação pode ser realizada com um número pré-definido fixo de símbolos Ll (num Ll sym) e um número de portadoras, gerado por Ll como 53 ΡΕ2200196 um parâmetro (Ll_span) . A mesma técnica é utilizada para a intercalação do preâmbulo P2 em DVB-T2.
Pode ser utilizado um bloco LI de dimensão variável. 0 tamanho pode ser adaptável à quantidade de bits de sinalização LI, resultando numa informação complementar reduzida. A eficiência do espectro completo pode ser obtida sem nenhum problema PAPR . Uma repetição de menos do que 7,61 MHz pode significar que mais redundância pode ser enviada mas sem ter sido utilizada. Não pode surgir qualquer problema PAPR devido à taxa de repetição de 7,61 MHz para o bloco LI. A figura 74 é um outro exemplo de sinalização LI transmitida dentro de um cabeçalho de quadro. Esta figura 74 é diferente da figura 70 em que o campo Ll_span que apresenta 12 bits se encontra dividido em dois campos. Por outras palavras, o campo Ll_span encontra-se dividido em uma Ll_column que apresenta 9 bits e um Ll_row que apresenta 3 bits. A Ll_column representa o índice da portadora que LI gera. Dado que a fatia de dados inicia e termina a cada 12 portadoras, que é a densidade piloto, os 12 bits da informação complementar podem ser reduzidos em 3 bits para chegar a 9 bits.
Ll_row representa o número de símbolos OFDM em que LI é gerado quando a intercalação no tempo é aplicada. Consequentemente, a intercalação no tempo pode ser realizada dentro de uma área de Ll_columns multiplicada por 54 ΡΕ2200196
Ll_rows. Alternativamente, um tamanho total de blocos Ll pode ser transmitido de tal forma que Ll_span mostrado na figura 70 pode ser utilizado quando a intercalação no tempo não é realizada. Para esse caso, o tamanho do bloco LI é de 11.776 x 2 bits no exemplo, sendo deste modo 15 bits o suficiente. Consequentemente, o campo Ll_span pode ser composto por 15 bits. A figura 75 é um exemplo de intercalação/desintercalação de frequência ou no tempo. A figura 75 mostra uma parte de um quadro completo de transmissão. A figura 75 mostra também a ligação de várias larguras de banda de 8 MHz. Um quadro pode ser composto por um preâmbulo que transmite blocos LI e um símbolo de dados que transmite dados. Os diferentes tipos de símbolos de dados representam fatias de dados para serviços diferentes. Tal como apresentado na figura 75, o preâmbulo transmite blocos LI por cada 7,61 MHz.
Para o preâmbulo, a intercalação na frequência ou tempo é realizada dentro de blocos LI e não realizada entre blocos LI. Ou seja, para o preâmbulo, pode-se dizer que a intercalação é realizada ao nível do bloco LI. Isto permite a descodificação dos blocos Ll transmitindo blocos Ll dentro de uma largura de banda de janela de sintonizador mesmo quando a janela do sintonizador se tiver movimentado para um local aleatório dentro de um sistema de ligação de canal. 55 ΡΕ2200196
Para a descodificação de símbolos de dados numa largura de banda aleatória de janela de sintonizador, não deve ter lugar a intercalação entre fatias de dados. Quer dizer, para fatias de dados, pode-se dizer que a intercalação é realizada ao nível da fatia de dados. Consequentemente, a intercalação na frequência e intercalação no tempo devem ser realizadas dentro de uma fatia de dados. Por isso, um intercalador de símbolos 308 num trajecto de dados de um módulo BICM do transmissor tal como apresentado na figura 37 pode realizar a intercalação de símbolos para cada fatia de dados. Um intercalador de símbolos 308-1 num trajecto de sinal LI pode executar a intercalação de símbolos para cada bloco Li.
Um intercalador de frequência 403 apresentado na figura 42 precisa de realizar separadamente a intercalação no preâmbulo e símbolos de dados. Especificamente, para o preâmbulo, a intercalação na frequência pode ser realizada para cada bloco LI e para o símbolo de dados, a intercalação na frequência pode ser realizada para cada fatia de dados. Neste ponto, a intercalação no tempo no trajecto de dados ou trajecto de sinal LI pode não ser realizada considerando o modo de baixa latência. A figura 76 é um quadro que analisa a informação complementar da sinalização LI que é transmitida no cabeçalho FECFRAME no módulo de inserção de cabeçalho ModCod 307 no trajecto de dados do módulo BICM apresentado na figura 37. Tal como apresentado na figura 7 6, para o 56 ΡΕ2200196 bloco LDPC curto (tamanho=16.200), pode ocorrer uma informação complementar máxima de 3,3% que pode não ser insignificante. Na análise são assumidos 45 símbolos para protecção FECFRAME, sendo o preâmbulo uma sinalização LI especifica do quadro C2 e o cabeçalho FECFRAME uma sinalização LI especifica de FECFRAME, isto é identificador Mod, Cod, e PLP.
Para reduzir a informação complementar Ll, podem ser consideradas abordagens de acordo com dois tipos de fatias de dados. Para o tipo ACM/VCM e vários casos PLP, o quadro pode ser mantido o mesmo que para o cabeçalho FECFRAME. Para o tipo ACM/VCM e casos PLP individuais, o identificador PLP pode ser removido do cabeçalho FECFRAME, resultando numa redução da informação complementar de até 1,8%. Para o tipo CCM e vários casos PLP, o campo Mod/Cod pode ser removido do cabeçalho FECFRAME, resultando numa redução da informação complementar de até 1,5%. Para o tipo CCM e casos PLP individuais, não é necessário qualquer cabeçalho FECFRAME, podendo ser obtido deste modo até 3,3% de redução.
Numa sinalização Ll encurtada, pode ser transmitido identificador Mod/Cod (7 bits) ou PLP (8 bits), mas pode ser demasiado curto para obter novamente qualquer codificação. No entanto é possível não requerer sincronização porque os PLPs podem estar alinhados com o quadro de transmissão C2; todos os ModCod de cada PLP podem ser conhecidos a partir do preâmbulo; e um cálculo simples 57 ΡΕ2200196 pode permitir a sincronização com o FECFRAME especifico. A figura 77 mostra uma estrutura para o cabeçalho FECFRAME para minimizar a informação complementar. Na figura 77, os blocos com linhas inclinadas e o construtor FECFRAME representam um diagrama de blocos pormenorizado do módulo de inserção do cabeçalho ModCod 307 no trajecto de dados do módulo BICM tal como apresentado na figura 37. Os blocos sólidos representam um exemplo do módulo de codificação interno 303, intercalador interno 304, desmultiplicador de bits 305, e mapeador de símbolos 306 no trajecto de dados do módulo BICM tal como mostrado na figura 37. Neste ponto, pode ser executada a sinalização LI encurtada porque CCM não requere um campo Mod/Cod e PLP único não requere um identificador de PLP. Neste sinal LI com um número reduzido de bits, o sinal LI pode ser repetido três vezes no preâmbulo e modulação BPSK pode ser realizada, sendo assim possível uma sinalização muito robusta. Finalmente, o módulo de inserção de cabeçalho ModCod 307 pode inserir o cabeçalho gerado em cada quadro FEC. A figura 84 mostra um exemplo do módulo extractor ModCod r307 no trajecto de dados do módulo de desmodulação BICM apresentado na figura 64.
Tal como apresentado na figura 84, o cabeçalho FECFRAME pode ser analisado no analisador sintáctico (r301b), sendo que depois símbolos que transmitem informações idênticas em símbolos repetidos podem ser atrasados, alinhados, e depois combinados no módulo de 58 ΡΕ2200196 combinação Rake r302b. Finalmente, quando é realizada a desmodulação BPSK (r303b), o campo de sinal LI recebido pode ser restaurado, sendo que este campo de sinal LI restaurado pode ser enviado para o controlador de sistema para ser utilizado como parâmetros para descodificação. 0 FECFRAME analisado sintacticamente pode ser enviado para o desmapeador de símbolos. A figura 7 8 mostra o desempenho de uma taxa de erro nos bits (BER) da protecção LI acima mencionada. Pode-se observar que cerca de 4,8 dB de ganho de SNR é obtido através de uma repetição por três vezes. A SNR necessária é de 8,7 dB a BER = 1E-11. A figura 79 apresenta exemplos de um quadro de transmissão e estruturas de quadro FEC. As estruturas de quadro FEC apresentadas no lado superior direito da figura 79 representam o cabeçalho FECFRAME inserido pelo módulo de inserção 307 de cabeçalho ModCod apresentado na figura 37. Pode ser visto que, dependendo de várias combinações de condições, ou seja, tipo CCM ou ACM/VCM e PLP simples ou múltiplo, podem ser inseridas diferentes dimensões de cabeçalhos. Ou, nenhum cabeçalho pode ser inserido. Os quadros de transmissão formados de acordo com tipos de fatia de dados e apresentado na parte inferior do lado esquerdo da figura 7 9 pode ser formado pelo módulo de inserção 401 de cabeçalho de quadro do construtor de quadros tal como apresentado na figura 42 e o misturador/cortador 208 do processador de entrada ΡΕ2200196 apresentado na figura 35. Neste ponto, o FECFRAME pode ser transmitido de acordo com diferentes tipos de fatias de dados. Utilizando este processo, pode ser reduzida um máximo de 3,3% de informação complementar. No lado superior direito da figura 79 são apresentados quatro diferentes tipos de estruturas, mas um técnico irá compreender que estes são apenas exemplos, e qualquer um destes tipos ou as suas combinações podem ser utilizados para a fatia de dados.
No lado do receptor, o módulo removedor de cabeçalho de quadro r401 do módulo analisador sintáctico de quadros tal como apresentado na figura 63 e o módulo extractor ModCod r307 do módulo demod BICM apresentado na figura 64 pode extrair um parâmetro de campo ModCod que é necessário para descodificação. Neste ponto, de acordo com o tipo de fatia de dados de transmissão, podem ser extraídos parâmetros de quadro de transmissão. Por exemplo, para o tipo CCM, os parâmetros podem ser extraídos da sinalização LI que é transmitida no preâmbulo e para o tipo ACM/VCM, os parâmetros podem ser extraídas do cabeçalho FECFRAME.
Tal como apresentado no lado superior direito da figura 79, a estrutura FECFRAME pode ser dividida em dois grupos, em que o primeiro grupo são as estruturas dos três quadros superiores com cabeçalho e o segundo grupo é a última estrutura de quadro sem cabeçalho. 60 ΡΕ2200196 A figura 80 apresenta um exemplo de sinalização LI que pode ser transmitida dentro do preâmbulo pelo módulo de inserção 401 do cabeçalho do quadro do módulo de construção de quadro apresentado na figura 42. Esta sinalização LI é diferente da sinalização anterior LI em que o tamanho do bloco LI podem ser transmitido em bits (Ll_size, 14 bits); é possível ligar/desligar a intercalação no tempo na fatia de dados (dslice_time_intrlv, 1 bit); sendo que ao definir o tipo de fatia de dados {dslice_type, 1 bit), é reduzida a informação complementar da sinalização. Neste ponto, quando o tipo de fatia de dados é CCM, o campo Mod/Cod pode ser transmitido dentro do preâmbulo em vez de dentro do cabeçalho FECFRAME (PLP_mod (3 bits), PLP_FEC_type (1 bit), PLP_cod (3 bits)).
No lado do receptor, o descodificador interno r303-l encurtado/perfurado do BICM demod tal como apresentado na figura 64 pode obter o primeiro bloco LDPC, que tem um tamanho de bloco LI fixo, transmitido dentro do preâmbulo, através da descodificação. Podem também ser obtidos os números e a dimensão do resto dos blocos LDPC. A intercalação do tempo pode ser utilizada quando vários símbolos OFDM são necessários para a transmissão de LI ou quando existe uma fatia de dados intercalada no tempo. Um ligar/desligar flexível da intercalação do tempo é possível com uma marca de intercalação. Para intercalação do tempo do preâmbulo, pode ser necessária uma marca de 61 ΡΕ2200196 intercalação do tempo (1 bit) e podem ser necessários vários símbolos OFDM intercalados (3 bits), deste modo, um total de 4 bits podem ser protegidos de um modo semelhante a um FECFRAME encurtado. A figura 81 mostra um exemplo de pré-sinalização LI que pode ser executada no módulo de inserção de cabeçalho ModCod 307-1 no trajecto de dados do módulo BICM apresentado na figura 37. Os blocos com as linhas inclinadas e construtor de preâmbulo são exemplos do módulo de inserção de cabeçalho ModCod 307-1 na sinalização LI do módulo BICM apresentado na figura 37. Os blocos sólidos são exemplos do módulo de inserção 401 de cabeçalho de quadro do construtor de quadros tal como apresentado na figura 42.
Deste modo, os blocos sólidos podem ser exemplos do módulo de código interno 303-1 encurtado/puncionado, intercalador interno 304-1, demux de bit 305-1, e mapeador de símbolos 306-1 no trajecto de sinalização LI do módulo BICM apresentado na figura 37.
Tal como apresentado na figura 81, o sinal LI que é transmitido no preâmbulo pode ser protegido utilizando codificação LDPC encurtada/puncionada. Os parâmetros relacionados podem ser inseridos no cabeçalho numa forma de uma pré-sinalização LI. Neste ponto, somente parâmetros de intercalação do tempo podem ser transmitidos no cabeçalho do preâmbulo. Para garantir maior robustez, pode ser executada uma repetição de quatro vezes. No lado do 62 ΡΕ2200196 receptor, para ser passível de descodificar o sinal Ll que é transmitido no preâmbulo, o módulo de extracção ModCod r307-l no trajecto de sinalização Ll do demod BICM tal como mostrado na figura 64 precisa de utilizar o módulo de descodificação apresentado na figura 84. Neste ponto, porque existe uma repetição de quatro vezes ao contrário do anterior cabeçalho FECFRAME de descodificação, é necessário um processo de recebimento de Rake que sincroniza os símbolos repetidos quatro vezes e adicionando os símbolos. A figura 82 apresenta uma estrutura do bloco de sinalização Ll que é transmitido do módulo de inserção 401 do cabeçalho do quadro do módulo de construção de quadro tal como apresentado na figura 42. É apresentado um caso onde não é utilizada qualquer intercalação no tempo num preâmbulo. Tal como apresentado na figura 82, podem ser transmitidos diferentes géneros de blocos LDPC na ordem das portadoras. Assim que estiver formado e transmitido um símbolo OFDM é formado e transmitido um símbolo OFDM seguinte. Para que o último símbolo OFDM seja transmitido, se sobrar alguma portadora, estas portadoras podem ser utilizadas para a transmissão de dados ou podem ser colocadas em zonas de preenchimento fictícias. O exemplo na figura 82 mostra um preâmbulo que compreende três símbolos OFDM. No lado do receptor, para este caso de não intercalação, o desintercalador de símbolos r308-l no trajecto de sinalização Ll do demod BICM tal como apresentado na figura 64 pode ser ignorado. 63 ΡΕ2200196 A figura 83 mostra um caso onde é executada a intercalação no tempo Ll. Tal como apresentado na figura 83, a intercalação em blocos pode ser executada de modo a formar um simbolo OFDM para Índices de portadora idênticos, formando depois um simbolo OFDM para os próximos índices de portadora. Tal como no caso onde não é executada qualquer intercalação, se sobrar alguma portadora, estas portadoras podem ser utilizadas para a transmissão de dados ou podem ser colocadas em zonas de preenchimento fictícias. No lado do receptor, para este caso de não intercalação, o desintercalador de símbolos r308-l no trajecto de sinalização Ll do demod BICM apresentado na figura 64 pode executar a desintercalação em blocos lendo blocos LDPC em ordem crescente de números de blocos LDPC.
Adicionalmente, podem existir pelo menos dois tipos de fatias de dados. A fatia de dados do tipo 1 tem dslice_type = 0 nos campos de sinalização Ll. Este tipo de fatia de dados não tem nenhum cabeçalho de XFECFrame e tem os seus valores Mod/Cod em campos de sinalização Ll. A fatia de dados do tipo 2 tem dslice_type = 1 nos campos de sinalização Li. Este tipo de fatia de dados tem cabeçalho de XFECFrame e tem os seus valores Mod/Cod em cabeçalho de XFECFrame . XFECFrame significa XFEC[compleX Forward Error correction)Frame e Mod/Cod significa tipo de modulação /taxa de código (modulation type/coderate) . 64 ΡΕ2200196
Num receptor, um analisador sintáctico de quadro pode construir um quadro de sinais desmodulados. 0 quadro apresenta símbolos de dados e os símbolos de dados podem ter um primeiro tipo de fatias de dados que apresenta uma XFECFrame e um cabeçalho de XFECFrame e um sequndo tipo de fatia de dados que apresenta XFECFrame sem cabeçalho de XFECFrame . Além disso, um receptor pode extrair um campo para indicar se é para executar o tempo desintercalação nos símbolos do preâmbulo ou não para executar desintercalação no tempo nos símbolos do preâmbulo, a partir do LI dos símbolos preâmbulo.
Num transmissor, um construtor de quadros pode construir um quadro. Os símbolos de dados compreendem um primeiro tipo de fatias de dados que apresentam uma XFECFrame e um cabeçalho de XFECFrame e um segundo tipo de fatias de dados que apresenta XFECFrame sem cabeçalho de XFECFrame . Adicionalmente, um campo para indicar se deve ou não executar a intercalação no tempo em símbolos preâmbulo para executar a intercalação no tempo em símbolos de preâmbulo pode ser inserido no LI dos símbolos de preâmbulo.
Por fim, para código encurtado/puncionado para o módulo de inserção 401 do cabeçalho do quadro do construtor de quadros apresentado na figura 42, pode ser determinada uma dimensão mínima de palavra-chave que pode obter ganho de codificação e pode ser transmitida num primeiro bloco LDPC. Desta forma, para o resto das dimensões de bloco LDPC 65 ΡΕ2200196 podem ser obtidas a partir daquela dimensão de bloco Ll transmitida. A figura 85 mostra um outro exemplo de pré-sinalização LI que pode ser transmitida do módulo de inserção de cabeçalho ModCod 307-1 no trajecto de sinalização do módulo BICM apresentado na figura 37. A figura 85 é diferente da figura 81 em que o mecanismo de protecção da parte do cabeçalho foi modificado. Tal como apresentado na figura 85, a informação sobre a dimensão do bloco LI, Ll_size (14 bits), não é transmitida no bloco Ll, mas transmitida no cabeçalho. No cabeçalho, a informação sobre a intercalação no tempo de 4 bits pode também ser transmitida. Para um total de 18 bits de entrada, o código BCH (45, 18) que gera 45 bits são utilizados e copiados para os dois trajectos e, finalmente, a QPSK é mapeada. Para o trajecto Q, pode ser executada uma deslocação cíclica de 1 bit para ganho de diversidade, podendo ser executada a modulação PRBS de acordo com a palavra de sincronização. Um total de 45 símbolos QPSK podem ser emitidos destas entradas de trajecto I/Q. Neste ponto, se a profundidade da intercalação no tempo estiver definida como um número de preâmbulos que é necessário para transmitir o bloco Ll, pode não ser necessário transmitir Ll_span (3bits) que indica a profundidade da intercalação no tempo. Por outras palavras, só pode ser transmitida a marca (1 bit) de ligar/desligar intercalação no tempo. Num lado do receptor, ao verificar apenas um número de preâmbulos transmitidos, sem utilizar Ll_span, pode ser obtida a 66 ΡΕ2200196 profundidade da desintercalação no tempo. A figura 86 apresenta um exemplo de agendamento de bloco de pré-sinalização Ll que é transmitido no preâmbulo. Se uma dimensão de informação LI que pode ser transmitida num preâmbulo for Nmax, quando a dimensão de LI é menor do que Nmax, um preâmbulo pode transmitir a informação. No entanto, quando a dimensão Ll é maior do que Nmax, a informação Ll pode ser igualmente dividida de modo que o bloco secundário Ll dividido é menor do que Nmax, então o bloco secundário Ll dividido pode ser transmitido num preâmbulo. Neste ponto, para uma portadora que não é utilizada porque a informação Ll é menor do que Nmax, não são transmitidos quaisquer dados.
Em vez disso, tal como apresentado na figura 88, a potência das portadoras onde os blocos Ll são transmitidos, pode ser aumentada para manter uma potência do sinal total de preâmbulo idêntica à potência do símbolo de dados. 0 factor de reforço de potência pode variar dependendo da dimensão Ll transmitida e um transmissor e um receptor pode ter um valor definido deste factor de reforço de potência. Por exemplo, se forem utilizadas somente metade das portadoras totais, o factor de reforço de potência pode ser dois. A figura 87 mostra um exemplo de pré-sinalização Ll onde é considerado um reforço da potência. Quando comparada com a figura 85, pode-se ver que a potência do ΡΕ2200196 símbolo QPSK pode ser reforçada e enviada para o construtor de preâmbulo. A figura 89 apresenta outro exemplo do módulo de extracção ModCod r307-l no trajecto de sinalização LI do módulo demod BICM apresentado na figura 64. Do símbolo de preâmbulo de entrada, a sinalização LI FECFRAME pode ser emitida para dentro do desmapeador de símbolos e somente a parte do cabeçalho pode ser descodificada.
Para o símbolo do cabeçalho de entrada, o desmapeamento QPSK pode ser executado e pode ser obtido o valor do relatório do rácio de probabilidade (Log-Likelihood Ratío - LLR) . Para o trajecto Q, a desmodulação PRBS de acordo com a palavra de sincronização pode ser executada, podendo ser realizado para restauração um processo inverso da deslocação cíclica de 1-bit.
Estes dois valores alinhados de trajecto I/Q podem ser combinados, podendo ser obtido o ganho SNR. A saída de decisão difícil pode ser entrada para o descodificador BCH. 0 descodificador BCH pode restaurar 18 bits de LI pré a partir da entrada de 45 bits. A figura 90 mostra uma parte contrária, extractor ModCod de um receptor. Quando comparado com a figura 89, o controlo da potência pode ser executado nos símbolos de entrada QPSK do desmapeador para restaurar do nível de potência reforçado pelo transmissor para o seu valor 68 ΡΕ2200196 original. Neste ponto, o controlo de potência pode ser executado considerando um número de portadoras utilizadas para a sinalização LI num preâmbulo e tomando o inverso do factor de reforço de potência obtido de um transmissor. 0 factor de reforço de potência configura a potência do preâmbulo e potência dos símbolos de dados idênticos uns aos outros. A figura 91 apresenta um exemplo da pré-sincronização LI que pode ser executada no módulo de extracção ModCod r307-l no trajecto de sinalização LI do módulo de desmodulação BICM apresentado na figura 64. Este é um processo de sincronização para obter uma posição inicial de cabeçalho num preâmbulo. Os símbolos de entrada podem ser QPSK desmapeado do que para a saída trajecto Q, um inverso de uma deslocação cíclica de 1 bit pode ser executada, podendo ser realizado o alinhamento. Dois valores de trajectos I/Q podem ser valores multiplicados e modulados por pré-sinalização LI podem ser desmodulados. Assim, a saída do multiplicador pode expressar apenas PRBS que é uma palavra de sincronização. Quando a saída é correlacionada com uma sequência conhecida PRBS, pode ser obtido um pico de correlação no cabeçalho. Deste modo, pode ser obtida uma posição inicial de cabeçalho num preâmbulo. Se necessário, o controlo de potência que é executado para restaurar o nível de potência original, tal como apresentado na figura 90, pode ser executado na entrada do desmapeador QPSK. 69 ΡΕ2200196 A figura 92 mostra um outro exemplo de campo de cabeçalho de bloco Ll que é enviado para o módulo de inserção de cabeçalho ModCod 307-1 no traj ecto de sinalização Ll do módulo BICM tal como apresentado na figura 37. Esta figura 92 é diferente da figura 85 em que Ll_span que representa a profundidade da intercalação no tempo é reduzida a 2 bits e os bits reservados são aumentados em 1 bit. Um receptor pode obter parâmetro de intercalação no tempo do bloco LI do Ll_span transmitido. A figura 93 apresenta processos de divisão igual de um bloco LI em várias partes quanto um número de preâmbulos, inserindo depois um cabeçalho em cada um dos blocos LI divididos e em seguida atribuindo os blocos LI com cabeçalho inserido num preâmbulo. Isto pode ser executado quando uma intercalação do tempo é executada com vários preâmbulos onde o número de preâmbulos é maior do que um número mínimo de preâmbulos que é necessário para a transmissão de blocos LI. Isto pode ser executado no bloco LI, no trajecto de sinalização Ll do módulo BICM tal como apresentado na figura 37. 0 resto das portadoras, após a transmissão de blocos Ll podem ter padrões de repetição cíclica ao invés de ser munidas com zonas de preenchimento de zeros. A figura 94 apresenta um exemplo do desmapeador de símbolos r306-l do módulo de desmodulação BICM, tal como apresentado na figura 64. Para um caso onde os blocos Ll FEC são repetidos tal como apresentado na figura 93, cada 70 ΡΕ2200196 ponto de partida do bloco Ll FEC pode ser alinhado, combinado (r301f), e depois desmapeado em QAM (r302f) para obter ganho de diversidade e ganho de SNR. Neste ponto, o combinador pode incluir processos de alinhamento e adicionar cada bloco LI FEC e dividir o bloco Ll FEC adicionado. Para o caso onde somente parte do último bloco FEC é repetido tal como apresentado na figura 93, apenas a parte repetida pode ser dividida em até um número de cabeçalho de bloco FEC e a outra parte pode ser dividida por um valor que é um a menos do que um número de cabeçalho de bloco FEC. Por outras palavras, o número divisor corresponde a um número de portadoras que é adicionado a cada portadora. A figura 98 apresenta um outro exemplo de agendamento de bloco Ll. A figura 98 é diferente da figura 93 em que, em vez de executar a zona de preenchimento a zeros ou repetição quando os blocos Ll não enchem um símbolo OFDM, o símbolo OFDM pode ser preenchido com redundância de paridade executando menos puncionagem em código encurtado/puncionado no transmissor. Por outras palavras, quando a puncionagem de paridade (304c) é executada na figura 38, a taxa de código efectiva pode ser determinada de acordo com o rácio de puncionagem, deste modo, puncionando dado que menos bits têm que ter zonas de preenchimento zeros, a taxa de código efectiva pode ser reduzida podendo ser obtido um melhor ganho de codificação. O módulo de despuncionagem de paridade r303a de um receptor tal como apresentado na figura 65 pode executar a 71 ΡΕ2200196 despuncionagem considerando a redundância de paridade menos puncionada. Neste ponto, porque um receptor e um transmissor podem ter informações da dimensão total do bloco Ll, o rácio de puncionagem pode ser calculado. A figura 95 apresenta um outro exemplo de campo de sinalização Ll. A figura 95 é diferente da figura 74 em que, para um caso em que o tipo de fatia de dados é CCM, pode ser transmitido um endereço inicial (21 bits) da PLP. Isso pode possibilitar que o FECFRAME de cada PLP forme um quadro de transmissão, sem o FECFRAME estar alinhado com uma posição inicial de um quadro de transmissão. Deste modo, a informação complementar da zona de preenchimento, que pode ocorrer quando a largura de uma fatia de dados é estreita, pode ser eliminada. Um receptor, quando um tipo de fatia de dados é CCM, pode obter informação ModCod do preâmbulo no trajecto de sinalização Ll do desmodulador BICM tal como apresentado na figura 64, em vez de obter a mesma do cabeçalho do FECFRAME. Além disso, mesmo quando ocorre uma passagem com velocidade num local aleatório do quadro de transmissão, a sincronização FECFRAME pode ser realizada sem atraso porque o endereço de inicio da PLP já pode ser obtido a partir do preâmbulo. A figura 96 apresenta um outro exemplo de campos de sinalização Ll que podem reduzir a informação complementar do endereçamento PLP.
A figura 97 apresenta os números de símbolos QAM 72 ΡΕ2200196 que correspondem a um FECFRAME dependendo dos tipos de modulação. Neste ponto, um divisor comum maior do símbolo QAM é 135, sendo que deste modo pode ser reduzida uma informação complementar de log2(135) 7 bits. Deste modo, a figura 96 é diferente da figura 95 em que um número de bits de campo PLP_start pode ser reduzido de 21 bits para 14 bits. Este é um resultado de considerar 135 símbolos como um único grupo e endereçar o grupo. Um receptor pode obter um índice de portadora OFDM onde a PLP começa num quadro de transmissão após a obtenção do valor do campo PLP_start e multiplicá-lo por 135. A figura 99 e figura 101 mostram exemplos de intercalador de símbolos 308 o qual pode intercalar no tempo símbolos de dados que são enviados do módulo de inserção de cabeçalho ModCod 307 no trajecto de dados do módulo BICM tal como apresentado na figura 37. A figura 99 é um exemplo do intercalador de blocos que pode operar numa base de fatias de dados. O valor da linha quer dizer um número de células de carga útil em quatro dos símbolos OFDM dentro de uma fatia de dados. A intercalação com base no símbolo OFDM pode não ser possível porque o número de células pode variar entre células contíguas OFDM. A coluna valor K significa uma profundidade de intercalação no tempo, que pode ser de 1, 2, 4, 8 ou 16... A sinalização de K para cada fatia de dados pode ser executada dentro da sinalização LI. A intercalação de frequência 403 tal como apresentado na 73 ΡΕ2200196 figura 42 pode ser executada antes da intercalação no tempo 308 tal como apresentado na figura 37. A figura 100 mostra um desempenho de intercalação do intercalador no tempo tal como apresentado na figura 99. Supõe-se que um valor de coluna é 2, um valor de linha é 8, uma largura de fatia de dados é 12 células de dados, e que não se encontram na fatia de dados pilotos contínuos. A figura de topo na figura 100 é uma estrutura de símbolo OFDM quando a intercalação no tempo não é executada e a figura inferior da figura 100 é uma estrutura de símbolo OFDM quando a intercalação no tempo é executada. As células negras representam um piloto disperso e as células não-negras representam as células de dados. 0 mesmo tipo de células de dados representa um símbolo OFDM. Na figura 100 as células de dados que correspondem a um único símbolo OFDM são intercaladas em dois símbolos. É utilizada uma memória de intercalação que corresponde a oito símbolos OFDM mas a profundidade da intercalação corresponde a apenas dois símbolos OFDM, sendo que desde modo não é obtida a profundidade completa de intercalação. A figura 101 é sugerida para alcançar uma profundidade de intercalação total. Na figura 101, as células negras representam pilotos dispersos e as células não-negras representam as células de dados. O intercalador no tempo tal como apresentado na figura 101 pode ser implementado numa forma de intercalador de bloco e pode intercalar fatias de dados. Na figura 101, um número de 74 ΡΕ2200196 coluna, K representa uma largura de fatia de dados, um número de linha, N representa a profundidade da intercalação no tempo e o valor, K pode ser valores aleatórios i.e., K=l,2,3 0 processo de intercalação inclui escrever célula de dados de um modo de retorção da coluna e leitura na direcção da coluna, excluindo as posições piloto. Quer dizer, pode-se dizer que a intercalação é executada de um modo torcido de linha-coluna.
Além disso, num transmissor, as células que são lidas de um modo torcido em coluna da memória de intercalação correspondem a um único símbolo OFDM e as posições piloto dos símbolos OFDM podem ser mantidas enquanto se intercala as células.
Além disso, num transmissor, as células que são lidas de um modo torcido em coluna da memória de desintercalação correspondem a um único símbolo OFDM e as posições-piloto dos símbolos OFDM podem ser mantidas enquanto se desintercala no tempo as células. A figura 102 mostra um desempenho de intercalação no tempo da figura 101. Para comparação com a figura 99, supõe-se que um número de colunas é 8, uma largura de fatia de dados é 12 células de dados, e que não se encontram na fatia de dados pilotos contínuos. Na figura 102, as células de dados que correspondem a um único símbolo OFDM são intercaladas em oito símbolos OFDM. Tal como apresentado na 75 ΡΕ2200196 figura 102, é utilizada uma memória de intercalação que corresponde a oito símbolos OFDM, correspondendo a profundidade da intercalação resultante a oito símbolos OFDM, sendo desde modo obtida a profundidade completa de intercalação. O intercalador no tempo tal como apresentado na figura 101 pode ser vantajosa em que a profundidade total de intercalação pode ser obtida utilizando memória idêntica; a profundidade da intercalação pode ser flexível, ao contrário da figura 99; consequentemente, um comprimento de quadro de transmissão pode também ser flexível, i.e., as linhas não precisam ser múltiplos de quatro. Além disso, o intercalador no tempo utilizado para a fatia de dados, pode ser idêntico ao processo de intercalação utilizado para o preâmbulo e também pode ter afinidade com um sistema de transmissão digital que usa OFDM geral. Especificamente, o intercalador no tempo 308 tal como apresentado na figura 37 pode ser utilizado antes do intercalador de frequência 403 tal como apresentado na figura 42 ser utilizado. A respeito da complexidade de um receptor, nenhuma memória adicional pode ser necessária a não ser a lógica de controlo de endereço adicional que pode exigir uma complexidade muito pequena. A figura 103 mostra um desintercalador de símbolos correspondente r308 num receptor. Pode executar a desintercalação depois de receber a saída do módulo removedor de cabeçalho de quadro r401. Nos processos de 76 ΡΕ2200196 desintercalação comparados com a figura 99, os processos de escrita e leitura da intercalação de blocos encontram-se invertidos. Ao utilizar informação de posição-piloto, o desintercalador no tempo pode executar a desintercalação virtual ao não escrever para ou ler a partir de uma posição piloto na memória do intercalador e ao escrever para ou ler a partir de uma posição de célula de dados na memória do intercalador. A informação desintercalada pode ser emitida para o módulo extractor ModCod r307. A figura 104 mostra um outro exemplo de intercalação no tempo. Pode ser executada a escrita no sentido diagonal e a leitura linha-a-linha. Tal como na figura 101, a intercalação é realizada tendo em conta as posições piloto. A leitura e escrita não é realizada para as posições piloto, mas a memória de intercalação é acedida considerando apenas as posições da célula de dados. A figura 105 mostra um resultado de intercalação utilizando o processo apresentado na figura 104. Quando comparadas com a figura 102, as células com os mesmos padrões encontram-se dispersas, não somente no domínio do tempo, mas também no domínio da frequência. Por outras palavras, a profundidade completa da intercalação pode ser obtida em ambos os domínios do tempo e frequência. A figura 108 mostra um desintercalador de símbolos r308 de um receptor correspondente. A saída do módulo removedor do cabeçalho de quadro r401 pode ser 77 ΡΕ2200196 desintercalada. Quando comparada com a figura 99, a desintercalação mudou a ordem de leitura e escrita. A desintercalação no tempo pode utilizar informação da posição-piloto para realizar desintercalação virtual tal como não ser executada qualquer leitura ou escrita em posições-piloto mas de forma que a leitura ou a escrita possa ser realizada apenas em posições de células de dados. Os dados desintercalados podem ser emitidos para o módulo extractor ModCod r307. A figura 106 mostra um exemplo do processo de endereçamento da figura 105. NT significa profundidade da intercalação no tempo e ND significa largura da fatia de dados. Supõe-se que um valor de linha, N é 8, uma largura de fatia de dados é 12 células de dados, e que não se encontram na fatia de dados pilotos contínuos. A figura 106 representa um processo de geração de endereços para escrever dados numa memória de intercalação no tempo, quando um transmissor realiza a intercalação no tempo. O endereçamento começa a partir de um primeiro endereço com endereço de linha (Row Address - RA) = 0 e endereço de coluna (Column Address - CA) = 0. A cada ocorrência de endereçamento, RA e CA são aumentados . Para RA, pode ser executada uma operação de módulo com os símbolos OFDM utilizados no intercalador no tempo. Para CA, pode ser executada uma operação de módulo com um número de transportadoras que corresponde a uma largura de fatia de dados. RA pode ser incrementado em 1 quando portadoras que correspondem a uma fatia de dados são gravadas numa 78 ΡΕ2200196 memória. Escrever numa memória pode ser executada somente quando uma localização do endereço actual não é uma localização de um piloto. Se a localização do endereço actual for uma localização de um piloto, somente o valor do endereço pode ser aumentado.
Na figura 106, um número de coluna, K representa a largura de fatia de dados, um número de linha, N representa a profundidade da intercalação no tempo e o valor, K pode ser valores aleatórios ou seja, K=l,2,3 ,.... 0 processo de intercalação pode incluir escrever células de dados num modo de torção da coluna e ler na direcção da coluna, excluindo as posições piloto. Por outras palavras, a memória de intercalação virtual pode incluir posições piloto mas posições-piloto podem ser excluídas na intercalação actual. A figura 109 mostra a desintercalação, um processo inverso da intercalação no tempo tal como apresentado na figura 104. Escrever linha-a-linha e ler na direcção diagonal pode restaurar células para as suas sequências originais. O processo de endereçamento utilizado num transmissor pode ser utilizado num receptor. O receptor pode escrever dados recebidos numa memória de desintercalação no tempo linha-a-linha e pode ler os dados escritos utilizando valores de endereço gerados e informação de localização piloto que podem ser gerados de 79 ΡΕ2200196 forma semelhante àquele de um transmissor. Como uma forma alternativa, os valores de endereço gerados e informação piloto que foram utilizados para a escrita podem ser utilizados para a leitura linha-a-linha.
Estes processos podem ser aplicados num preâmbulo que transmite Li. Dado que cada símbolo OFDM que compreende preâmbulo pode ter pilotos em locais idênticos, pode ser executada a intercalação referente a valores de endereço tendo em conta as localizações piloto ou intercalação referente a valores de endereço sem ter em conta os localizações piloto. Para o caso de se referir ao valores de endereço sem levar em conta as localizações piloto, o transmissor armazena de cada vez dados numa memória de intercalação no tempo. Para um caso deste género, um tamanho de memória necessário para executar a intercalação/desintercalação de preâmbulos num receptor ou num transmissor torna-se idêntico a uma série de células de carga útil existentes nos símbolos OFDM utilizados para a intercalação no tempo. A figura 107 é outro exemplo de intercalador no tempo LI. Neste exemplo, a intercalação no tempo pode colocar portadoras em todos os símbolos OFDM enquanto que as portadoras estariam todas localizadas num único símbolo OFDM se não tiver sido executada qualquer intercalação no tempo. Por exemplo, para dados localizados num primeiro símbolo OFDM, a primeira portadora do primeiro símbolo OFDM estará localizada na sua localização original. A segunda 80 ΡΕ2200196 portadora do primeiro símbolo OFDM estará localizada num índice de portadora do segundo símbolo OFDM. Por outras palavras, a i-ésima portadora de dados que se encontra localizada no n-ésimo símbolo OFDM estará localizada num i-ésimo índice portador do (i+n) mod n-ésimo símbolo OFDM símbolo, em que i = 0, 1, 2... número de portadora -1, n=0, 1, 2...,N-1, e N é um número de símbolos OFDM utilizados na intercalação no tempo Ll. Neste processo de intercalação no tempo Ll, pode-se dizer que a intercalação para todos os símbolos OFDM é executada de um modo distorcido tal como apresentado na figura 107. Apesar de as posições piloto não estarem ilustradas na figura 107, tal como mencionado acima, a intercalação pode ser aplicada a todos os símbolos OFDM incluindo aos símbolos piloto. Ou seja, pode-se dizer que a intercalação pode ser realizada para todos os símbolos OFDM sem considerar posições piloto ou independentemente de os símbolos OFDM serem símbolos piloto ou não.
Se um tamanho de um bloco LDPC utilizado em Ll for menor do que um tamanho de um único símbolo OFDM, as portadoras restantes podem ter cópias de peças do bloco LDPC ou podem estar preenchidas com zeros. Neste ponto, pode ser realizada uma intercalação simultânea como acima. De modo semelhante, na figura 104, um receptor pode executar a desintercalação armazenando todos os blocos utilizados na intercalação no tempo Ll numa memória e lendo os blocos na ordem em que foram intercalados, ou seja, na ordem de números escritos em blocos apresentados na figura 81 ΡΕ2200196 107 .
Utilizando os processos e dispositivos sugeridos, entre outras vantagens, é possível implementar um transmissor digital, receptor e sinalização eficiente da estrutura da camada física.
Ao transmitir a informação ModCod em cada cabeçalho de quadro BB que é necessário para ACM/VCM e transmitir o resto da sinalização da camada física num cabeçalho de quadro, pode ser minimizada a informação complementar da sinalização.
Pode ser implementado o QAM modificado para uma transmissão mais eficiente em termos de energia ou um sistema de radiodifusão digital mais resistente ao ruído. O sistema pode incluir o transmissor e receptor para cada exemplo descrito e as suas combinações.
Pode ser implementado um QAM não uniforme melhorado para uma transmissão mais eficiente em termos de energia ou um sistema de radiodifusão digital mais robusto ao ruído. É também descrito um processo de utilização de uma taxa de código de código de correcção de erros de NU-MQAM e MQAM. O sistema pode incluir o transmissor e receptor para cada exemplo descrito e as suas combinações. O processo de sinalização LI sugerido pode reduzir a informação adicional em 3~4% minimizando a 82 ΡΕ2200196 informação complementar de sinalização durante a ligação do canal.
Será evidente para os técnicos que podem ser efectuadas várias modificações e variações na presente invenção, sem fugir do escopo da invenção.
Lisboa, 8 de Novembro de 2011
Claims (14)
- ΡΕ2200196 1 REIVINDICAÇÕES 1. Processo para transmitir um sinal de radiodifusão para um receptor, compreendendo o processo: codificar os dados da conduta de camada física (Physical Layer Pipe - PLP) para transportar pelo menos um serviço e dados de sinalização de camada 1 (LI) para sinalizar os dados PLP; caracterizado por compreender adicionalmente, intercalar selectivamente no tempo os dados de sinalização LI codificados de um modo torcido linha-coluna, em que o modo torcido de linha-coluna compreende células de dados de sinalização LI que são escritas em série numa memória de intercalação numa direcção diagonal, e lidos em série no sentido da linha, sem considerar as posições piloto, e emitindo um bloco intercalado no tempo, de camada 1 (Li) TI; construir um quadro de sinal incluindo símbolos de preâmbulo e símbolos dos dados PLP codificados, em que os símbolos do preâmbulo compreendem pelo menos um bloco LI TI e cabeçalho Li; modular o quadro de sinal por um processo de multiplexação por divisão de frequências ortogonais (OFDM) ; e transmitir o quadro de sinal modulado, em que o cabeçalho LI tem informação de modo LI TI que indica se deverá ser executada ou não a desintercalação no tempo dos dados de sinalização LI 2 ΡΕ2200196 codificados pelo receptor que recebe o sinal de radiodifusão.
- 2. Processo de acordo com a reivindicação 1, em que o cabeçalho Li tem a informação do modo LI TI que indica o modo da intercalação no tempo para os símbolos do preâmbulo.
- 3. Processo de acordo com as reivindicações 1 ou 2, em que os símbolos do preâmbulo serem divididos em blocos de pelo menos uma camada 1 (Li) da mesma largura de banda de 7,61 MHz.
- 4. Processo de acordo com qualquer das reivindicações 1 a 3, em que os símbolos do preâmbulo são divididos em blocos de pelo menos uma camada 1 (LI) de 3408 subportadoras.
- 5. Processo para receber um sinal de radiodifusão, compreendendo o processo: desmodular o sinal recebido pela utilização de um processo de multiplexagem por divisão de frequências ortogonais (OFDM); caracterizado por compreender adicionalmente, obter um quadro de sinal dos sinais desmodulados, compreendendo o quadro de sinal símbolos de preâmbulo e símbolos de dados, compreendendo os símbolos do preâmbulo pelo menos uma camada 1 (LI) intercalada no tempo, bloco e cabeçalho Li, tendo o bloco LI TI dados 3 ΡΕ2200196 de sinalização Ll para sinalizar os símbolos de dados e em que o cabeçalho LI tem informação de modo LI TI indicando se é ou não para executar a desintercalação no tempo dos dados de sinalização LI codificados; desintercalar selectivamente no tempo os símbolos do preâmbulo de um modo torcido linha-coluna, em que o modo torcido de linha-coluna compreende células de dados de sinalização Ll que são escritos em série no sentido das linhas numa memória de intercalação, e lidos em série ao lonqo de uma direcção diagonal, sem considerar as posições piloto; desmapear os símbolos de preâmbulo desintercalados no tempo em bits; e descodificar os bits por um esquema de descodificação LDPC (Low Density Paríty Check - verificação de paridade de baixa densidade) encurtado e puncionado,
- 6. Processo de acordo com a reivindicação 5, em que os símbolos do preâmbulo são divididos em blocos de pelo menos uma camada 1 {Ll) da mesma largura de banda de 7,61 MHz.
- 7. Processo de acordo com as reivindicações 5 ou 6, em que os dados de sinalização Ll tem informação DATA SLICE ΤΥΡΕ, informação DATA SLICE ΤΥΡΕ que compreende o primeiro tipo de fatia de dados e o segundo tipo de fatia de dados, correspondendo a fatia de dados a um grupo de símbolos de dados. 4 ΡΕ2200196
- 8. Transmissor para a transmissão de sinal de radiodifusão para um receptor, compreendendo: meios (102) para codificar os dados da conduta de camada física (Physical Layer Pipe - PLP) para transportar pelo menos um serviço e dados de sinalização de camada 1 (Li) para sinalizar os dados PLP; caracterizado por compreender adicionalmente, meios (308-1) para intercalar selectivamente no tempo os dados de sinalização LI codificados de um modo torcido linha-coluna, em que as células de dados de sinalização de entrada LI são escritas em série para dentro de uma memória de intercalação numa direcção diagonal, e lidos em série em modo de linha, em que a intercalação no tempo é executada sem considerar as posições piloto, e emitindo um bloco de camada 1 (Ll) TI, intercalado no tempo; meios (103) para construir um quadro de sinal incluindo símbolos de preâmbulo e símbolos dos dados PLP codificados, em que os símbolos do preâmbulo compreendem pelo menos um bloco Ll TI e cabeçalho Ll; meios (104) para modular o quadro de sinal por um processo de multiplexação por divisão de frequências ortogonais (OFDM); e meios (105) para transmitir o quadro de sinal modulado, em que o cabeçalho Ll tem informação de modo Ll TI que indica se deverá ser executada ou não a 5 ΡΕ2200196 desintercalação no tempo dos dados de sinalização LI codificados pelo receptor que recebe o sinal de radiodifusão.
- 9. Transmissor de acordo com a reivindicação 8, em que o cabeçalho LI tem a informação do modo LI TI que indica o modo da intercalação no tempo para os símbolos do preâmbulo.
- 10. Transmissor de acordo com as reivindicações 8 ou 9, em que os símbolos do preâmbulo são divididos em blocos de pelo menos uma camada 1 (LI) da mesma largura de banda de 7,61 MHz.
- 11. Transmissor de acordo com qualquer das reivindicações 8 a 10, em que por os símbolos do preâmbulo são divididos em blocos de pelo menos uma camada 1 (Li) de 3408 subportadoras.
- 12. Receptor para recepção de um sinal de radiodifusão, compreendendo o receptor; meios (rl04) para desmodular o sinal recebido pela utilização de um processo de multiplexagem por divisão de frequências ortogonais (OFDM); caracterizado por compreender adicionalmente, meios (rl03) para obter um quadro de sinal dos sinais desmodulados, compreendendo o quadro de sinal símbolos de preâmbulo e símbolos de dados, compreendendo os símbolos do preâmbulo pelo menos uma camada 1 (LI) TI, 6 ΡΕ2200196 intercalada no tempo, bloco e cabeçalho Ll, tendo o bloco Ll TI dados de sinalização Ll para sinalizar os símbolos de dados e tendo o cabeçalho Ll a informação de modo Ll TI que indica se ou não executar a desintercalação no tempo para os dados de sinalização Ll codificados; meios (r308-l) para desintercalar selectivamente no tempo os símbolos do preâmbulo pelo modo torcido linha-coluna, em que o modo torcido de linha-coluna compreende células de dados de sinalização Ll que são escritos em série numa memória de intercalação, e lidos em série ao longo de uma direcção diagonal, em que a desintercalação no tempo é executada sem considerar as posições piloto; meios (r306-l) para desmapear os símbolos de preâmbulo desintercalados no tempo em bits; e meios (r303-l) para descodificar os bits por um esquema de descodificação LDPC (Low Density Parity Check - verificação de paridade de baixa densidade) encurtado e puncionado,
- 13. Receptor de acordo com a reivindicação 12, em que os símbolos do preâmbulo são divididos em blocos de pelo menos uma camada 1 {Ll) da mesma largura de banda de 7,61 MHz.
- 14. Receptor de acordo com as reivindicações 11 ou 12, em que os dados de sinalização Ll tem informação DATA SLICE ΤΥΡΕ, informação DATA SLICE ΤΥΡΕ que compreende 7 ΡΕ2200196 o primeiro tipo de fatia de dados e o segundo tipo de fatia de dados, sendo a fatia de dados idêntica a um grupo de símbolos de dados. Lisboa, 8 de Novembro de 2011
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12270308P | 2008-12-15 | 2008-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
PT2200196E true PT2200196E (pt) | 2011-11-24 |
Family
ID=41228814
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PT111655809T PT2385639E (pt) | 2008-12-15 | 2009-06-03 | Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal |
PT09161816T PT2200196E (pt) | 2008-12-15 | 2009-06-03 | Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal |
PT111655759T PT2388936E (pt) | 2008-12-15 | 2009-06-03 | Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PT111655809T PT2385639E (pt) | 2008-12-15 | 2009-06-03 | Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PT111655759T PT2388936E (pt) | 2008-12-15 | 2009-06-03 | Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal |
Country Status (10)
Country | Link |
---|---|
EP (3) | EP2200196B1 (pt) |
CN (2) | CN103647920B (pt) |
AT (1) | ATE520213T1 (pt) |
DK (3) | DK2200196T3 (pt) |
ES (3) | ES2371386T3 (pt) |
HR (2) | HRP20130936T1 (pt) |
PL (3) | PL2200196T3 (pt) |
PT (3) | PT2385639E (pt) |
SI (3) | SI2388936T1 (pt) |
WO (1) | WO2010071272A1 (pt) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102257832B (zh) * | 2008-12-21 | 2014-12-24 | Lg电子株式会社 | 用于发送和接收信号的装置以及用于发送和接收信号的方法 |
EP3007437A4 (en) | 2013-05-28 | 2017-02-22 | LG Electronics Inc. | Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, method for transmitting broadcast signal, and method for receiving broadcast signal |
CN104518847B (zh) * | 2013-09-29 | 2018-02-02 | 中国科学院上海高等研究院 | 基于bch码与短ldpc码级联的信令编码方法及系统 |
CN105991266B (zh) * | 2015-01-30 | 2019-12-13 | 上海数字电视国家工程研究中心有限公司 | 前导符号的生成方法、接收方法、生成装置及接收装置 |
JP6618252B2 (ja) * | 2014-12-16 | 2019-12-11 | ソニーセミコンダクタソリューションズ株式会社 | 符号化装置、符号化方法、復号装置、復号方法、プログラム、および通信システム |
KR102024611B1 (ko) * | 2014-12-29 | 2019-11-04 | 엘지전자 주식회사 | 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법 |
KR102553316B1 (ko) * | 2015-03-06 | 2023-07-10 | 한국전자통신연구원 | 레이어드 디비전 멀티플렉싱을 이용한 방송 신호 프레임 생성 장치 및 방송 신호 프레임 생성 방법 |
CN112491770A (zh) * | 2015-07-17 | 2021-03-12 | Lg 电子株式会社 | 广播信号发送和接收装置和方法 |
JP6510730B2 (ja) | 2015-09-10 | 2019-05-08 | エルジー エレクトロニクス インコーポレイティド | 放送信号送信装置、放送信号受信装置、放送信号送信方法、及び放送信号受信方法 |
CN105338423B (zh) * | 2015-10-27 | 2018-04-13 | 天津车之家科技有限公司 | 流媒体数据直播方法及系统 |
CN109257139B (zh) * | 2017-07-14 | 2021-10-01 | 深圳市中兴微电子技术有限公司 | 一种物理层数据的发送、接收方法及其装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI108822B (fi) * | 2000-02-14 | 2002-03-28 | Nokia Corp | Lomittelumenetelmä ja -järjestelmä |
US7406104B2 (en) * | 2000-08-25 | 2008-07-29 | Lin Yang | Terrestrial digital multimedia/television broadcasting system |
GB2402021A (en) * | 2003-05-19 | 2004-11-24 | Nec Corp | Rate control method and apparatus for data packet transmission from a mobile phone to a base station |
CN1863182B (zh) * | 2005-09-30 | 2010-12-08 | 华为技术有限公司 | 移动通信系统中提高信号传输速率的方法 |
CN101018105B (zh) * | 2006-10-22 | 2012-03-14 | 北京创毅讯联科技股份有限公司 | 一种分级调制移动数字多媒体广播信号传输系统和方法 |
CN101018223B (zh) * | 2006-10-22 | 2011-03-23 | 北京创毅视讯科技有限公司 | 一种移动数字多媒体广播信号传输系统和方法 |
CN101018104B (zh) * | 2006-11-01 | 2010-06-09 | 北京创毅视通科技有限公司 | 移动数字多媒体广播信号传输系统及信道带宽改变方法 |
JP5415280B2 (ja) * | 2007-01-16 | 2014-02-12 | コーニンクレッカ フィリップス エヌ ヴェ | データビット又はシンボルをインタリーブするためのシステム、装置及び方法 |
KR100921465B1 (ko) * | 2007-04-19 | 2009-10-13 | 엘지전자 주식회사 | 디지털 방송 신호 송수신기 및 그 제어 방법 |
-
2009
- 2009-05-12 CN CN201310595015.2A patent/CN103647920B/zh active Active
- 2009-05-12 WO PCT/KR2009/002510 patent/WO2010071272A1/en active Application Filing
- 2009-05-12 CN CN2009801502110A patent/CN102246518B/zh active Active
- 2009-06-03 SI SI200930779T patent/SI2388936T1/sl unknown
- 2009-06-03 PL PL09161816T patent/PL2200196T3/pl unknown
- 2009-06-03 EP EP09161816A patent/EP2200196B1/en active Active
- 2009-06-03 AT AT09161816T patent/ATE520213T1/de not_active IP Right Cessation
- 2009-06-03 DK DK09161816.5T patent/DK2200196T3/da active
- 2009-06-03 ES ES09161816T patent/ES2371386T3/es active Active
- 2009-06-03 PT PT111655809T patent/PT2385639E/pt unknown
- 2009-06-03 EP EP11165580.9A patent/EP2385639B1/en not_active Not-in-force
- 2009-06-03 SI SI200930101T patent/SI2200196T1/sl unknown
- 2009-06-03 PL PL11165580T patent/PL2385639T3/pl unknown
- 2009-06-03 ES ES11165580T patent/ES2432098T3/es active Active
- 2009-06-03 PT PT09161816T patent/PT2200196E/pt unknown
- 2009-06-03 PL PL11165575T patent/PL2388936T3/pl unknown
- 2009-06-03 DK DK11165575.9T patent/DK2388936T3/da active
- 2009-06-03 DK DK11165580.9T patent/DK2385639T3/da active
- 2009-06-03 ES ES11165575.9T patent/ES2436782T3/es active Active
- 2009-06-03 SI SI200930739T patent/SI2385639T1/sl unknown
- 2009-06-03 PT PT111655759T patent/PT2388936E/pt unknown
- 2009-06-03 EP EP11165575.9A patent/EP2388936B1/en not_active Not-in-force
-
2013
- 2013-10-07 HR HRP20130936AT patent/HRP20130936T1/hr unknown
- 2013-11-12 HR HRP20131078AT patent/HRP20131078T1/hr unknown
Also Published As
Publication number | Publication date |
---|---|
ATE520213T1 (de) | 2011-08-15 |
EP2385639B1 (en) | 2013-08-28 |
CN102246518A (zh) | 2011-11-16 |
PL2388936T3 (pl) | 2014-03-31 |
SI2385639T1 (sl) | 2014-01-31 |
HRP20131078T1 (hr) | 2013-12-20 |
DK2388936T3 (da) | 2013-12-09 |
DK2385639T3 (da) | 2013-11-04 |
ES2436782T3 (es) | 2014-01-07 |
EP2388936A2 (en) | 2011-11-23 |
SI2200196T1 (sl) | 2011-12-30 |
CN103647920B (zh) | 2017-10-24 |
PT2385639E (pt) | 2013-10-31 |
CN102246518B (zh) | 2013-11-13 |
PL2385639T3 (pl) | 2013-12-31 |
EP2385639A3 (en) | 2012-03-14 |
CN103647920A (zh) | 2014-03-19 |
WO2010071272A1 (en) | 2010-06-24 |
ES2371386T3 (es) | 2011-12-30 |
DK2200196T3 (da) | 2011-11-28 |
EP2200196A1 (en) | 2010-06-23 |
EP2388936B1 (en) | 2013-08-28 |
PL2200196T3 (pl) | 2011-12-30 |
EP2388936A3 (en) | 2012-03-07 |
EP2200196B1 (en) | 2011-08-10 |
SI2388936T1 (sl) | 2014-02-28 |
HRP20130936T1 (hr) | 2013-11-08 |
ES2432098T3 (es) | 2013-11-29 |
PT2388936E (pt) | 2013-12-04 |
EP2385639A2 (en) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2375599B1 (en) | Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal | |
EP2432184B1 (en) | Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal | |
EP2448164A2 (en) | Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal | |
PT2360884E (pt) | Dispositivo e processo para a transmissão e recepção de um sinal | |
DK2557717T3 (en) | An apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal | |
PT2182669E (pt) | Dispositivo e método para transmitir e receber um sinal de difusão | |
PT2200196E (pt) | Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal | |
PT2211514E (pt) | Aparelho para transmissão e recepção de um sinal e processo para transmissão e recepção de um sinal | |
EP2503724A1 (en) | Apparatus and method for transmitting and receiving a broadcast signal | |
PT2187589E (pt) | Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal | |
PT2216926E (pt) | Aparelho para transmissão e recepção de um sinal e processo para transmissão e recepção de um sinal | |
EP2385669A2 (en) | Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal | |
PT2677677E (pt) | Aparelhagem para a transmissão e recepção de um sinal e método de transmissão e de recepção de um sinal | |
PT2190135E (pt) | Aparelho para transmissão e receção de um sinal e método para transmissão e receção de um sinal | |
PT2187543E (pt) | Dispositivo para a transmissão e recepção de um sinal e processo para a transmissão e recepção de um sinal | |
EP2434678B1 (en) | Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal | |
EP2209246B1 (en) | Apparatus and method for transmitting and receiving a signal using time-interleaving | |
DK2209277T3 (en) | An apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal | |
EP2624515B1 (en) | Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal |