PT2078531E - Composições farmacêuticas e métodos úteis para modular a angiogénese - Google Patents

Composições farmacêuticas e métodos úteis para modular a angiogénese Download PDF

Info

Publication number
PT2078531E
PT2078531E PT08020754T PT08020754T PT2078531E PT 2078531 E PT2078531 E PT 2078531E PT 08020754 T PT08020754 T PT 08020754T PT 08020754 T PT08020754 T PT 08020754T PT 2078531 E PT2078531 E PT 2078531E
Authority
PT
Portugal
Prior art keywords
gly
lor
arg
ala
leu
Prior art date
Application number
PT08020754T
Other languages
English (en)
Inventor
Gera Neufeld
Gal Akiri
Zhava Vadasz
Stela Gengrovitch
Original Assignee
Technion Res & Dev Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technion Res & Dev Foundation filed Critical Technion Res & Dev Foundation
Publication of PT2078531E publication Critical patent/PT2078531E/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03013Protein-lysine 6-oxidase (1.4.3.13), i.e. lysyl-oxidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

1
DESCRIÇÃO
"COMPOSIÇÕES FARMACÊUTICAS E MÉTODOS ÚTEIS PARA MODULAR A ANGIOGÉNESE"
CAMPO E ANTECEDENTES DA INVENÇÃO A presente invenção refere-se a composições farmacêuticas e métodos úteis para modular a angiogénese.
Num adulto, a formação de novos vasos sanguíneos em tecidos normais ou doentes é regulada por dois processos, vasculogénese recapitulada (a transformação de arteríolas preexistentes em pequenas artérias musculares) e angiogénese, a germinação de vasos sanguíneos existentes (que ocorre tanto no embrião como no adulto). 0 processo da angiogénese é regulado por estímulos biomecânicos e bioquímicos. Os factores angiogénicos tais como factor de crescimento endotelial vascular (VEGF) e factor de crescimento de fibroblasto básico (bFGF), são libertados por células vasculares, macrófagos, e vasos sanguíneos que rodeiam células. Estes factores angiogénicos activam proteases específicas que estão envolvidas na degradação da membrana basal. Como um resultado desta degradação, as células vasculares migram e proliferam o que leva assim à formação de novos vasos sanguíneos. As células peri-endoteliais, tais como pericitos nos capilares, células musculares lisas em vasos maiores e miócitos cardíacos no coração são recrutados para proporcionar funções de manutenção e moduladoras ao vaso em formação. 0 estabelecimento e remodelação de vasos sanguíneos são controlados por sinais parácrinos, muitos dos quais são mediados por ligandos de proteína que modulam a actividade de receptores de tirosina quinase transmembrana. Entre estas moléculas estão factores de crescimento endotelial vascular (VEGF) e as suas famílias de receptor (VEGFR-1, VEGFR-2, neuropilina-1 e neuropilina-2), Angiopoietinas 1-4 2 (Ang-1, Ang-2 etc.) e os seus respectivos receptores (Tie-1 e Tie-2), factor de crescimento de fibroblasto básico (bFGF), factor de crescimento derivado de plaguetas (PDGF), e factor de crescimento de transformação β (TGF-β). 0 crescimento de tumores sólidos é limitado pela disponibilidade de nutrientes e oxigénio. Quando as células dentro de tumores sólidos começam a produzir factores angiogénicos ou guando os níveis de inibidores de angiogénese declinam, o equilíbrio entre as influências de anti-angiogénico e angiogénico é perturbado, iniciando o crescimento de novos vasos sanguíneos a partir de leito vascular existente no tumor. Este evento em progressão de tumor é conhecido como a activação da angiogénese (1,2). Demonstrou-se que inibidores de angiogénese de tumor são capazes de inibir completamente o crescimento de tumor em ratinhos (3,4) e também inibir a metástase de tumor, um processo que se baseia em contacto íntimo entre a vasculatura e células tumorais (5) . Demonstrou-se também que a angiogénese desempenha um importante papel na progressão de cancro de mama (6-9).
Tal achado tem incitado a utilização de factores anti-angiogénicos conhecidos em terapêutica contra o cancro de mama (10-12) e uma pesquisa por novos inibidores da angiogénese.
Durante a última década diversos novos inibidores da angiogénese foram isolados incluindo inibidores de sinalização de VEGF (13) e inibidores de processos que levam à maturação e estabilização de novos vasos sanguíneos. Anticorpos anti-integrinas foram usados como inibidores de maturação de vasos sanguíneos (14,15).
Embora diversos fármacos anti-angiogénicos estejam agora comercialmente disponíveis, os mecanismos anti-angiogénicos da maioria destes fármacos (por exemplo, angiostatina e endostatina) permanecem pouco claros (16,17) . 3
Uma vez que a angiogénese pode ser iniciada por muitos factores angiogénicos (possivelmente compansatórios) representa a razão de que os factores anti-angiogénicos que se direccionam a processos tardios na resposta angiogénica tais como maturação de vaso ou uma combinação de factores anti-angiogénicos seriam mais eficazes em deter a formação de vasos.
Factor-4 plaquetário (PF4) é uma proteína anti-angiogénica normalmente sequestrada em plaquetas (18-20). PF 4 inibe a angiogénese usando mecanismos pobremente definidos (21-24). Especulou-se anteriormente que PF4 se liga a proteoglicanos heparan-sulfato superfície celular e desta maneira inibe a actividade de factores de crescimento angiogénico tais como factor de crescimento de fibroblasto básico (24).
Enquanto se reduz a presente invenção à prática e enquanto se pesquisa factores anti-angiogénicos ou alvos alternativos, os presentes inventores descobriram uma nova proteína de ligação a PF4 que participa na modulação da angiogénese.
Como foi demonstrado pelo presente estudo, esta proteína, que é denominada no presente documento LOR-1, é altamente expresso em células endoteliais cultivadas bem como em outras células de vasos sanguíneos. Além disso, os níveis de expressão de LOR-1 podem ser correlacionados às propriedades metastáticas de linhas de células derivadas de cancro de mama, indicando que LOR-1 pode desempenhar papéis adicionais na progressão de tumor além de um papel na angiogénese.
SUMÁRIO DA INVENÇÃO
De acordo com um aspecto da presente invenção proporciona-se uma composição farmacêutica útil para tratar um distúrbio caracterizado por formação excessiva de vasos sanguíneos, compreendendo a composição uma molécula capaz 4 de regular negativamente um nível e/ou actividade de LOR-1 como definido nas reivindicações.
De acordo com características adicionais da invenção descrita a seguir, a molécula é um anticorpo ou um fragmento de anticorpo capaz de ligar-se com, e pelo menos inibir parcialmente a actividade de, o pelo menos um polipéptido.
De acordo com características mais adicionais nas formas de realização preferidas descritas o anticorpo ou o fragmento de anticorpo é direccionado contra pelo menos uma porção do polipéptido estabelecido em SEQ ID NO: 2.
De acordo com características mais adicionais nas formas de realização preferidas descritas a molécula é um polinucleótido capaz de regular negativamente a expressão do pelo menos um tipo de lisil-oxidase.
De acordo com características mais adicionais nas formas de realização preferidas descritas o polinucleótido é pelo menos parcialmente complementar com o polinucleótido estabelecido em SEQ ID NOs: 1, 4, 5 ou 7.
De acordo com características mais adicionais nas formas de realização preferidas descritas o polipéptido a ser regulado negativamente é pelo menos 75% homólogo ao polipéptido estabelecido em SEQ ID NO: 2. A presente invenção de maneira bem-sucedida direcciona-se aos inconvenientes das configurações presentemente conhecidas por meio da provisão de composições farmacêuticas e métodos que podem ser usados para tratar distúrbios caracterizados por formação excessiva de vasos sanguíneos.
BREVE DESCRIÇÃO DOS DESENHOS A invenção é descrita no presente documento, por meio de exemplo somente, com referência aos desenhos anexos. Com referência específica agora aos desenhos pormenorizadamente, salienta-se que os particulares mostrados são por meio de exemplo e para os propósitos de 5 discussão ilustrativa das formas de realização preferidas da presente invenção somente, e são apresentados no intuito de proporcionar o que se acredita que seja a descrição mais útil e prontamente entendida dos princípios e aspectos conceituais da invenção. Neste sentido, nenhuma tentativa é feita para mostrar pormenores estruturais da invenção mais pormenorizadamente que os que sejam necessários para um entendimento fundamental da invenção, a descrição tomada com os desenhos tornam aparente aos peritos na especialidade como as diversas formas da invenção podem ser incorporadas na prática.
Nos desenhos: A FIG. 1 ilustra a análise de SDS-PAGE de extractos de células endoteliais aórticas porcinas (Células PAE) que foram transfectadas com vector somente (pista 1) ou com vector contendo o ADNc de LOR-1 (pista 3) e metabolicamente marcado com 35S- metionina. Os extractos das células transfectadas com vector (pista 2), do vector contendo células transfectadas com ADNc de LOR-1 (pista 4) ou de células endoteliais de veia umbilical humana (HUVEC) marcadas 35S-metionina (pista 5) foram purificados numa coluna de afinidade com PF4. Uma Banda correspondente em tamanho à banda original observada nas HUVEC é evidente (compare-se as pistas 4 e 5) ; esta banda está ausente em extractos de células transfectadas com vector. A FIG. 2 ilustra a expressão diferencial de LOR-1 em células derivadas de cancro de mama de diferente potencial metastático. 0 potencial metastático das células aumenta da esquerda a direita, e está correlacionado à expressão aumentada de ARNm de LOR-1. Os resultados correspondem à análise de northern blot de expressão de ARNm de LOR-1. Os dados relacionados ao potencial metastático relativo das linhas celulares foram derivados da literatura. A FIG. 3 ilustra a expressão de LOR-1 recombinante em células de cancro de mama MCF-7 (pista 1) . Células MCF-7 6 transfectadas com vector (pista 2) e dois clones de MCF-7 que expressam LOR-1 recombinante (pista 3, clone 12, pista 4, clone 22) foram crescidas durante dois dias em meio livre de soro. 0 meio de um número igual de células foi colhido, concentrado 30 vezes usando Centricon™, e aliquotas de 10 μΐ foram submetidas a electroforese usando um gel de SDS/PAGE. As proteínas foram colocadas em nitrocelulose, e proteína LOR-1 foi identificada usando um anticorpo direccionado contra o C-terminal de LOR-1. Um anticorpo secundário acoplado a fosfatase alcalina e coloração de NBT-BICP foram usados para detectar o anticorpo primário ligado. A FIG. 4 ilustra o tamanho do tumor como correlacionado à expressão de LOR-1. Células MCF-7 parentais (par), células MCF-7 transfectadas com pCDNA3 vector somente (vec) e duas células MCF-7 que expressam LOR-1 recombinante (clones 12 e 24) foram depositadas sob a pele de ratinhos imunodeficientes (107/local de injecção) juntamente com uma Aglomerado de libertação lenta de estrogénio. Seis animais foram usados para cada tipo de célula implantado. A área dos tumores foi medida a cada poucos dias. As barras representam o desvio padrão da média.
As FIGs. 5a-b ilustram imunocoloração de anti-factor-8 de tumores gerados pelas células MCF-7 transfectadas com o vector de expressão somente (Figura 5a) ou com um vector de expressão contendo o ADNc de LOR-1 (Figura 5b) . A contra-coloração foi realizada com hematoxilina-eosina (blue). Invasão de vasos sanguíneos na massa tumoral é mais abundante em tumores que expressam LOR- 1 (Figura 5b) em comparação com tumores gerados por células de controlo que não expressam LOR-1 (Figura 5a).
As FIGs. 6a-d ilustram secções de fígado de pacientes de doença de Wilson (Figuras 6c-d) e pacientes normais 7 (Figuras 6a-b) sondadas com uma sonda sense de LOR-1 (Figuras 6a, 6c) e sonda antisense (Figuras 6b, 6d). A FIG. 7 ilustra os resultados de uma hibridação in situ de quantidade completa de um usando uma sonda de ADNc de LOR-1 e um embrião de galinha de 4 dias de idade.
Expressão forte de ARNm de LOR-1 é observada em vasos sanguíneos amniónicos (flecha). A FIG. 8 ilustra o alinhamento de sequências de diversas lisil oxidases incluindo LOR-1.
DESCRIÇÃO DAS FORMAS DE REALIZAÇÃO PREFERIDAS A presente invenção é de composições farmacêuticas e métodos que podem ser usados para diminuir a angiogénese. Especificamente, a presente invenção pode ser usada para suprimir o crescimento de tumor e metástase bem como para tratar distúrbios tais como, por exemplo, artrite, retinopatia diabética, psoríase e vasculite.
Os princípios e operação da presente invenção podem ser melhor entendidos com referência aos desenhos e descrições anexas.
Antes de explicar pelo menos uma forma de realização da invenção pormenorizadamente, é para ser entendido que a invenção não está limitada na sua aplicação aos pormenores de construção e a disposição dos componentes estabelecidos na seguinte descrição ou ilustrados nos desenhos descritos na secção de Exemplos. A invenção é capaz de outras formas de realização ou de ser praticada ou levada a cabo de várias maneiras. Também, é para ser entendido que a fraseologia e terminologia utilizadas no presente documento são para o propósito de descrição e não devem ser consideradas como limitativas.
Como descrito na secção de Exemplos que se segue os presentes inventores descobriram um novo constituinte de proteína do processo angiogénico.
Esta proteína, que é denominada LOR-1 no presente documento (SEQ ID N0:2) pertence à família de lisil-oxidase de enzimas que catalisam a formação de ligações cruzadas covalentes entre resíduos de lisina no colagénio adjacente ou fibrilas de elastina. A família de lisil oxidase inclui quatro genes (27,28,32,33), cujas sequências de proteína são apresentadas em SEQ ID NOs: 3, 6, 8 e 9. Uma comparação de homologia entre diversos membros da família de lisil oxidase é apresentada na Figura 8 que é descrita ainda na secção de Exemplos que se segue.
Cada membro da família de lisil-oxidase de enzimas inclui um domínio de lisil-oxidase altamente conservado, cuja actividade é altamente dependente da presença de cobre.
Deve ser notado que estudos da técnica anterior mostraram que a remoção de cobre de tecidos de tumor leva a inibição da angiogénese (30, 34) . Isto ainda substancia o papel da família de lisil-oxidase de enzimas na angiogénese uma vez que presumivelmente, a retirada de cobre leva a inibição de lisil-oxidases.
Suporte adicional à actividade angiogénica de lisil-oxidases é proporcionado pelos ensaios de ligação de PF4-LOR-1 apresentado no presente documento. Como foi mencionado anteriormente no presente documento, PF4 é um inibidor da angiogénese. Como tal, a actividade anti-angiogénica exibida por PF4 pode ser efectuada através de inibição de LOR-1, que, como é demonstrado na secção de Exemplos que se segue, é altamente expresso nas células endoteliais que revestem os vasos sanguíneos
Assim proporciona-se um método de modulação da angiogénese. O método é efectuado pela administração no tecido de mamíferos de uma molécula capaz de modificar um nível de tecido e/ou actividade de pelo menos um tipo de lisil-oxidase, modulando deste modo a angiogénese no tecido de mamíferos. 9
Como é usado no presente documento, a frase "nível de tecido" refere-se ao nível de proteína lisil-oxidase presente em forma activa no tecido num dado ponto de tempo. Níveis de proteína são determinados por factores tais como, taxas de transcrição e/ou tradução, rotação de ARN ou proteína e/ou localização de proteína dentro da célula. Como tal qualquer molécula que efectue qualquer destes factores pode modificar o nível de tecido da lisil-oxidase.
Como é usado no presente documento o termo "actividade" refere-se a uma actividade enzimática da lisil-oxidase. Uma molécula que pode modificar a actividade enzimática pode directamente ou indirectamente alterar a especificidade de substrato da enzima ou actividade o local catalítico da mesma.
Existem numerosos exemplos de moléculas que podem especificamente modificar o nível de tecido e/ou actividade de um lisil-oxidase. Tal moléculas pode ser categorizadas em lisil-oxidase "reguladores positivos" ou "reguladores negativos".
Reguladores negativos
Um anticorpo (policlonal, monoclonal ou monoespecífico) ou uma porção de anticorpo (por exemplo, fragmento Fab) direccionado pelo menos uma porção de uma lisil-oxidase (por exemplo, região que abrangem o local catalítico) pode ser usado para especificamente inibir a actividade de lisil-oxidase quando é introduzido no tecido de mamíferos, como tal, um anticorpo ou um fragmento de anticorpo direccionado a uma lisil- oxidase pode ser usado para suprimir ou deter a formação de vasos sanguíneos.
Numerosos exemplos de inibidores de anticorpo são conhecidos na técnica, incluindo inibidores da angiogénese que têm como alvo factores angiogénicos (14, 15).
Como é descrito a seguir, várias abordagens anti-sense ou ribozima podem ser usadas para reduzir ou abolir a transcrição ou tradução de uma lisil oxidase. 10
Uma molécula antisense que pode ser usada com a presente invenção inclui um polinucleótido ou um análogo de polinucleótido de pelo menos 10 bases, preferentemente entre 10 e 15, mais preferentemente entre 50 e 20 bases, mais preferentemente, pelo menos 17, pelo menos 18, pelo menos 19, pelo menos 20, pelo menos 22, pelo menos 25, pelo menos 30 ou pelo menos 40 bases que é hibridizável in vivo, sob condições fisiológicas, com uma porção de um cadeia de polinucleótido que codifica um polipéptido pelo menos 50% homólogo às SEQ ID NOs:l, 4, 5 ou 7 ou pelo menos 75% homólogo a uma porção N-terminal das mesmas como determinadas usando o software BestFit do pacote de análise de sequências Wisconsin, utilizando o algoritmo de Smith e Waterman, onde penalidade por criação de lacuna é igual a 8 e penalidade por extensão de lacuna é igual a 2.
Os oligonucleótidos antissense usados pela presente invenção podem ser expressos a partir da construção de ácido nucleico administrada no tecido, em cujo caso promotores induziveis são preferentemente usados tal que a expressão antissense pode ser ligada e desligada, ou alternativamente tais oligonucleótidos podem ser quimicamente sintetizados e administrados directamente no tecido, como parte de, por exemplo; uma composição farmacêutica. A capacidade de sintetizar quimicamente oligonucleótidos e análogos dos mesmos que tenham uma sequência seleccionada predeterminada oferece meios para modular negativamente a expressão de gene. Três tipos de expressão de estratégias de modulação de gene podem ser considerados.
No nível de transcrição, oligonucleótidos antissense ou senses ou análogos que se ligam ao ADN genómico por meio do deslocamento de cadeia ou a formação de uma hélice tripla, pode prevenir transcrição. No nível de transcrito, oligonucleótidos antissense ou análogos que se ligam a 11 moléculas de ARN alvo levam à clivagem enzimática do híbrido por ARNase H intracelular. Neste caso, por meio da hibridação ao ARNm alvo, os oligonucleótidos ou análogos de oligonucleótido proporcionam um duplex híbrido reconhecido e destruído pela enzima ARNase H. Alternativamente, tal formação de híbrido pode levar a interferência com splicing correcto. Como um resultado, em ambos os casos, o número dos transcritos intactos de ARNm alvo prontos para a tradução é reduzido ou eliminado. No nível de tradução, os oligonucleótidos antissense ou análogos que se ligam moléculas de ARNm alvo previnem, por impedimento estérico, a ligação de factores de tradução essenciais (ribossomas), ao ARNm alvo, um fenómeno conhecido na técnica como detenção da hibridação, desabilitando a tradução de tais ARNm.
Diversos estudos da técnica anterior mostraram que oligonucleótidos antissense podem ser eficazes in vivo. Por exemplo, moléculas antissense foram usadas para deter a proliferação de células hematopoiéticas (58), crescimento (59), ou entrada na fase S do ciclo celular (60) e para prevenir as respostas mediadas por receptor (61).
Diversas considerações precisam ser levadas em conta ao projectar oligonucleótidos antissense. Para a inibição in vivo eficaz de expressão de gene usando oligonucleótidos antissense ou análogos, os oligonucleótidos ou análogos precisam cumprir com os seguintes requisitos (i) especificidade suficiente na ligação à sequência alvo; (i1) solubilidade em água; (iii) estabilidade contra nucleases intra- e extracelulares; (iv) capacidade de penetração através da membrana celular; e (v) quando usados para tratar um organismo, baixa toxicidade.
Oligonucleótidos não modificados são tipicamente pouco práticos para utilização como sequências antissense uma vez que possuem semividas curtas in vivo, durante as quais são degradados rapidamente pelas nucleases. Além disso, são 12 difíceis de preparar em quantidades de mais de miligrama. Além disso, tais oligonucleótidos são pobres penetrantes de membrana celular.
Assim é aparente que com a finalidade de cumprir com todos os requisitos listados acima, análogos de oligonucleótido precisam ser ideados de uma maneira adequada.
Por exemplo, os problemas que surgem em conexão com o reconhecimento de ADN de cadeia dupla (dsDNA) através da formação de hélice tripla diminuíram por uma ligação química inteligente de "retorno", por meio do qual uma sequência de polipurina numa cadeia é reconhecida, e por meio do "retorno", uma sequência de homopurina na outra cadeia pode ser reconhecida. Também, a boa formação de hélice foi obtida usando bases artificiais, melhorando deste modo as condições de ligação com relação à força iónica e pH.
Além disso, com a finalidade de melhorar a semivida bem como a penetração da membrana, um grande número de variações em estruturas principais de polinucleótido foram feitas, contudo com pouco sucesso.
Oligonucleótidos podem ser modificados na base, a fracção açúcar ou a fracção fosfato. Estas modificações incluem, por exemplo, a utilização de metilfosfonatos, monotiofosfatos, ditiofosfatos, fosforamidatos, ésteres de fosfato, fosforotioatos ponteados, fosforamidatos ponteados, metilenofosfonatos ponteados, análogos desfosfo internucleótido com pontes de siloxano, pontes de carbonato, pontes de carboximetil éster, pontes de carbonato, pontes de carboximetil éster, pontes de acetamida, pontes de carbamato, pontes de tioéter, pontes de sulfoxi, pontes de sulfono, vários ADN "plásticos", pontes anoméricas e derivados de borano (62). 0 pedido de patente internacional WO 89/12060 revela vários blocos de construção para sintetizar análogos de 13 oligonucleótido, bem como análogos de oligonucleótido formados pela união de tais blocos de construção numa seguência definida. Os blocos de construção podem ser "rígidos" (isto é, contendo uma estrutura de anel) ou "flexíveis" (isto é, não contendo uma estrutura de anel). Em ambos os casos, os blocos de construção contêm um grupo hidroxi e um grupo mercapto, através dos quais os blocos de construção se unem para formar análogos de oligonucleótido. A fracção de ligação nos análogos de oligonucleótido é seleccionada a partir do grupo que consiste em sulfeto (-S-), sulfóxido (-S0-), e sulfona (-S02-). 0 pedido de patente internacional WO 92/20702 descreve um oligonucleótido acíclico que inclui uma estrutura principal de péptido na qual quaisquer nucleobases químicas seleccionadas ou análogos são encadeados e servem como caracteres codificantes como o fazem em ADN ou ARN natural. Estes novos compostos, conhecidos como ácidos nucleicos de péptido (PNAs), não são somente mais estáveis em células que as suas contrapartes naturais, mas também se ligam a ADN e ARN natural 50 a 100 vezes mais firmemente que os ácidos nucleicos naturais se seguram um ao outro. Os oligómeros de PNA podem ser sintetizados a partir dos quatro monómeros protegidos contendo timina, citosina, adenina e guanina por síntese de péptido em fase sólida de Merrifield. Com a finalidade de aumentar a solubilidade em água e para prevenir a agregação, um grupo lisina amida é colocado na região C-terminal.
Assim, a tecnologia antissense requer o emparelhamento de ARN mensageiro com um oligonucleótido para formar uma dupla hélice que inibe a tradução. O conceito de terapêutica de gene mediado por antissense foi já introduzido em 1978 para terapêutica contra o cancro. Esta abordagem foi baseada em certos genes que são cruciais na divisão celular e crescimento de células de cancro. Fragmentos sintéticos de ADN de substância genética podem 14 alcançar este golo. Tais moléculas ligam-se às moléculas de gene alvo em ARN de células tumorais, inibindo deste modo a tradução dos genes e tendo como resultado o crescimento disfuncional destas células. Outros mecanismos também foram propostos. Estas estratégias foram usadas, com algum sucesso no tratamento de cancros, bem como outras doenças, incluindo doenças virais e outras doenças infecciosas.
Oligonucleótidos antissense são tipicamente sintetizados em comprimentos de 13-30 nucleótidos. O intervalo de vida de moléculas de oligonucleótido no sangue é bem baixo. Assim, têm que ser quimicamente modificados para prevenir a destruição por nucleases ubíquas presentes no corpo. Fosforotioatos são uma modificação muito amplamente usada em oligonucleótido antissense em ensaios clínicos em progresso. Uma nova geração de moléculas antissense consistem em oligonucleótido antissense híbrido com uma porção central de ADN sintético enquanto quatro bases em cada extremidade foram modificadas com 2'0-metil ribose para assemelhar-se a ARN. Em estudos pré-clínicos em animais de laboratório, tais compostos demonstraram maior estabilidade ao metabolismo em tecidos do corpo e um perfil de segurança melhorado em comparação com o fosforotioato de primeira geração não modificado. Dúzias de outros análogos de nucleótido foram também testados em tecnologia antissense.
Os oligonucleótidos de ARN podem também ser usados para a inibição antissense à medida que formam um dúplice ARN-ARN estável com o alvo, sugerindo a inibição eficaz. No entanto, devido à sua baixa estabilidade os oligonucleótidos de ARN são tipicamente expressos dentro das células usando vectores projectados para este propósito. Esta abordagem é favorecida ao tentar direccionar um ARNm que codifica uma proteína abundante e de vida longa. 15
Os oligonucleótidos de ARN podem também ser projectados de modo a activar mecanismos de ARN de interferência dentro da célula (ARNi). Os pligonucleótidos adeguados para tal propósito precisam ser de um comprimento definido e área de complementação (63).
Publicações científicas recentes validaram a eficácia de compostos antissense em modelos animais de hepatite, cancros, reestenose de arteira coronária e outras doenças. 0 primeiro fármaco antissense foi recentemente aprovado pelo FDA. 0 fármaco, Fomivirsen, foi desenvolvido por Isis, e é indicadado para o tratamento local de citomegalovírus em pacientes com SIDA que são intolerantes a ou têm uma contra-indicação a outros tratamentos para retinite de CMV ou que foram insuficientemente respondedores a tratamentos anteriores para retinite de CMV (Pharmacotherapy News Network).
Diversos compostos antissense estão agora em ensaios clínicos nos Estados Unidos. Estes incluem antivirais administrados localmente, terapêuticas sistémicas contra o cancro. A terapêutica antissense tem o potencial para tratar muitas doenças que ameaçam a vida com um número de vantagens sobre os fármacos tradicionais. Os fármacos tradicionais intervêm após uma proteína que causa doença ser formada. Terapêuticas antissense, no entanto, bloqueiam a transcrição/tradução de ARNm e intervêm antes de uma proteína ser formada, e uma vez que terapêuticas antissense direccionam somente a um ARNm específico, devem ser mais eficazes com menos efeitos secundários que a terapêutica de inibição de proteína actual.
Uma segunda opção para interromper a expressão de gene no nível de transcrição utiliza oligonucleótidos sintéticos capazes de hibridar com ADN de cadeia dupla. Uma hélice tripla é formada. Tais oligonucleótidos podem prevenir a ligação de factores de transcrição ao promotor do gene e portanto inibir a transcrição. Alternativamente, podem 16 prevenir o desenrolamento do dúplice e, portanto, a transcrição de genes dentro da estrutura helicoidal tripla.
As ribozimas podem também ser usadas como reguladores negativos. As ribozimas estão a ser cada vez mais usadas para inibição a especifica de sequência de expressão de gene pela clivagem de proteínas que codificam ARNm de interesse. A possibilidade de projectar ribozimas para clivar qualquer ARN alvo específico tem tornado as mesmas em ferramentas valiosas tanto na investigação básica como em aplicações terapêuticas. Na área terapêutica, as ribozimas foram exploradas para direccionarem-se a ARN virai em doenças infecciosas, oncogenes dominantes em cancros e mutações somáticas específicas em distúrbios genéticos. De maneira mais notável, os diversos protocolos de terapêutica de gene de ribozima para pacientes com VIH estão já em ensaios de Fase 1 (67). Mais recentemente, as ribozimas foram usadas para investigação de animais transgénicos, validação de gene alvo e elucidação de via. Diversas ribozimas estão em vários estágios de ensaios clínicos. ANGIOZYME foi a primeira ribozima quimicamente sintetizada a ser estudada em ensaios clínicos humanos. ANGIOZYME especificamente inibe a formação do VEGF-r (receptor de Factor de crescimento endotelial vascular), um componente chave na via da angiogénese. Ribozyme Pharmaceuticals, Inc., bem como outras firmas têm demonstrado a importância de terapêutica anti-angiogénese em modelos animais. Descobriu-se que HEPTAZYME, uma ribozima projectada para destruir selectivamente o ARN do Vírus da Hepatite C (HCV) , é eficaz na diminuição de ARN virai de Hepatite C em ensaios de cultura celular (Ribozyme Pharmaceuticals, Incorporated).
Os reguladores negativos descritos anteriormente no presente documento seriam particularmente úteis para inibir a angiogénese em tecido tumoral. Mostrou-se que PF4, uma proteína de ligação a lisil oxidase que inibe a angiogénese 17 em tecido tumoral se acumula especificamente em vasos sanguíneos recentemente formados de tumores (vasos angiogénicos), mas não em vasos sanguíneos estabelecidos (31,35) .
Vasos sanguíneos angiogénicos recentemente formados são mais permeáveis a proteínas que vasos sanguíneos estabelecidos porque o maior indutor da angiogénese em muitas doenças angiogénicas é VEGF, um factor de crescimento que também funções como um potente factor de permeabilização de vaso sanguíneo (VPF) (13) . Os vasos sanguíneos associados ao tumor estão portanto num estado permanente de hiperpermeabilidade devido a sobre-expressão desregulada de VEGF (36,37) e como tal, uma molécula reguladora negativa usada pelo método da presente invenção seriam capazes de extravasar eficientemente desde vasos sanguíneos tumorais, mas muito menos eficientemente desde vasos sanguíneos estabilizados normais.
Com a finalidade de modular a angiogénese as moléculas reguladoras negativas usadas pela presente invenção podem ser administradas ao indivíduo por si mesmas, ou numa composição farmacêutica onde são misturadas com portadores ou excipientes adequados.
Como é usado no presente documento uma "composição farmacêutica" refere-se a uma preparação de um ou mais dos ingredientes activos descritos no presente documento com outros componentes químicos tais como portadores e excipientes fisiologicamente adequados. 0 propósito de uma composição farmacêutica é facilitar a administração/direccionamento de um composto a um mamífero.
Como é usado no presente documento o termo "ingredientes activos", refere-se à preparação que conta para o efeito biológico, isto é, as moléculas reguladoras positivas/reguladoras negativas usadas pela presente invenção. 18 A seguir no presente documento, as frases "portador fisiologicamente aceitável" e "portador farmaceuticamente aceitável" são intercambiavelmente usadas para referir-se a um portador, tal como, por exemplo, um lipossoma, um vírus, uma micela, ou uma proteína, ou um diluente gue não causam irritação significativa ao mamífero e não revogam a actividade biológica e propriedades do ingrediente activo. Um adjuvante é incluído sob estas frases.
No presente documento o termo "excipiente" refere-se a uma substância inerte adicionada a uma composição farmacêutica para facilitar adicionalmente a administração de um ingrediente activo. Exemplos, sem limitação, de excipientes, incluem carbonato de cálcio, fosfato de cálcio, vários açúcares e tipos de amido, derivados de celulose, gelatina, óleos vegetais e glicóis polietileno. Técnicas para a formulação e administração de composições podem ser encontradas em "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, última edição, que é incorporado no presente documento por referência.
Vias de administração adeguadas podem, por exemplo, incluir a administração oral, rectal, transmucosal, transnasal, intestinal ou parentérica, incluindo injecções intramuscular, subcutânea e intramedular bem como injecções intratecal, intraventricular directa, intravenosa, inrtaperitoneal, intranasal, ou intraocular.
Para injecção, os ingredientes activos da invenção podem ser formulados em soluções aquosas, preferentemente em tampões fisiologicamente compatíveis tais como solução de Hank, solução de Ringer, ou tampão de sal fisiológico. Para administração transmucosal, penetrantes apropriados à barreira a ser permeada são usados na formulação. Tais penetrantes são geralmente conhecidos na técnica.
Para administração oral, os compostos podem ser formulados prontamente por meio da combinação do 19 ingrediente activo com portadores farmaceuticamente aceitáveis bem conhecidos na técnica. Tais portadores possibilitam que o ingrediente activo da invenção seja formulado como comprimidos, pílulas, drageias, cápsulas, líquidos, géis, xaropes, pastas, suspensões, e similares, para ingestão oral por um paciente. Preparações farmacológicas para utilização oral podem ser feitas usando um excipiente sólido, opcionalmente moendo a mistura resultante, e processando a mistura de grânulos, após adicionar auxiliares adequados se for desejado, para obter comprimidos ou núcleos de drageia. Excipientes adequados são, em particular, cargas tais como açúcares, incluindo lactose, sacarose, manitol, ou sorbitol; preparações de celulose tais como, por exemplo, amido de milho, amido de trigo, amido de arroz, amido de batata, gelatina, goma tragacanto, metil celulose, hidroxipropilmetil-celulose, carbometilcelulose de sódio; e/ou polímeros fisiologicamente aceitáveis tais como polivinilpirrolidona (PVP). Se for desejado, agentes desintegrantes podem ser adicionados, tal como polivinil pirrolidona reticulada, agar, ou ácido algínico ou um sal dos mesmos tal como alginato de sódio. Núcleos de drageia são proporcionados com revestimentos adequados. Para este propósito, soluções concentradas de açúcar podem ser usadas as quais podem opcionalmente conter goma arábica, talco, polivinil pirrolidona, gel carbopol, polietileno glicol, dióxido de titânio, soluções de laca e solventes orgânicos adequados ou misturas de solvente. Corantes ou pigmentos podem ser adicionados aos comprimidos ou revestimentos de drageia para identificação ou para caracterizar combinações diferentes de doses de composto activo.
As composições farmacêuticas, que podem ser usadas oralmente, incluem cápsulas duras feitas de gelatina bem como cápsulas vedadas moles feitas de gelatina e um 20 plastificante, tal como glicerol ou sorbitol. As cápsulas duras podem conter os ingredientes activos em mistura com carga tais como lactose, ligantes tais como amidos, lubrificantes tais como talco ou estearato de magnésio e, opcionalmente, estabilizantes. Em cápsulas moles, os ingredientes activos podem ser dissolvidos ou suspensos em liguidos adequados, tais como óleos gordos, parafina liguida, ou polietileno glicóis liguidos. Além disso, estabilizantes podem ser adicionados. Todas as formulações para administração oral devem ser em dosagens adequadas para a via de administração escolhida.
Para administração bucal, as composições podem tomar a forma de comprimidos ou pastilhas formuladas de uma maneira convencional.
As preparações descritas no presente documento podem ser formuladas para administração parentérica, por exemplo, por injecção de bolus ou infusão continua. Formulações para injecção podem ser apresentadas em forma farmacêutica unitária, por exemplo, em ampolas ou em recipientes multidose com opcionalmente, um conservante adicionado. As composições podem ser suspensões, soluções ou emulsões em veículos oleosos ou aquosos, e podem conter agentes de formulação tais como agentes de suspensão, estabilizantes e/ou de dispersão.
As composições farmacêuticas para administração parentérica incluem soluções aquosas da preparação activa em forma solúvel em água. Adicionalmente, as suspensões dos ingredientes activos podem ser preparadas como suspensões oleosas ou injecção à base de água apropriadas. Solventes lipofílicos adequados ou veículos incluem óleos gordos tais como óleo de sésamo, ou ésteres de ácidos gordos sintéticos tais como oleato de etilo, triglicéridos ou lipossomas. Suspensões de injecção aquosa podem conter substâncias, que aumentam a viscosidade da suspensão, tal como carboximetil celulose de sódio, sorbitol ou dextrano. Opcionalmente, a 21 21 adequados ou ingredientes de soluções suspensão pode também conter estabilizantes agentes que aumentam a solubilidade dos activos para proporcionar a preparação altamente concentradas.
Alternativamente, o ingrediente activo pode ser em forma pó para constituição com um veiculo adequado, por exemplo, solução estéril à base de água livre de pirogénios, antes da utilização. A preparação da presente invenção pode também ser formulada em composições rectais tais como supositórios ou enemas de retenção, usando, por exemplo, bases de supositório convencionais tais como manteiga de cacau ou outros glicéridos.
As composições farmacêuticas adequadas para utilização no contexto da presente invenção incluem composições em que os ingredientes activos estão contidos numa quantidade eficaz para alcançar o propósito pretendido. A composição farmacêutica pode formar uma parte de um artigo de fabrico que também inclui um material de embalagem para conter a composição farmacêutica e um folheto que proporciona indicações de utilização para a composição farmacêutica.
Assim, a presente descrição proporciona um método e composições farmacêuticas úteis para modular a angiogénese.
Tal actividade de modulação pode ser usada para tratar artrite (38,39), retinopatia diabética (40), psoriase (41,42) e vasculite (43,44).
Como tal, a administração de sequências que codificam lisil oxidase ou polipéptidos podem ser usados para corrigir algumas das manifestações destas doenças.
Além disso, a evidência apresentada na secção de Exemplos que indica que LOR-1 pode ser mais altamente expresso em linhas celulares metastáticas que em linhas celulares não metastáticas (Figura 3) sugere que níveis de expressão de LOR-1 podem ser usados como uma ferramenta de 22 diagnóstico para determinar a malignidade de células de cancro, e assim para determinar que regime de tratamento deve ser usado.
Objectos, vantagens, e novas características adicionais da presente invenção tornar-se-ão aparentes a um perito médio na especialidade após a examinação dos seguintes exemplos, que não são destinados a limitar. Adicionalmente, cada uma das várias formas de realização e aspectos da presente invenção como delineados anteriormente no presente documento e como reivindicados na secção de reivindicações a seguir encontra suporte experimental nos seguintes exemplos.
EXEMPLOS
Referência é agora feita aos seguintes exemplos, que juntamente com as descrições anteriores, ilustram a invenção de uma maneira não limitativa.
Geralmente, a nomenclatura usada no presente documento e os procedimentos de laboratório utilizados na presente invenção incluem técnicas moleculares, bioquímicas, microbiológicas e de ADN recombinante. Tais técnicas são meticulosamente explicadas na literatura. Veja-se, por exemplo, "Molecular Cloning: A laboratory Manual" Sambrook et al., (1989); "Current Protocols in Molecular Biology" Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., "Current Protocols in Molecular Biology", John Wiley and Sons, Baltimore, Maryland (1989); Perbal, "A Practical Guide to Molecular Cloning", John Wiley & Sons, Nova Iorque (1988); Watson et al., "Recombinant DNA", Scientific American Books, Nova Iorque; Birren et al. (eds) "Genome Analysis: A Laboratory Manual Series", Vols. 1-4, Cold Spring Harbor Laboratory Press, Nova Iorque (1998); metodologias como estabelecido em Patentes US N° 4.666.828; 4.683.202; 4.801.531; 5.192.659 e 5.272.057; "Cell Biology: A Laboratory Handbook", Volumes I-III Cellis, J. E., ed. (1994); "Current Protocols in Immunology" Volumes I-III 23
Coligan J. E., ed. (1994); Stites et al. (eds), "Basic and Clinicai Immunology" (8a Edição), Appleton & Lange, Norwalk, CT (1994); Mishell and Shiigi (eds), "Selected Methods in Cellular Immunology", W. H. Freeman and Co., Nova Iorque (1980); imunoensaios disponíveis são extensivamente descritos nas patentes e literatura científica, veja-se, por exemplo, Patentes US N° 3.791.932; 3.839.153; 3.850.752; 3.850.578; 3.853.987; 3.867.517; 3.879.262; 3.901.654; 3.935.074; 3.984.533; 3.996.345; 4.034.074; 4.098.876; 4.879.219; 5.011.771 e 5.281.521; "Oligonucleotide Synthesis" Gait, M. J., ed. (1984); "Nucleic Acid Hybridization" Hames, B. D., and Higgins S. J., eds. (1985); "Transcription and Translation" Hames, B. D., and Higgins S. J., eds. (1984); "Animal Cell Culture" Freshney, R. I., ed. (1986); "Immobilized Cells and
Enzymes" IRL Press, (1986); "A Practical Guide to Molecular Cloning" Perbal, B., (1984) and "Methods in Enzymology" Vol. 1-317, Academic Press; "PCR Protocols: A Guide To Methods And Applications", Academic Press, San Diego, CA (1990); Marshak et al., "Strategies for Protein
Purification and Characterization - A Laboratory Course Manual" CSHL Press (1996); a totalidade dos quais são incorporadas por referência como se completamente estabelecido no presente documento. Outras referências gerais são proporcionadas em todo este documento. Acredita-se que os procedimentos nos mesmos sejam bem conhecidos na técnica e são proporcionados para a conveniência do leitor. EXEMPLO 1 O papel de LOR1 na angiogénese
Um estudo foi conduzido em esforços para adicionalmente substanciar e caracterizar o papel de LOR-1 na angiogénese.
Materiais e Métodos
Factor-4 plaquetário recombinante humano (PF4, número de acesso de GenBank M20901) que foi produzido em bactérias 24 e subsequentemente redobrado foi fornecido pelo Dr. Maione de Repligen Corp. (Boston, EUA). Aglomerados de estrogénio de libertação lenta foram obtidas de Innovative Research of America, Sarasota, FL, EUA.
Construção de expressão de LOR-1 vector, transfecção em células MCF-7, e expressão: 0 ADNc de LOR-1 (SEQ ID N0:1) foi clonado num vector de expressão pCDNA3,1-hygro (Invitrogen Inc., EUA) sob o controlo de um promotor CMV. Clones de células que expressam LOR-1 foram seleccionados usando higromicina e ensaiados para expressão de LOR-1 usando os anti-soros policlonais descritos a seguir.
Construção de colunas de afinidade de factor-4 plaquetário e purificação de LOR-1 em tais colunas: PF4 foi acoplado a sepharose usando uma modificação do método de Miron e Wilchek (51) como anteriormente descrito para factor de crescimento endotelial vascular (52). Meio condicionado livre de soro foi colhido de células MCF-7 marcadas com que 35S-metionina sobrexpressam LOR-1. 0 meio condicionado foi passado através da coluna duas vezes. A coluna foi lavada com solução salina tamponada com fosfato (300 mM de NaCl, pH-7,2) e eluida com PBS (contendo 2M NaCl).
Experiências com ratinhos nús: células MCF-7 parentais ou modificada (107 células por animal) foram implantadas sob a pele de ratinhos nús. Uma Aglomerado de estrogénio de libertação lenta foi implantada 1 cm para fora como anteriormente descrito (53). Os tumores foram medido periodicamente, após o que, tumores pelo menos 1 cm em tamanho foram retirados e analisados imuno-histologicamente usando um anticorpo comercial direccionado contra um antigénio semelhante a factor 8 que serviu como um marcador especifico para células endoteliais.
Hibridação in situ: Fragmentos que abrangem nucleótidos 922-1564 de LOR-1, nucleótidos 976-1391 de LOL, nucleótidos 400-950 de LO e nucleótidos 1061-1590 de LOR-2 25 (como numerado desde o codão ATG destes sequências) onde cada um foi independentemente subclonado nos vectores Bluescript SK e KS (Stratagene). Um kit de marcação de ARNc DIG de Boehringer-Mannheim foi usado para transcrever sense (s) e antissense (as) sondas de ARNc marcado com digoxigenina do promotor T7 das construções Bluescript. A hibridação e subsequente detecção de sondas hibridadas foram levadas a cabo essencialmente como anteriormente descrito (54) .
Anti-soros policlonais Anti-LOR-1: Anti-soros foram gerados pela injecção de um péptido recombinante contendo os 200 aminoácidos C-terminais de LOR-1 (aminoácidos 540-744 de SEQ ID NO: 2) em coelhos fêmeas. Soro foi colhido 10 dias após cada injecção e uma fracção de imunoglobulina foi purificada usando uma coluna de afinidade de proteína A Sepharose (Pharmacia).
Resultados
Purificação de LOR-1: Uma coluna de afinidade de PF4 foi usada para detectar proteínas de células endoteliais que especificamente interagem com PF4.
Duas proteínas de ligação a PF4 foram detectadas em meio condicionado de células endoteliais de veia umbilical humana (HUVEC), enquanto proteínas de ligação a PF4 não foram detectadas em extractos de células endoteliais com detergente.
Dois litros de meio condicionado possibilitaram uma purificação parcial de tal proteína de ligação que foi eluída da coluna a concentrações relativamente altas de sal (0,4-0,5 M de NaCl).
Purificação adicional desta proteína foi realizada usando cromatografia líquida de alta pressão de fase reversa e cromatografia SDS/PAGE. A proteína de ligação a PF4 não se liga a heparina nem o fez a um proteoglicano de heparan-sulfato uma vez que a digestão de heparinase falhou em mudar sua mobilidade em experiências de SDS/PAGE. 26 0 sequenciamento parcial e comparação em base de dados revelaram que a proteína de ligação a PF4 da presente invenção (LOR-1) pertence a uma família de proteínas contendo um domínio semelhante a lisil-oxidase (28,29). Lisil-oxidases são enzimas dependente cobre que participam na síntese da matriz extracelular catalisando a formação de ligações covalentes entre lisinas de adjacente colagénio ou fibras de elastina. A sequência de aminoácidos de comprimento completo de LOR-1 (como deduzido a partir da sequência de ADNc isolada) mostrou um alto grau de identidade a WS9-14, uma proteína sobre-expressa em fibroblastos senescentes, em diversos tipos de células aderentes (mas não em células não aderentes) e em fibroblastos, em que foi correlacionada a níveis de expressão de pro-colagénio I-al, bem como sendo induzida por TGF-β e inibida por ésteres de forbol e ácido retinóico (27). 0 papel de LOR-1 em desenvolvimento de tumor: LOR-1 recombinante expresso em Células PAE especificamente ligaram com a coluna de afinidade de PF4 (Figura 1) . Uma vez que LOR-1 é um membro da família LO foi hipotetizado que participa em formação de ECM durante a angiogénese. Além disso foi também hipotetizado que PF4 suprime ou inibe a pro-actividade angiogénica de LOR-1 assim inibindo os últimos estágios de formação de vaso sanguíneo e como um resultado limitando o crescimento de tumor.
Expressão de LOR-1: A hibridação in situ demonstrou que LOR-1 é expresso numa ampla variedade de tecidos e tipo de células incluindo fibroblastos, adipócitos, células nervosas, células endoteliais e um variedade de células epiteliais. Diversos tipos de células, tais como hepatócitos, não expressam LOR-1; dos 4 membros da família LO examinados (todos excepto LoxC) LOR-1 foi o único expresso em células endoteliais de vasos sanguíneos. 27 LOR—1 e cancro: Como é mostrado na Figura 2, uma correlação directa entre os níveis de expressão de LOR-1 e as propriedades metastáticas de linhas de células derivadas de cancro de mama foi demonstrado no presente documento.
Uma vez que as células epiteliais que revestem os duetos mamários de tecido de mama normal (a partir dos quais surgem mais tumores de mama) expressam grandes quantidades de LOR-1 é possível que menos linhas metastáticas perdam expressão de LOR-1 que a ganhem.
Para substanciar seu papel em metástase, ADNc de LOR-1 foi expresso em cancro de mama não metastático derivado linhas celulares MCF-7 que normalmente não expressam LOR-1. A expressão de LOR-1 foi examinada usando anticorpos policlonais de coelho gerados como foi descrito anteriormente (Figura 3).
Uma linha de células de controlo que foi transfectadas com um vector de expressão vazio, e uma linha de células MCF-7 que expressa LOR-1 foram implantadas sob a pele de ratinhos imunodeficientes juntamente com uma Aglomerado de libertação lenta de estrogénio como foi descrito anteriormente. Estrogénio foi adicionado uma vez que o desenvolvimento de tumores de esta linha de células não metastática é dependente de estrogénio (55). A taxa de desenvolvimento de tumor nos ratinhos foi continuamente monitorizada (Figura 4); tumores de 1 cm em tamanho foram extirpados e submetidos a análise histológica como foi descrito anteriormente. De forma interessante, a taxa de desenvolvimento de tumor variou entre as duas linhas celulares, com alguns tumores exibindo crescimento mais lento nas MCF-7 que expressam LOR-1 e ainda outros exibiram crescimento mais lento nas células de controlo.
Com a finalidade de superar os problemas com o nível de expressão, ADNc de LOR-1 foi colocado sob o controlo de um promotor induzido por tetraciclina (o sistema TET-off). Tal construção possibilitará determinar de forma conclusiva 28 se a taxa reduzido de crescimento de tumor observada em células que expressa LOR-1 é de facto causada por LOR-1.
Tumores que expressam grandes quantidades de LOR-1 foram seccionados e corados com um anticorpo direccionado contra antigénio semelhante a factor 8, um marcador especifico de células endoteliais. Tecido tumoral de controlo predominantemente corou na cápsula ao redor do tumor enquanto nos tumores que expressam LOR-1 foi observada coloração pronunciada nas regiões internas do tecido tumoral (Figura 5a e Figura 5b respectivamente). O papel de LOR-1 na doença de Vilson e em outras doenças hepáticas crónicas: tecidos de fígados normais e doentes foram sondadas com sondas de LOR-1 sense (Figuras 6a e 6c) e antissense (Figuras 6b e 6d). Tecidos de fígados normais expressam níveis muito baixos de LOR-1 (Figura 6b). No entanto, tecidos de fígados fibróticos tais como aqueles observados em doença de Wilson, exibem um forte aumento em expressão de hepatócito de LOR-1 (Figuras 6d).
Expressão de LOR-1 em embriões de galinha: A Figura 7 ilustra a expressão de LOR-1 de ARNm de LOR-1 em vasos sanguíneos de um embrião de galinha em desenvolvimento. A hibridação in situ do tipo "whole-mount" de embriões de galinha de 4 dias de idade revelou a expressão de ARNm de LOR-1 em vasos sanguíneos localizados no âmnio (flecha). A família de lisil oxidase: Uma comparação de homologia entre cinco membros da família de lisil oxidase que inclui a subfamília LO e LOL e a subfamília LOR-1 e LOR-2 revelou uma forte homologia na porção C-terminal que inclui o motivo conservado da lisil oxidase. LOR-1 e LOR-2 são caracterizados por prolongamentos longos N-terminal que não são encontrados em LO e LOL.
REFERÊNCIAS CITADAS (Referências adicionais são citadas no texto) 1. Folkman, J. (1990) What is the evidence that tumors are angiogenesis dependent. J. Nat. Câncer Inst. 82, 4-7. 29 2. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tum-origenesis. Cell 86, 353-364. 3. Boehm., T., Folkman, J., Browder, T., and Oreilly, M. S. (1997) Antiangiogenic therapy of experimental câncer does not induce acquired drug resistance. Nature 390, 404-407 . 4. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J., and Hanahan, D. (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808-812. 5. Zetter, B. R. (1998) Angiogenesis and tumor metastasis. Annu. Rev. Med. 49:407-424,407-424. 6. Weidner, N. (1998) Tumoural vascularity as a prognostic factor in câncer patients: The evidence continues to grow. J. Pathol. 184, 119-122. 7. Degani, H., Gusis, V., Weinstein, D., Fields, S., and Strano, S. (1997) Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nature Med. 3, 780-782. 8. Guidi, A. J., Schnitt, S. J., Fischer, L., Tognazzi, K., Harris, J. R., Dvorak, H. F., and Brown, L. F. (1997) Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Câncer 80, 1945-1953. 9. Balsari, A., Maier, J. A. M., Colnaghi, Μ. I., and Menard, S. (1999) Correlation between tumor vascularity, vascular endothelial growth factor production by tumor cells, serum vascular endothelial growth factor leveis, and serum angiogenic activity in patients with breast carcinoma. Lab. Invest. 79, 897-902. 10. Klauber, N., Parangi, S., Flynn, E., Hamel, E., and D'Amato, R J. (1997) Inhibition of angiogenesis and breast câncer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Câncer Res. 57, 81-86. 30 11. Harris, A. L., Zhang, Η. T., Moghaddam, A., Fox, S., Scott, P., Pattison, A., Gatter, K., Stratford, I., and Bicknell, R. (1996) Breast câncer angiogenesis - New approaches to therapy via antiangiogenesis, hypoxic activated drugs, and vascular targeting. Breast Câncer Res. Treat. 38, 97-108. 12. Weinstatsaslow, D. L., Zabrenetzky, V. S., Vanhoutte, K., Frazier, W. A., Roberts, D. D., and Steeg, P. S. (1994) Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Câncer Res. 54, 6504-6511. 13. Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9-22. 14. Brooks, P. C., Montgomery, A. Μ. P., Rosenfeld, M.,
Reisfeld, R. A., Hu, T. H., Klier, G., and Cheresh, D. A. (1994) Integrin alpha(v)beta (3) antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157-1164. 15. Brooks, P. C., Silletti, S., Von Schalscha, T. L.,
Friedlander, M., and Cheresh, D. A. (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391-400. 16. 0'Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277-285. 17. Oreilly, M. S., Holmgren, L., Chen, C., and Folkman, J. (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2, 689-692. 18. Tanaka, T., Manome, Y., Wen, P., Kufe, D. W., and Fine, Η. A. (1997) Virai vector-mediated transduction of a 31 modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nature Med. 3, 437-442. 19. Maione, T. E., Gray, G. S., Petro, J., Hunt, A. J., Donner, A. L., Bauer, S. I., Carson, H. F., and Sharpe, R. J. (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247, 77-79. 20. Neufeld, G., Akiri, G., and Vadasz, Z. (2000) in Platelet Factor 4 (PF4).The Cytokine Reference: A compendium of cytokines and other mediators of host defence (Oppenheim, J. J. and Feldmann, M. eds) Academic Press. 21. Gengrinovitch, S., Greenberg, S. M., Cohen, T., Gitay-Goren, H., Rockwell, P., Maione, T. E., Levi, B., and Neufeld, G. (1995) Platelet factor-4 inhibits the mitogenic activity of VEGF-121 and VEGF-165 using several concurrent mechanisms. J. Biol. Chem. 270, 15059-15065. 22. Brown, K. J. and Parish, C. R. (1994) Histidine-rich glycoprotein and platelet factor 4 mask heparan sulfate proteoglycans recognized by acidic and basic fibroblast growth factor. Biochemistry 33, 13918-13927. 23. Gupta, S. K. and Singh, J. P. (1994) Inhibition of endothelial cell. Proliferation by platelet factor-4 involves a unique action on S phase progression. J. Cell Biol. 127, 1121-1127. 24. Watson, J. B., Getzler, S. B., and Mosher, D. F. (1994) Platelet factor 4 modulates the mitogenic activity of basic fibroblast growth factor. J. Clin. Invest. 94, 261-268. 25. Maione, T. E., Gray, G. S., Hunt, A. J., and Sharpe, R. J. (1991) Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity. Câncer Res. 51, 2077-2083. 26. Sharpe, R. J., Byers, H. R., Scott, C. F., Bauer, S. I., and Maione, T. E. (1990) Growth inhibition of murine 32 melanoma and human colon carcinoma by recombinant human platelet factor 4. J. Natl. Câncer Inst. 82, 848-853. 27. Saito, H., Papaconstantinou, j., Sato, H., and Goldstein, S. (1997) Regulation of a novel gene encoding a lysyl oxidase-related protein in cellular adhesion and senescence. J. Biol. Chem. 272, 8157-8160. 28. Kim, Y., Boyd, C. D., and Csiszar, K. (1995) A new gene with sequence and structural similarity to the gene encoding human lysyl oxidase. J. Biol. Chem. 270, 7176-7182. 29. Kim, Y. H., Peyrol, S., So, C. K., Boyd, C. D., and Csiszar, K. (1999) Coexpression of the lysyl oxidase-like gene (LOXL) and the gene encoding type III procollagen in induced liver fibrosis. J. Cell Biochem. 72, 181-188. 30. Rabinovitz, M. (1999) Angiogenesis and its inhibition: the copper connection. J. Natl. Câncer Inst. 91, 1689-1690. 31. Hansell, P., Maione, T. E., and Borgstrom, P. (1995) Selective binding of platelet factor 4 to regions of active angiogenesis in vivo. Amer. J. Physiol-Heart. Circ. Phy. 38, H829-H836. 32. Reiser, K., McCormick, R. J., and Rucker, R. B. (1992) Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J. 6, 2439-2449. 33. Jang, W., Hua, A., Spilson, S. V., Miller, W., Roe, B. A., and Meisler, Μ. H. (1999) Comparative sequence of human and mouse BAC clones from the mnd2 region of chromosome 2pl3. Genome Res. 9, 53-61. 34. Yoshida, D., Ikeda, Y., and Nakazawa, S. (1995) Copper chelation inhibits tumor angiogenesis in the experimental 9L gliosarcoma model. Neurosurgery 37, 287-292. 35. Borgstroem, P., Discipio, R., and Maione, T. E. (1998) Recombinant platelet factor 4, an angiogenic marker for human breast carcinoma. Anticancer Res. 18, 4035-4041. 36. Shweiki, D., Neeman, M., Itin, A., and Keshet, E. (1995) Induction of vascular endothelial growth factor 33 expression by hypoxia and by glucose deficiency in multicell spheroids: Implications for tumor angiogenesis. Proc. Natl. Acad. Sei. USA 92, 768-772. 37. Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T., and Kerbel, R. S. (1995) Mutant ras oncogenes upregulate VEGF/VPF expression: Implications for induction and inhibition of tumor angiogenesis. Câncer Res. 55, 4575-4580. 38. Koch, A. E. (1998) Angiogenesis - Implications for rheumatoid arthritis. Arthritis Rheum. 41, 951-962. 39. Paleolog, E. M. and Fava, R. A. (1998) Angiogenesis in rheumatoid arthritis: implications for future therapeutic strategies. Springer Semin. Immunopathol. 20, 73-94. 40. Miller, J. W., Adamis, A. P., and Aiello, L. P. (1997) Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab. Rev. 13, 37-50. 41. Detmar, M., Brown, L. F., Claffey, K. P., Yee, K. T., Kocher, O., Jackman, R. W., Berse, B., and Dvorak, H. F. (1994) Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J. Exp. Med. 180, 1141-1146. 42. Creamer, D., Allen, Μ. H., Sousa, A., Poston, R., and Barker, J. N. W. N. (1997) Localization of endothelial proliferation and microvascular expansion in active plaque psoriasis. Br. J. Dermatol. 136, 859-865. 43. Lie, J. T. (1992) Vasculitis simulators and vasculitis look-alikes. Curr. Opin. Rheumatol. 4,47-55. 44. Klipple, G. L. and Riordan, K. K. (1989) Rare inflammatory and hereditary connective tissue diseases. Rheum. Dis. Clin. North Am. 15, 383-398. 45. Brahn, E., Lehman, T. J. A., Peacock, D. J., Tang, C., and Banquerigo, M. L. (1999) Suppression of coronary vasculitis in a murine model of Kawasaki disease using an 34 angiogenesis inhibitor. Clin. Immunol. Immunopathol. 90, 147-151. 46. Cid, M. C., Grant, D. S., Hoffman, G. S., Auerbach, R., Fauci, A. S., and Kleinman, Η. K. (1993) Identification of Haptoglobin as an Angiogenic Factor in Sera from Patients with Systemic Vasculitis. J. Clin. Invest. 91, 977-985. 47. Hoffman, G. S., Filie, J. D., Schumacher, H. R.,Jr.,
Ortiz-Bravo, E., Tsokos, M. G., Marini, J. C., Kerr, G. S., Ling, Q. H., and Trentham, D. E. (1991) Intractable vasculitis, resorptive osteolysis, and immunity to type I collagen in type VIII Ehlers-Danlos syndrome. Arthritis Rheum. 34, 1466-1475. 48. Bauters, C. and Isner, J. M. (1997) The biology of restenosis. Prog. Cardiovasc. Dis. 40, 107-116. 49. Begelman, S. M. and Olin, J. W. (2000) Fibromuscular dysplasia. Curr. Opin. Rheumatol. 12,41-47. 50. Palta, S., Pai, A. M., Gill, K. S., and Pai, R. G. (2000) New insights into the progression of aortic stenosis : implications for secondary prevention. Circulation 101, 2497-2502. 51. Wilchek, M. Miron, T., 1982. Immobilization of enzymes and affinity ligands onto agarose via stable and uncharged carbamate linkages. Biochem. Int. 4, 629-635. 52. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G.,
Klagsbrun, M., 1998. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform specific receptor for vascular endothelial growth factor. Cell 92, 735-745. 53. Zhang, Η. T., Craft, P., Scott, P. A. E., Ziche, M.,
Weich, Η. A., Harris, A. L., Bicknell, R., 1995.
Enhancement of tumor growth and vascular density by transfection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cells. J. Nat. Câncer Inst. 87, 213-219. 35 54. Cohen, T., Gluzman-Poltorak, Z., Brodzky, A., Meytal, V., Sabo, E., Misselevich, I., Hassoun, M., Boss, J. H., Resnick, M., Shneyvas, D., Eldar, S., Neufeld, G., 2001. Neuroendocrine Cells along the Digestive Tract Express Neuropilin-2. Biochem. Biophys. Res. Coiranun. 284, 395-403. 55. Mcleskey, S. W., Kurebayashi, J., Honig, S. F., Zwiebel, J., Lippman, Μ. E., Dickson, R. B., Kern, F. G., 1993. Fibroblast Growth Factor-4 Transfection of MCF-7 Cells Produces Cell Lines That Are Tumorigenic and Metastatic in Ovariectomized or Tamoxifen-Treated Athymic Nude Mice. Câncer Res. 53, 2168-2177. 56. Nakamura et al. Câncer Res 60(3), 760-5, 2000. 58. Szczylik et al (1991) Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucle-otides. Science 253:562. 59. Calabretta et al. (1991) Normal and leukemic hematopoietic cell manifest differential sensitivity to inhibitory effects of c-myc antisense oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. Proc. Natl. Acad. Sei. USA 88:2351. 60. Heikhila et al. (1987) A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G(0) to G(l). Nature, 328:445. 61. Burch and Mahan (1991) Oligodeoxynucleotides antisense to the interleukin I receptor m RNA block the effects of interleukin I in cultured murine and human fibroblasts and in mice. J. Clin. Invest. 88:1190. 62. Cook (1991) Medicinal chemistry of antisense oligonucleotides-future opportunities. Anti-Cancer Drug Design 6:585. 63. Carthew RW. Gene silencing by double-stranded RNA.Curr Opin Cell Biol Abril de 2001; 13(2):244-8. 64. S. and Ikeda, J. E.: Trapping of mammalian promoters by Cre-lox site-specific recombination. DNA Res 3 (1996) 73-80. 36 65. Bedell, Μ. A., Jenkins, N. A. and Copeland, N.G.:
Mouse models of human disease. Part I: Techniques and resources for genetic analysis in mice. Genes and
Development 11 (1997) 1-11. 66. Bermingham, J. J., Scherer, S. S., 0'Connell, S.,
Arroyo, E., Kalla, K. A., Powell, F. L. and Rosenfeld, M. G.: Tst- l/0ct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev 10 (1996) 1751-62. 67. Welch P. J., Barber J. R., and Wong-Staal F. (1998) Expression of ribozymes in gene transfer Systems to modulate target RNA leveis. Curr. Opin. Biotechnol., 9 (5) :486-496. 68. Bedell-Hogan, D., Trackman, P., Abrams, W.,
Rosenbloom, J., and Kagan, H. (1993) Oxidation, cross-linking, and insolubilization of recombinant tropoelastin by purified lysyl oxidase. J. Biol. Chem. 268, 10345-10350)
LISTA DE SEQUÊNCIAS <110> Neufeld, Gera Gengrinovitch, Stela akiri, Gal Vadaz, Zehava
<12 0> COMPOSIÇÕES FARMACÊUTICAS E MÉTODOS ÚTEIS PARA
MODULAR A ANGIOGÉNESE <130> 01/22064 <150> US 60/223,739 <151> 2000-08-08 < 16 0 > 9
<170> Patentln versão 3.1 <210> 1 <211> 2325 <212> ADN <213> Homo sapiens <4 0 0> 1 37 atggagaggc ctctgtgctc ccacctetgc agctgcctgg ctatgctggc cctcctgtcc 60 cccctgagcc tggcacagta tgacagctgg ccccattacc ccgagtactt ccagcaaccg 120 gctcctgagt atcaccagcc ccaggccccc gccaacgtgg ccaagattca gctgcgcctg 180 gctgggcaga agaggaagca cagcgagggc cgggtggagg tgtactatga tggccagtgg 240 ggcaccgtgt gcgatgacga cttctccatc cacgctgccc acgtcgtctg ccgggagctg 300 ggctatgtgg aggccaagtc ctggactgcc agctcctcct acggcaaggg agaagggccc 360 atctggttag acaatctcca ctgtactggc aacgaggcga cccttgcagc atgcacctcc 420 aatggctggg gcgtcactga ctgcaagcac acggaggatg tcggtgtggt gtgcagcgac 480 aaaaggattc ctgggttcaa atttgacaat tcgttgatca accagataga gaacctgaat 540 38 atccaggtgg aggacattcg gattcgagcc atcctctcaa cctaccgcaa gcgcacccc gtgatggagg gctacgtgga ggtgaaggag ggcaagacct ggaagcagat ctgtgacaag 660 cactggacgg ccaagaattc ccgcgtggtc tgcggcatgt ttggcttccc tggggagagg 720 acatacaata ccaaagtgta caaaatgttt gcctcacgga ggaagcagcg ctactggcca 780 ttctccatgg actgcaccgg cacagaggcc cacatctcca gctgcaagct gggcccccag 840 gtgtcactgg accccatgaa gaatgtcacc tgcgagaatg ggctgccggc cgtggtgagt 900 tgtgtgcctg ggcaggtctt cagccctgac ggaccctcga gattccggaa agcatacaag 960 ccagagcaac ccctggtgcg actgagaggc ggtgcctaca tcggggaggg ccgcgtggág 1020 gtgctcaaaa atggagaatg ggggaccgtc tgcgacgaca agtgggacct ggtgtcggcc 1080 agtgtgqtct gcagagagct gggctttggg agtgccaaag aggcagtcac tggctcccga 1140 ctggggcaag ggatcggacc catccacctc aacgagatcc agtgcacagg caatgagaag 1200 tccattatag actgcaagtt caatgccgag tctcagggct gcaaccacga ggaggatgct 1260 ggtgtgagat gcaacacccc tgccatgggc ttgcagaaga agctgcgcct gaacggcggc 1320 cgcaatccct acgagggccg agtggaggtg ctggtggaga gaaacgggtc ccttgtgtgg 1380 gggatggtgt gtggccaaaa ctggggcatc gtggaggcca tggtggtctg ccgccagctg 1440 ggcctgggat tcgccagcaa cgccttccag gagacctggt attggcacgg agatgtcaac 1500 agcaacaaag tggtcatgag tggagtgaag tgctcgggaa cggagctgtc cctggcgcac 1560 tgccgccacg acggggagga cgtggcctgc ccccagggcg gagtgcagta cggggccgga 1620 gttgcctgct cagaaaccgc ccctgacctg gtcctcaatg cggagatggt gcagcagacc 1680 acctacctgg aggaccggcc eatgttcatg· ctgcagtgtg ccatggagga gaactgcctc 1740 tcggcctcag ccgcgcagac cgaccccacc acgggctacc gccggctcct gcgcttctcc ' 1800 tcccagatcc acaacaatgg ccagtccgac ttccggccca agaaòggccg 'ccacgcgtgg 1860 atctggcacg actgtcacag gcactaccac agcatggagg tgttcaccca ctatgaectg 1920 ctgaacctca atggcaccaa ggtggcagag ggccacaagg ccagcttctg cttggaggac 1980 acagaatgtg aaggagacat ccagaagaat tacgagtgtg ccaacttcgg cgatcagggc 2040 atcaccatgg gctgctggga catgtaccgc catgacatcg actgccagtg ggttgacatc 2100 actgacgtgc cccctggaga ctacctgttc caggttgtta ttaaccccaa cttcgaggtt 2160 gcagaatccg attactccaa caacatcatg aaatgcagga gccgctatga cggccaccgc 2220 atctggatgt acaactgcca cataggtggt tccttcagcg aagagacgga aaaaaagttt 2280 gagcacttca gcgggctctt aaacaaccag ctgtccccgc agtaa 2325 <210> 2 <211> 774 39
<212> PRT <213> Homo sapiens <400> 2
Met Glu Arg Pro Leu Cys Ser His 1 5
Leu Cys Ser Cys Leu Ala Met Leu 10 15
Ala Leu Leu Ser Pro Leu Ser Leu 20
Ala Gin Tyr Asp Ser Trp Pro His 25 30
Tyr Pro Glu Tyr Phe Gin Gin Pro 35 40
Ala Pro Glu Tyr His Gin Pro Gin 45
Ala Pro Ala Asn Vai Ala Lys Ile 50 55
Gin Leu Arg Leu Ala Gly Gin Lys 60
Arg Lys His Ser Glu Gly Arg Vai 65 70
Glu Vai Tyr Tyr Asp Gly Gin Trp 75 80
Gly Thr Vai Cys Asp Asp Asp Phe 85
Ser Ile His Ala Ala His Vai Vai 90 95
Cys Arg Glu Leu Gly Tyr Vai Glu 100
Ala Lys Ser Trp Thr Ala Ser Ser 105 110
Ser Tyr Gly Lys Gly Glu Gly Pro 115 120
Ile Trp Leu Asp Asn Leu His Cys 125
Thr Gly Asn Glu Ala Thr Leu Ala 130 135
Ala Cys Thr Ser Asn Gly Trp Gly 140
Vai Thr Asp Cys Lys His Thr Glu 145 150
Asp Vai Gly Vai Vai Cys Ser Asp 155 160
Lys Arg lie Pro Gly Phe Lys Phe 165
Asp Asn Ser Leu Ile Asn Gin Ile 170 175
Glu Asn Leu Asn Ile Gin Vai Glu 180
Asp Ile Arg Ile Arg Ala Ile Leu 185 190
Ser Thr Tyr Arg Lys Arg Thr Pro 195 200
Vai Met Glu Gly Tyr Vai Glu Vai 205
Lys Glu Gly Lys Thr Trp Lys Gin 210 215
Ile Cys Asp Lys His Trp Thr Ala 220 40
Lys Asn Ser Arg Vai Vai Cys Gly 225 230
Met Phe Gly Phe Pro Gly Glu Arg 235 240
Thr Tyr Asn Thr Lys Vai Tyr Lys 245
Met Phe Ala Ser Arg Arg Lys Gin 250 255
Arg Tyr Trp Pro Phe Ser Met Asp 260
Cys Thr Gly Thr Glu Ala His Ile 265 270
Ser Ser Cys Lys Leu Gly Pro Gin 275 280
Vai Ser Leu Asp Pro Met Lys Asn 285
Vai Thr Cys Glu Asn Gly Leu Pro 290 295
Ala Vai Vai Ser Cys Vai Pro Gly 300
Gin Vai Phe Ser Pro Asp Gly Pro 305 310
Ser Arg Phe Arg Lys Ala Tyr Lys 315 320
Pro Glu Gin Pro Leu Vai Arg Leu 325
Arg Gly Gly Ala Tyr Ile Gly Glu 330 335
Gly Arg Vai Glu Vai Leu Lys Asn 340
Gly Glu Trp Gly Thr Vai Cys Asp 345 350
Asp Lys Trp Asp Leu Vai Ser Ala 355 360
Ser Vál Vai Cys Arg Glu Leu Gly 365
Phe Gly Ser Ala Lys Glu Ala Vai 370 375
Thr Gly Ser Arg Leu Gly Gin Gly 380
Ile Gly Pro Ile His Leu Asn Glu 385 390
Ile Gin Cys Thr Gly Asn Glu Lys 395 400
Ser Ile Ile Asp Cys Lys Phe Asn 405
Ala Glu Ser Gin Gly Cys Asn His 410 415
Glu Glu Asp Ala Gly Vai Arg Cys 420
Asn Thr Pro Ala Met Gly Leu Gin 425 430
Lys Lys Leu Arg Leu Asn Gly-Gly 435 440
Arg Asn Pro Tyr Glu Gly Arg Vai 445
Glu Vai Leu Vai Glu Arg Asn Gly Ser Leu Vai Trp Gly Met Vai Cys 450 455 460
Gly Gin Asn Trp Gly Ile Vai Glu Ala Met Vai Vai Cys Arg Gin Leu 465 470 475 480
Gly Leu Gly Phe Ala Ser Asn Ala Phe Gin Glu Thr Trp Tyr Trp His 485 41
Gly Asp Vai Asn 500 Ser Asn Lys Val Gly Thr Glu 515 Leu Ser Leu Ala His 520 Ala Cys 530 Pro Gin Gly Gly Vai 535 Gin Glu 545 Thr Ala Pro Asp Leu 550 Val Leu Thr Tyr Leu Glu Asp 565 Arg Pro Met Glu Asn Cys teu 580 Ser Ala Ser Ala Tyr Arg Arg 595 Leu Leu Arg Phe Ser 600 Ser Asp 610 Phe Arg Pro Lys Asn 615 Gly Cys 625 His Arg His Tyr His 630 Ser Met Leu Asn Leu Asn Gly 645 Thr Lys Val Cys Leu Glu Asp 660 Thr Glu Cys Glu Cys Ala ASn 675 Phe Gly Asp Gin Gly 680 Tyr Arg 690 His Asp Ile Asp Cys 695 Gin Pro Gly Asp 705 Tyr Leu Phe 710 Gin Val Ala Glu Ser Asp Tyr 725 Ser Asn Asn Asp Gly His Arg Ile Trp Met Tyr 490 495 Val 505 Met Ser Gly Val Lys 510 Cys Ser Cys Arg His Asp Gly 525 Glu Asp Val Tyr Gly Ala Gly 540 Val Ala Cys Ser Asn Ala Glu 555 Met val Gin Gin Thr 560 Phe Met 570 Leu Gin Cys Ala Met 575 Glu Ala 585 Gin Thr Asp Pro Thr 590 Thr Gly Ser Gin Ile His Asn 605 Asn Gly Gin Arg His Ala Trp 620 Ile Trp His Asp Glu Val Phe 635 Thr His Tyr Asp Leu 640 Ala Glu 650 Gly His Lys Ala Ser 655 Phe Gly 665 Asp Ile Gin Lys Asn 670 Tyr Glu Ile Thr Met Gly Cys 685 Trp Asp Met Trp Val Asp Ile 700 Thr Asp Val Pro Val Ile Asn 715 Pro Asn Phe Glu Val 720 Ile Met 730 Lys Cys Arg Ser Arg Tyr 735 Asn 745 Cys His Ile Gly Gly 750 Ser Phe 740 42
Ser Glu Glu Thr Glu Lys Lys Phe Glu His Phe Ser Gly Leu Leu Asn 75S 760 765
Asn Gin Leu Ser Pro Gin 770
<210> 3 <211> 757 <212> PRT <213> Homo sapiens <400> 3
Met Met Trp Pro Gin Pro Pro Thr Phe Ser Leu Phe Leu Leu Leu Leu 1 5 10 15 Leu Ser Gin Ala Pro Ser Ser Arg Pro Gin Ser Ser Gly Thr Lys Lys 20 25 30 Leu Arg Leu Vai Gly Pro Ala Asp Arg Pro Glu Glu Gly Arg Leu Glu 35 40 45 Vai Leu His Gin Gly Gin Trp Gly Thr Vai Cys Asp Asp Asp Phe Ala 50 55 60 Leu Gin Glu Ala Thr Vai Ala Cys Arg Gin Leu Gly Phe Glu Ser Ala 65 70 75 80 Leu Thr Trp Ala His Ser Ala Lys Tyr Gly Gin Gly Glu Gly Pro lie B5 90 95 Trp Leu Asp Asn Vai Arg Cys Leu Gly Thr Glu Lys Thr Leu Asp Gin 100 105 iro Cys Gly Ser Asn Gly Trp Gly Ile Ser Asp Cys Arg His Ser Glu Asp 115 120 125 Vai Gly Vai Vai Cys His Pro Arg Arg Gin His Gly Tyr His Ser Glu 130 135 140 Lys Vai Ser Asn Ala Leu Gly Pro Gin Gly Arg Arg Leu Glu Glu Vai 145 150 155 160 Arg Leu Lys Pro Ile Leu Ala Ser Ala Lys Arg His Ser Pro Vai Thr 165 170 175 43
Glu Gly Ala Vai 180 Glu Vai Arg Tyr Asp 185 Gly His Trp Arg Gin 190 Vai Cys Asp Gin Gly 195 Trp Thr Met Asn Asn 200 Ser Arg Vai Vai Cys 205 Gly Met Leu Gly Phe 210 Pro Ser Gin Thr Ser 215 Vai Asn Ser His Tyr 220 Tyr Arg Lys Vai Trp Asn 225 Leu Lys Met Lys 230 Asp Pro Lys Ser Arg 235 Leu Asn Ser Leu Thr 240 Lys Lys Asn Ser Phe 245 Trp Ile His Arg Vai 250 Asp Cys Phe Gly Thr 255 Glu Pro His Leu Ala 260 Lys Cys Gin Vai Gin 265 Vai Ala Pro Gly Arg 270 Gly Lys Leu Arg Pro 275. Ala Cys Pro Gly Gly 280 Met His Ala Vai Vai 285 Ser Cys Vai Ala Gly 290 Pro His Phe Arg Arg 295 Gin Lys Pro Lys Pro 300 Thr Arg Lys Glu Ser 305 His Ala Glu Glu Leu 310 Lys Vai Arg Leu Arg 315 Ser Gly Ala Gin Vai 320 Gly Glu Gly Arg Vai 325 Glu Vai Leu Met Asn 330 Arg Gin Trp Gly Thr 335 Vai Cys Asp His Arg 340 Trp Asn Leu Ile Ser 345 Ala Ser Vai Vai Cys 350 Arg Gin Leu Gly Phe Gly 355 Ser Ala Arg Glu 360 Ala Leu Phe Gly Ala 365 Gin Leu Gly Gin Gly 370 Leu Gly Pro Ile His 375 Leu Ser Glu Vai Arg 380 Cys Arg Gly Tyr Glu 385 Arg Thr Leu Gly Asp 390 Cys Leu Ala Leu Glu 395 Gly Ser Gin Asn Gly 400 Cys Gin His Ala Asn 4 05 Asp Ala Ala Vai Arg 410 Cys Asn Ile Pro Asp Met 415 Gly Phe Gin Asn 420 Lys Vai Arg Leu Ala 425 Gly Gly Arg Asn Ser 430 Glu Glu 44
Gly Vai Val Glu Val Gin Val Glu Val Asn Gly Gly Pro Arg Trp Gly 435 440 445 Thr Vai Cys Ser Asp His Trp Gly Leu Thr Glu Ala Met Val Thr Cys 450 455 4 60 Arg Gin Leu Gly Leu Gly Phe Ala Asn Phe Ala Leu Lys Asp Thr Trp 465 470 475 480 Tyr Trp Gin Gly Thr Pro Glu Ala Lys Glu Val Val Met Ser Gly Val 485 490 495 Arg Cys Ser Gly Thr Glu Met Ala Leu Gin Gin Cys Gin Arg His Gly 500 505 510 Pro Vai His Cys Ser His Gly Pro Gly Arg Phe Ser Ala Gly Val Ala 515 520 525 Cys Met Asn Ser Ala Pro Asp Leu Val Met Asn Ala Gin Leu Val Gin 530 535 540 Glu Thr Ala Tyr Leu Glu Asp Arg Pro Leu Ser Met Leu Tyr Cys Ala 545 550 555 560 His Glu Glu A$íi Cys Leu Ser Lys Ser Ala Asp His Asp Trp Pro 565 570 575 Tyr Gly Tyr Arg Arg Leu Leu Arg Phe Ser Ser Gin Ile Tyr Asn Leu 580 585 590 Gly Arg Ala Asp Phe Arg Pro Lys Ala Gly Arg His Ser Trp Ile Trp 595 600 605 His Gin Cys His Arg His Asn His Ser Ile Glu Val Phe Thr His Tyr 610 615 620 Asp Leu Leu Thr Leu Asn Gly Ser Lys Val Ala Glu Gly His Lys Ala 625 630 635 640 Ser Phe Cys Leu Glu Asp Thr Asn Cys Pro Ser Gly Val Gin Arg Arg 645 650 655 Tyr Ala Cys Ala Asn Phe Gly Glu Gin Gly Val Ala Val Gly Cys Trp 660 665 670 Asp Thr Tyr Arg His Asp Ile Asp Cys Gin Trp Val Asp Ile Thr Asp 675 680 685 Vai Gly Pro Gly Asp Tyr Ile Phe Gin Val Val Val Asn Pro Thr Asn 45 690 695 700
Asp Vai Ala Glu Ser Asp Phe Ser Asn Asn Met Ile Arg Cys Arg Cys 705 710 715 720 Lys Tyr Asp Gly Gin Arg vai Trp Leu His Asn Cys His Thr Gly Asp 725 730 735 Ser Tyr Arg Ala Asn Ala Glu Leu Ser Leu Glu Gin Glu Gin Arg Leu 740 745 750 Arg Asn Asn Leu Ile 755 <210> 4 <211> 2262
<212> ADN <213> Homo sapiens <400> 4 atgcgacctg tcagtgtctg gcagtggagc ccctgggggc tgctgctgtg cctgctgtgc 60 agttcgtgct tggggtctcc gtccccttcc acgggccctg agaagaaggc cgggagccag 120 gggcttcggt tccggctggc tggcttcccc aggaagccct acgagggccg cgtggagata 180 cagcgagctg gtgaatgggg caccatctgc gatgatgact tcacgctgca ggctgcccac 240 atcctctgcc gggagctggg cttcacagag gccacaggct ggacccacag tgccaaatat 300 ggccctggaa caggccgcat ctggctggac aacttgagct gcagtgggac cgagcagagt 360 gtgactgaat gtgcctcccg gggctggggg aacagtgact gtacgcacga tgaggatgct 420 ggggtcatct gcaaagacca gcgcctccct ggcttctcgg actccaatgt cattgaggta 480 gagcatcacc tgcaagtgga ggaggtgcga attcgacccg ccgttgggtg gggcagacga 540 cccctgcccg tgacggaggg gctggtggaa gtcaggcttc ctgacggctg gtcgcaagtg 600 tgcgacaaag gctggagcgc ccacaacagc cacgtggtct gcgggatgct gggcttcccc 660 agcgaaaaga gggtcaacgc ggccttctac aggctgctag cccaacggca gcaacactcc 720 tttggtctgc atggggtggc gtgcgtgggc acggaggccc acctctccct ctgttccctg 780 gagttctatc gtgccaatga caccgccagg tgccctgggg ggggccctgc agtggtgagc 840 tgtgtgccag gccctgtcta cgcggcatcc agtggccaga agaagcaaca acagtcgaag 900 cctcaggggg aggcccgtgt ccgtctaaag ggcggcgccc accctggaga gggccgggta 960 gaagtcctga aggccagcac atggggcaca gtctgtgacc gcaagtggga cctgcatgca 1020 gccagcgtgg tgtgtcggga gctgggcttc gggagtgctc gagaagctct gagtggcgct 1080 46 cgcatggggc agggcatggg tgctatccac ctgagtgaag ttcgctgctc tggacagg; ctctccctct ggaagtgccc ccacaagaac atcacagctg aggattgttc acatagccag 1200 gatgccgggg tccggtgcaa cctaccttac actggggcag agaccaggat ccgactcagt 1260 gggggccgca gccaacatga ggggcgagtc gaggtgcaaa tagggggacc tgggcccctt 1320 cgctggggcc tcatctgtgg ggatgactgg gggaccctgg aggccatggt ggcctgtagg 1380 caactgggtc tgggctacgc caaccacggc ctgcaggaga cctggtactg ggactctggg 1440 aatataacag aggtggtgat gagtggagtg cgctgcacag ggactgagct gtccctggat 1500 cagtgtgccc atcatggcac ccacatcacc tgcaagagga cagggacccg cttcactgct 1560 ggagtcatct gttctgagac tgcatcagat ctgttgctgc actcagcact ggtgcaggag 1620 accgcctaca tcgaagaccg gcccctgcat atgttgtact gtgctgcgga agagaactgc 1680 ctggccagct cagcccgctc agccaactgg ccctatggtc accggcgtct gctccgattc 1740 tcctcccaga tccacaacct gggacgagct gacttcaggc ccaaggctgg gcgccactcc 1800 tgggtgtggc acgagtgcca tgggcattac cacagcatgg acatcttcac tcactatgat 1860 atcctcaccc caaatggcac caaggtggct gagggccaca aagctagttt ctgtctcgaa 1920 gacactgagt gtcaggagga tgtctccaag cggtatgagt gtgccaactt tggagagcaa 1980 ggcatcactg tgggttgctg ggatctctac cggcatgaca ttgactgtca gtggattgac 2040 atcacggatg tgaagccagg aaactacatt ctccaggttg tcatcaaccc aaactttgaa 2100 gtagcagaga gtgactttac caacaatgca atgaaatgta actgcaaata tgatggacat 2160 agaatctggg tgcacaactg ccacattggt gatgccttca gtgaagaggc caacaggagg 2220 tttgaacgct accctggcca gaccagcaac cagattatct aa 2262 <210> 5 <211> 1725 <212> ADN <213> Homo sapiens <400> 5 atggctctgg cccgaggcag ccggcagctg ggggccctgg tgtggggcgc ctgcctgtgc 6U gtgctggtgc acgggcagca ggcgcagccc gggcagggct cggaccccgc ccgctggcgg 120 * cagctgatcc agtgggagaa caacgggcag gtgtacagct tgctcaactc gggctcagag 180 tacgtgccgg ccggacctca gcgctccgag agtagctccc gggtgctgct ggccggcgcg 240 ccccaggccc agcagcggcg cagccacggg agcccccggc gtcggcaggc gccgtccctg 300 cccctgccgg- ggcgcgtggg ctcggacacc gtgcgcggcc aggcgcggca cccattcggc 360 47 tttggccagg tgcccgacaa ctggcgcgag gtggccgtcg gggacagcac gggcatgg» ctggcccgca cctccgtctc ccagcaacgg cacgggggct ccgcctcctc ggtctcggct 480 tcggccttcg ccagcaccta ccgccagcag ccctcctacc cgcagcagtt cccctacccg 540 caggcgccct tcgtcagcca gtacgagaac tacgaccccg cgtcgcggac ctacgaccag 600 ggtttcgtgt actaccggcc cgcgggcggc ggcgtgggcg cgggggcggc ggccgtggcc 660 tcggcggggg tcatctaccc ctaccagccc cgggcgcgct acgaggagta cggcggcggc 720 gaagagctgc ccgagtaccc gcctcagggc ttctacccgg cccccgagag gccctacgtg 780 ccgccgccgc cgccgccccc cgacggcctg gaccgccgct actcgcacag tctgtacagc 840 gagggcaccc ccggcttcga gcaggcctac cctgaccccg gtcccgaggc ggcgcaggcc 900 catggcggag acccacgect gggctggtac ccgccctacg ccaacccgcc gcccgaggcg 960 tacgggccgc cgcgcgcgct ggagccgccc tacctgccgg tgcgcagctc cgacacgccc 1020 ccgccgggtg gggagcggaa cggcgcgcag cagggccgcc tcagcgtagg cagcgtgtac 1080 cggcccaacc agaacggccg cggtctccct gacttggtcc cagaccccaa ctatgtgcaa 1140 gcatccactt atgtgcagag agcccacctg tactccctgc gctgtgctgc ggaggagaag 1200 tgtctggcca gcacagccta tgcccctgag gccaccgact acgatgtgcg ggtgctactg 1260 cgcttccccc agcgcgtgaa gaaccagggc acagcagact tcctceccaa ccggccacgg 1320 cacacctggg agtggcacag ctgccaccag cattaccaca gcatggacga gttcagccac 1380 tacgacctac tggatgcagc cacaggcaag aaggtggccg agggccacaa ggccagtttc 1440 tgcctggagg acagcacctg tgacttcggc aacctcaagc gctatgcatg cacctctcat 1500 acccagggcc tgagcccagg ctgctatgac acctacaatg cggacatcga ctgccagtgg 1560 atcgacataa ccgacgtgca gcctgggaac tacatcctca aggtgcacgt gaacccaaag 1620 tatattgttt tggagtctga cttcaccaac aacgtggtga gatgcaacat tcactacaca 1680 ggtcgctacg tttctgcaac aaactgcaaa attgtccaat cctga 1725
<210> 6 <211> 574 <212> PRT <213> Homo sapiens < 4 0 0 > 6
Met Ala Leu Ala Arg Gly Ser Arg Gin Leu Gly Ala Leu Vai Trp Gly 15 10 15
Ala Cys Leu Cys Vai Leu Vai His Gly Gin Gin Ala Gin Pro Gly Gin 20 25 30 48
Gly Ser Asp 35 Pro Ala Arg Trp Arg 40 Gin Leu Ile Gin Trp 45 Glu Asn Asn Gly Gin 50 Vai Tyr Ser Leu Leu 55 Asn Ser Gly Ser Glu 60 Tyr val Pro Ala Gly 65 Pro Gin Arg Ser Glu 70 Ser Ser Ser Arg Val 75 Leu Leu Ala Gly Ala 80 Pro Gin Ala Gin Gin 85 Arg Arg Ser His Gly 90 Ser Pro Arg Arg Arg 95 Gin Ala Pro Ser Leu 100 Pro Leu Pro Gly Arg 105 Val Gly Ser Asp Thr 110 Val Arg Gly Gin Ala 115 Arg Hi3 Pro Phe Gly 120 Phe Gly Gin Val Pro 125 Asp Asn Trp Arg Glu 130 Vai Ala Vai Gly Asp 135 Ser Thr Gly Met Ala 140 Leu Ala Arg Thr Ser 145 Vai Ser Gin Gin Arg 150 His Gly Gly Ser Alá 155 Ser Ser Val Ser Ala 160 Ser Ala Phe Ala Ser 165 Thr Tyr Arg Gin Gin 170 Pro Ser Tyr Pro Gin 175 Gin Phe Pro Tyr Pro 180 Gin Ala Pro Phe Val 185 Ser Gin Tyr Glu Asn 190 Tyr Asp Pro Ala Ser 195 Arg Thr Tyr Asp Gin 200 Gly Phe Val Tyr Tyr 205 Arg Pro Ala Gly Gly 210 Gly Vai Gly Ala Gly 215 Ala Ala Ala Val Ala 220 Ser Ala Gly Val Ile 225 Tyr Pro Tyr Gin Pro 230 Arg Ala Arg Tyr Glu 235 Glu Tyr Gly Gly Gly 240 Glu Glu Leu Pro Glu 245 Tyr Pro Pro Gin Gly 250 Phe Tyr Pro Ala Pro 255 Glu Arg Pro Tyr Vai 260 Pro Pro Pro Pro Pro 265 Pro Pro Asp Gly Leu 270 Asp Arg Arg Tyr Ser 275 His Ser Leu Tyr Ser 280 Glu Gly Thr Pro Gly 285 Phe Glu Gin 49
Ala Tyr Pro Asp Pro Gly Pro Glu Ala Ala Gin Ala His Gly Gly Asp 290 295 300 Pro Arg Leu Gly Trp Tyr Pro Pro Tyr Ala Asn Pro Pro Pro Glu Ala 305 310 315 320 Tyr Gly Pro Pro Arg Ala Leu Glu Pro Pro Tyr Leu Pro Vai Arg Ser 325 330 335 Ser Asp Thr Pro Pro Pro Gly Gly Glu Arg Asn Gly Ala Gin Gin Gly 340 345 350 Arg Leu Ser Vai Gly Ser Vai Tyr Arg Pro Asn Gin Asn Gly Arg Gly 355 360 365 Leu Pro Asp Leu Vai Pro Asp Pro Asn Tyr Vai Gin Ala Ser Thr Tyr 370 375 380 Vai Gin Arg Ala His Leu Tyr Ser Leu Arg Cys Tila Ala Glu Glu Lys 385 390 395 400 Cys Leu Ala Ser Thr Ala Tyr Ala Pro Glu Ala Thr Asp Tyr Asp Vai 405 410 415 Arg Vai Leu Leu Arg Phe Pro Gin Arg Vai Lys Asn Gin Gly Thr Ala 420 425 430 Asp Phe Leu Pro Asn Arg Pro Arg His Thr Trp Glu Trp His Ser Cys 435 440 445 His Gin His Tyr His Ser Met Asp Glu Phe Ser His Tyr Asp Leu Leu 450 455 4 60 Asp Ala Ala Thr Gly Lys Lys Vai Ala Glu Gly His Lys Ala Ser Phe 465 470 475 480 Cys Leu Glu Asp Ser Thr Cys Asp Phe Gly Asn Leu Lys Arg Tyr Ala 485 490 4 95 Cys Thr Ser His Thr Gin Gly Leu Ser Pro Gly Cys Tyr Asp Thr Tyr 500 505 510 Asn Ala Asp Ile Asp Cys Gin Trp Ile Asp Ile Thr Asp Vai Gin Pro 515 520 525 Gly Asn Tyr lie Leu Lys Vai His Vai Asn Pro Lys Tyr Ile Vai Leu 530 535 540 50
Glu Ser Asp Phe Thr Asn Asn Vai Vai Arg Cys Asn Ile His Tyr Thr 545 550 555 560
Gly Arg Tyr Vai Ser Ala Thr Asn Cys Lys Ile Vai Gin Ser 565 570
<210> 7 <211> 1254 <212> ADN <213> Homo sapiens <400> 7 atgcgcttcg cctggaccgt gctcctgctc gggcctttgc agctctgcgc gctagtgcac 60 tgcgcccctc ccgccgccgg ccaacagcag cccccgcgcg agccgccggc ggctccgggc 120 gcctggcgcc agcagatcca atgggagaac aacgggcagg tgttcagctt gctgagcctg 180 ggctcacagt accagcctca gcgccgccgg gacccgggcg ccgccgtccc tggtgcagcc 240 aacgcctccg cccagcagcc ccgcactccg atcctgctga tccgcgacaa ccgcaccgcc . 300 gcggcgcgaa cgcggacggc cggctcatct ggagtcaccg ctggccgccc caggcccacc 360 gcccgtcact ggttccaagc tggctactcg acatctagag cccgcgaagc tggcgcctcg 420 cgcgcggaga accagacagc gccgggagaa gttcctgegc tcagtaacct gcggccgccc 480 agccgcgtgg acggcatggt gggcgacgac ccttacaacc cctacaagta ctctgacgac 540 aacccttatt acaactacta cgatacttat gaaaggccca gacctggggg caggtaccgg 600 cccggatacg gcactggcta cttccagtac ggtctcccag acctggtggc cgacccctac 660 tacatccagg cgtccacgta cgtgcagaag atgtccatgt acaacctgag atgcgcggcg 720 gaggaaaact gtctggccag tacagcatac agggcagatg tcagagatta tgatcacagg 780 gtgctgctca gatttcccca aagagtgaaa aaccaaggga catcagattt cttacccagc 840 cgaccaagat attcctggga atggcacagt tgtcatcaac attaccacag tafcggatgag 900 tttagccact atgacctgct tgatgccaac acccagagga gagtggctga aggccacaaa 960 gcaagtttct gtcttgaaga cacatcctgt gactatggct accacaggcg atttgcatgt 1020 actgcacaca cacagggatt gagtcctggc tgttatgata cctatggtgc agacatagac 1080 tgccagtgga ttgatattac agatgtaaaa cctggaaact atatcctaaa ggtcagtgta 1140 aaccccagct acctggttcc tgaatctgac tataccaaca atgttgtgcg ctgtgacatt 1200 cgctacacag gacatcatgc gtatgcctca ggctgcacaa tttcaccgta ttag 1254
<210> 8 <211> 417 <212> PRT <213> Homo sapiens 51 <400> 8
Met Arg Phe Ala Trp Thr Val Leu 1 5 Ala Leu Val His Cys Ala Pro Pro 20 Arg Glu Pro Pro Ala Ala Pro Gly 35 40 Glu Asn Asn Gly Gin Val Phe Ser 50 55 Gin Pro Gin Arg Arg Arg Asp Pro 65 70 Asn Ala Ser Ala Gin Gin Pro Arg 85 Asn Arg Thr Ala Ala Ala Arg Thr 100 Thr Ala Gly Arg Pro Arg Pro Thr 115 120 Tyr Ser Thr Ser Arg Ala Arg Glu 130 135 Gin Thr Ala Pro Gly Glu Val Pro 145 150 Ser Arg Val Asp Gly Met Val Gly 165 Tyr Ser Asp Asp Asn Pro Tyr Tyr 180 Pro Arg Pro Gly Gly Arg Tyr Arg 195 200 Gin Tyr Gly Leu Pro Asp Leu Val 210 215
Leu Leu Gly 10 Pro Leu Gin Leu IS Cys Ala 25 Ala Gly Gin Gin Gin 30 Pro Pro Ala Trp Arg Gin Gin 45 lie Gin Trp Leu Leu Ser Leu 60 Gly Ser Gin Tyr Gly Ala Ala 75 Val Pro Gly Ala Ala 80 Thr Pro 90 Jle Leu Leu Ile Arg 95 Asp Arg 105 Thr Ala Gly Ser Ser 110 Gly Val Ala Arg Hls Trp Phe 125 Gin Ala Gly Ala Gly Ala Ser 140 Arg Ala Glu Asn Ala Leu Ser 155 Asn Leu Arg Pro Pro 160 Asp Asp 170 Pro Tyr Asn Pro Tyr 175 Lys Asn 185 Tyr Tyr Asp Thr Tyr Glu 190 Arg Pro Gly Tyr Gly Thr 205 Gly Tyr Phe Ala Asp Pro Tyr Tyr Ile Gin Ala 220 52
Ser Thr Tyr Vai Gin Lys Met Ser Met Tyr Asn Leu Arg Cys Ala Ala 225 230 235 240
Glu Glu Asn Cys Leu Ala Ser Thr Ala Tyr Arg Ala Asp Vai Arg Asp 245 250 255
Tyr Asp His Arg Vai Leu Leu Arg Phe Pro Gin Arg Vai Lys Asn Gin 260 265 270
Gly Thr Ser Asp Phe Leu Pro Ser Arg Pro Arg Tyr Ser Trp Glu Trp 275 280 285
His Ser Cys His Gin His Tyr His Ser Met Asp Glu Phe Ser His Tyr 290 295 300
Asp Leu Leu Asp Ala Asn Thr Gin Arg Arg Vai Ala Glu Gly His Lys 305 310 315 320
Ala Ser Phe Cys Leu Glu Asp Thr Ser Cys Asp Tyr Gly Tyr His Arg 325 330 335
Arg Phe Ala Cys Thr Ala His Thr Gin Gly Leu Ser Pro Gly Cys Tyr 340 345 350
Asp Thr Tyr Gly Ala Asp Ile Asp Cys Gin Trp Ile Asp He Thr Asp 355 360 365
Vai Lys Pro Gly Asn Tyr Ile Leu Lys Vai Ser Vai Asn Pro Ser Tyr 370 375 380
Leu Vai Pro Glu Ser Asp Tyr Thr Asn Asn Vai Vai Arg Cys Asp Ile 385 390 395 400
Arg Tyr Thr Gly His His Ala Tyr Ala Ser Gly Cys Thr Ile Ser Pro 405 410 415
Tyr <210> 9 <211> 752 <212> PRT <213> Homo sapiens <4 0 0> 9
Met Arg Pro Vai Ser Vai Trp Gin Trp Ser Pro Trp Gly Leu Leu Leu 53 15 10 15
Cys Leu leu Cys Ser Ser Cys Leu Gly Ser Pro Ser Pro Ser Thr Gly 20 25 30
Pro Glu Lys Lys Ala Gly Ser Gin Gly Leu Arg Phe Arg Leu Ala Gly 35 40 45
Phe Pro Arg Lys Pro Tyr Glu Gly Arg Vai Glu Ile Gin Arg Ala Gly 50 55 60
Glu Trp Gly .Thr Ile Cys Asp Asp Asp Phe Thr Leu Gin Ala Ala His 65 70 75 80
Ile Leu Cys Arg Glu Leu Gly Phe Thr Glu Ala Thr Gly Trp Thr His 85 90 95
Ser Ala Lys Tyr Gly Pro Gly Thr Gly Arg Ile Trp Leu Asp Asn Leu 100 105 110
Ser Cys Ser Gly Thr Glu Gin Ser Vai Thr Glu Cys Ala Ser Arg Gly 115 120 125
Trp Gly Asn Ser Asp Cys Thr His Asp Glu Asp Ala Gly Vai Ile Cys 130 135 140
Lys Asp Gin Arg Leu Pro Gly Phe Ser Asp Ser Asn Vai Ile Glu Vai 145 150 155 160
Glu His His Leu Gin Vai Glu Glu Vai Arg Ile Arg Pro Ala Vai Gly 165 170 175
Trp Gly Arg Arg Pro Leu Pro Vai Thr Glu Gly Leu Vai Glu Vai Arg 180 105 190
Leu Pro Asp Gly Trp Ser Gin Vai Cys Asp Lys Gly Trp Ser Ala His 195 200 205 Àsn Ser His Vai Vai Cys Gly Met Leu Gly Phe Pro Ser Glu Lys Arg 210 215 220.
Vai Asn Ala Ala Phe Tyr Arg Leu Leu Ala Gin Arg Gin Gin His Ser 225 230 235 240
Phe Gly Leu His Gly Vai Ala Cys Vai Gly Thr Glu Ala His Leu Ser 245 250 255
Leu Cys Ser Leu Glu Phe Tyr Arg Ala Asn Asp Thr Ala Arg Cys Pro 260 265 270 54
Gly Gly Gly 275 Pro Ala Vai Vai Ser 280 Cys Val Pro Gly Pro Val Tyr Ala 285 Ala Ser 290 Ser Gly Gin Lys Lys 295 Gin Gin Gin Ser Lys Pro Gin Gly Glu 300 Ala Arg Vai 305 Arg Leu Lys 310 Gly Gly Ala His Pro 315 Gly Glu Gly Arg Val 320 Glu Vai Leu Lys Ala 325 Ser Thr Trp Gly Thr 330 Val Cys Asp Arg Lys Trp 335 Asp Leu His Ala 340 Ala Ser Vai Vai Cys 345 Arg Glu Leu Gly Phe Gly Ser 350 Ala Arg Glu 355 Ala Leu Ser Gly Ala Arg 360 Met Gly Gin Gly Met Gly Ala 365 Ile Ris 370 Leu Ser Glu Vai Arg Cys 375 Ser Gly Gin Glu Leu Ser Leu Trp 380 Lys Cys 385 Pro His Lys Asn 390 Ile Thr Ala Glu Asp 395 Cys Ser His Ser Gin 400 Asp Ala Gly Vai Arg 405 Cys Asn Leu Pro Tyr 410 Thr Gly Ala Glu Thr Arg 415 Ile Arg Leu Ser 420 Gly Gly Arg Ser Gin 425 His Glu Gly Arg Val Glu Val 430 Gin Ile Gly 435 Gly Pro Gly Pro Leu Arg 440 Trp Gly Leu Ile Cys Gly Asp 445 Asp Trp 4 50 Gly Thr Leu Glu Ala 455 Met Vai Ala Cys Arg Gin Leu Gly Leu 460 Gly Tyr 465 Ala Asn His Gly Leu 470 Gin Glu Thr Trp 475 Tyr Trp Asp Ser Gly 480 Asn lie Thr Glu Vai 485 Vai Met Ser Gly val 490 Arg Cys Thr Gly Thr Glu 495 Leu Ser Leu Asp 500 Gin Cys Ala His His 505 Gly Thr His Ile Thr Cys Lys 510 Arg Thr Gly 515 Thr Arg Phe Thr Ala 520 Gly Val Ile Cys Ser Glu Thr Ala 525 55
Ser Asp Leu Leu Leu His Ser Ala 530 535 Glu Asp Arg Pro Leu His Met Leu 545 550 Leu Ala Ser Ser Ala Arg Ser Ala 565 Leu Leu Arg Phe Ser Ser Gin Ile 580 Arg Pro Lys Ala Gly Arg His Ser 595 600 His Tyr His Ser Met Asp Ile Phe 610 615 Asn Gly Thr Lys Vai Ala Glu Gly 625 630 Asp Thr Glu Cys Gin Glu Asp Vai 645 Phe Gly Glu Gin Gly Ile Thr Vai . 660 Asp Ile Asp Cys Gin Trp Ile Asp 675 680 Tyr Ile Leu Gin Vai Vai Ile Asn 690 695 Asp Phe Thr Asn Asn Ala Met Lys 705 710 Arg lie Trp Vai His Asn Cys His 725 Ala Asn Arg Arg Phe Glu Arg Tyr 740
Leu Vai Gin Glu 540 Thr Ala Tyr Ile Tyr Cys Ala 555 Ala Glu Glu Asn Cys 560 Asn Trp 570 Pro Tyr Gly His Arg 575 Arg His 585 Asn Leu Gly Arg Ala 590 Asp Phe Trp Vai Trp His Glu 605 Cys His Gly Thr HiS Tyr Asp 620 Ile Leu Thr Pro His Lys Ala 635 Ser Phe Cys Leu Glu 640 Ser Lys 650 Arg Tyr Glu Cys Ala 655 Asn Gly 665 Cys Trp Asp Leu Tyr 670 Arg His Ile Thr Asp Vai Lys 685 Pro Gly Asn Pro Asn Phe Glu 700 Vai Ala Glu Ser Cys Asn Cys 715 Lys Tyr Asp Gly His 720 Ile Gly 730 Asp Ala Phe Sér Glu 735 Glu Pro 745 Gly Gin Thr Ser Asn 750 Gin Ue 56
DOCUMENTOS REFERIDOS NA DESCRIÇÃO
Esta lista de documentos referidos pelo autor do presente pedido de patente foi elaborada apenas para informação do leitor. Não é parte integrante do documento de patente europeia. Não obstante o cuidado na sua elaboração, o IEP não assume qualquer responsabilidade por eventuais erros ou omissões.
Documentos de patente referidos na descrição wo 8912060 A [0049] wo 9220702 A [0050] us 4666828 A [0085] us 4683202 A [0085] us 4801531 A [0085] us 5192659 A [0085] us 5272057 A [0085] us 3791932 A [0085] us 3839153 A [0085] us 3850752 A [0085] us 3850578 A [0085] us 3853987 A [0085]
Non-patent literature cited in the description
Sambrook et al. Molecular Cloning: A laboratory Manual. 1989 [0085]
Current Protocols in Molecular Biology. 1994, vol. I-III [0085]
Ausubel et al. Current Protocols in Molecular Biology. John Wiley and Sons, 1989 [0085]
Perbal. A Practical Guide to Molecular Cloning. John Wiley & Sons, 1988 [0085]
Watson et al. Recombinant DNA. Scientific American Books [0085]
Genome Analysis: A Laboratory Manual Series. Cold Spring Harbor Laboratory Press, 1998, vol. 1-4[0085]
Cell Biology: A Laboratory Handbook. 1994, vol. I-III
[0085]
Current Protocols in Immunology. 1994, vol. I-III [0085] Basic and Clinicai Immunology. Appleton & Lange, 1994 [0085]
Selected Methods in Cellular Immunology. W. H. Freeman and Co, 1980 [0085]
Oligonucleotide Synthesis. 1984 [0085] 57
Nucleic Acid Hybridization. 1985 [0085]
Transcription and Translation. 1984 [0085]
Animal Cell Culture. 1986 [0085]
Immobilized Cells and Enzymes. IRL Press, 1986 [0085] Perbal, B. A Practical Guide to Molecular Cloning, 1984 [0085]
Methods in Enzymology. Academic Press, vol. 1-317 [0085] PCR Protocols: A Guide Academic Press, 1990 [0085] US 3867517 A [0085] us 3879262 A [0085] US 3901654 A [0085] us 3935074 A [0085] us 3984533 A [0085] us 3996345 A [0085] us 4034074 A [0085] us 4098876 A [0085] us 4879219 A [0085] us 5011771 A [0085] us 5281521 A [0085] us 60223739 B [0112] Marshak et al. Strategies
To Methods And Applications. for Protein Purification and
Characterization - A Laboratory Course Manual. CSHL Press, 1996 [0085]
Folkman, J. What is the evidence that tumors are angiogenesis dependent. J. Nat. Câncer Inst., 1990, vol. 82, 4-7 [0111]
Hanahan, D. ; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumor-igenesis. Cell, 1996, vol. 86, 353-364 [0111]
Boehm., T. ; Folkman, J. ; Browder, T. ; Oreilly, M. S. Antiangiogenic therapy of experimental câncer does not induce acquired drug resistance. Nature, 1997, vol. 390, 404-407 [0111]
Bergers, G. ; Javaherian, K. ; Lo, K. M. ; Folkman, J. ; Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 1999, vol. 284, 808-812 [0111]
Zetter, B. R. Angiogenesis and tumor metastasis. Annu. Rev. Med., 1998, vol. 49, 407-424407-424[0111]
Weidner, N. Tumoural vascularity as a prognostic factor in câncer patients: The evidence continues to grow. J. Pathol., 1998, vol. 184, 119-122 [0111]
Degani, H. ; Gusis, V. ; Weinstein, D. ; Fields, S. ; Strano, S. Mapping pathophysiological features of breast 58 tumors by MRI at high spatial resolution. Nature Med., 1997, vol. 3, 780-782 [0111]
Guidi, A. J. ; Schnitt, S. J. ; Fischer, L. ; Tognazzi, K. ; Harris, J. R. ; Dvorak, H. F. ; Brown, L. F. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Câncer, 1997, vol. 80, 1945-1953 [0111]
Balsari, A. ; Maier, J. A. M. ; Colnaghi, Μ. I. ; Me-nard, S. Correlation between tumor vascularity, vascular endothelial growth factor production by tumor cells, serum vascular endothelial growth factor leveis, and serum angiogenic activity in patients with breast carcinoma. Lab. Invest., 1999, vol. 79, 897-902 [0111]
Klauber, N. ; Parangi, S. ; Flynn, E. ; Hamel, E. ; D'Amato, R J. Inhibition of angiogenesis and breast câncer in mice by the microtubule inhibitors 2-meth-oxyestradiol and taxol. Câncer Res., 1997, vol. 57, 81-86 [0111]
Harris, A. L. ; Zhang, Η. T. ; Moghaddam, A. ; Fox, S. ; Scott, P. ; Pattison, A. ; Gatter, K. ; Stratford, 1. ; Bicknell, R. Breast câncer angiogenesis - New approaches to therapy via antiangiogenesis, hypoxic activated drugs, and vascular targeting. Breast Câncer Res. Treat., 1996, vol. 38, 97-108 [0111] Weinstatsaslow, D. L. ; Zabrenetzky, V. S. ; Van-houtte, K. ; Frazier, W. A. ; Roberts, D. D. ; Steeg, P. S. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Câncer Res., 1994, vol. 54, 6504-6511 [0111]
Neufeld, G. ; Cohen, T. ; Gengrinovitch, S. ; Pol-torak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J., 1999, vol. 13, 9-22 [0111]
Brooks, P. C. ; Montgomery, A. Μ. P. ; Rosenfeld, M. ; Reisfeld, R. A. ; Hu, T. H. ; Klier, G. ; Cheresh, D. A. Integrin alpha(v)beta(3) antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 1994, vol. 79, 1157-1164 [0111] Brooks, P. C. ; Silletti, S. ; Von Schalscha, T. L. ; Friedlander, M. ; Cheresh, D. A. Disruption of ang-iogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell, 1998, vol. 92, 391-400 [0111] 0'Reilly, M. S. ; Boehm, T. ; Shing, Y. ; Fukai, N. ; Vasios, G. ; Lane, W. S. ; Flynn, E. ; Birkhead, J. R. ; Olsen, B. R. ; Folkman, J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997, 59 vol. 88, 277-285 [0111] Oreilly, M. S. ; Holmgren, L. ;
Chen, C. ; Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med., 1996, vol. 2, 689-692 [0111]
Tanaka, T. ; Manome, Y. ; Wen, P. ; Kufe, D. W. ; Fine, H. A. Virai vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nature Med., 1997, vol. 3, 437-442 [0111] Maione, T. E. ; Gray, G. S. ; Petro, J. ; Hunt, A. J. ; Donner, A. L. ; Bauer, S. I. ; Carson, H. F. ; Sharpe, R. J. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science, 1990, vol. 247, 77-79 [0111]
Neufeld, G. ; Akiri, G. ; Vadasz, Z. Platelet Factor 4 (PF4).The Cytokine Reference: A compendium of cytokines and other mediators of host defence. Academic Press, 2000 [0111]
Gengrinovitch, S. ; Greenberg, S. M. ; Cohen, T. ; Gitay-Goren, H. ; Rockwell, P. ; Maione, T. E. ; Levi, B. ; Neufeld, G. Platelet factor-4 inhibits the mitogenic activity of VEGF-121 and VEGF-165 using several concurrent mechanisms. J. Biol. Chem., 1995, vol. 270, 15059-15065 [0111] Brown, K. J. ; Parish, C. R. Histidine-rich glycopro-tein and platelet factor 4 mask heparan sulfate pro-teoglycans recognized by acidic and basic fibroblast growth factor. Biochemistry, 1994, vol. 33, 13918-13927 [0111] • Gupta, S. K. ; Singh, J. P. Inhibition of endothelial cell. Proliferation by platelet factor-4 involves a unique action on S phase progression. J. Cell Biol., 1994, vol. 127, 1121-1127 [0111] Watson, J. B. ; Getzler, S. B. ; Mosher, D. F. Platelet factor 4 modulates the mitogenic activity of basic fibroblast growth factor. J. Clin. Invest., 1994, vol. 94, 261-268 [0111]
Maione, T. E. ; Gray, G. S. ; Hunt, A. J. ; Sharpe, R. J. Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity. Câncer Res., 1991, vol. 51, 2077-2083 [0111]
Sharpe, R. J. ; Byers, H. R. ; Scott, C. F. ; Bauer, S. I. ; Maione, T. E. Growth inhibition of murine melanoma and human colon carcinoma by recom-binant human platelet factor 4. J. Natl. Câncer Inst., 1990, vol. 82, 848-853 [0111]
Saito, H. ; Papaconstantinou, J. ; Sato, H. ; Goldstein, S. Regulation of a novel gene encoding a lysyl oxidase-related 60 protein in cellular adhesion and senescence. J. Biol. Chem., 1997, vol. 272, 8157-8160 [0111]
Kim, Y. ; Boyd, C. D. ; Csiszar, κ. A new gene with sequence and structural similarity to the gene encoding human lysyl oxidase. J. Biol. Chem., 1995, vol. 270, 7176- 7182 [0111]
Kim, Y. H. ; Peyrol, S. ; So, C. K. ; Boyd, C. D. ;
Csiszar, K. Coexpression of the lysyl oxidase-like gene (LOXL) and the gene encoding type III procol-lagen in induced liver fibrosis. J. Cell Biochem., 1999, vol. 72, 181-188 [0111]
Rabinovitz, M. Angiogenesis and its inhibition: the copper connection. J. Natl. Câncer Inst., 1999, vol. 91, 1689-1690 [0111]
Hansell, P. ; Maione, T. E. ; Borgstrom, P. Selective binding of platelet factor 4 to regions of active angiogenesis in vivo. Amer. J. Physiol-Heart. Circ. Phy., 1995, vol. 38, H829-H836 [0111] Reiser, K. ; McCormick, R. J. ; Rucker, R. B. Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J., 1992, vol. 6, 2439-2449 [0111]
Jang, W. ; Hua, A. ; Spilson, S. V. ; Miller, W. ; Roe, B. A. ; Meisler, Μ. H. Comparative sequence of human and mouse BAC clones from the mnd2 region of chromosome 2pl3. Genome Res., 1999, vol. 9, 53-61 [0111]
Yoshida, D. ; Ikeda, Y. ; Nakazawa, S. Copper che-lation
inhibits tumor angiogenesis in the experimental 9L gliosarcoma model. Neurosurgery, 1995, vol. 37, 287-292 [0111]
Borgstroem, P. ; Discipio, R. ; Maione, T. E. Re-combinant platelet factor 4, an angiogenic marker for human breast carcinoma. Anticancer Res., 1998, vol. 18, 4035-4041 [0111] Shweiki, D. ; Neeman, M. ; Itin, A. ; Keshet, E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids:
Implications for tumor angiogenesis. Proc. Natl. Acad. Sei. USA, 1995, vol. 92, 768-772 [0111] Rak, J. ; Mitsuhashi, Y. ; Bayko, L. ; Filmus, J. ; Shirasawa, S. ; Sasazuki, T. ;
Kerbel, R. S. Mutant ras oncogenes upregulate VEGF/VPF expression: Implications for induction and inhibition of tumor an-giogenesis. Câncer Res., 1995, vol. 55, 4575-4580 [0111]
Koch, A. E. Angiogenesis - Implications for rheumatoid arthritis. Arthritis Rheum., 1998, vol. 41, 951-962[0111] 61
Paleolog, E. M. ; Fava, R. A. Angiogenesis in rheumatoid arthritis: implications for future therapeutic strategies. Springer Semin. Immunopathol., 1998, vol. 20, 73-94 [0111] Miller, J. W. ; Adamis, A. P. ; Aiello, L. P. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Me-tab. Rev., 1997, vol. 13, 37-50 [0111] Detmar, M. ; Brown, L. F. ; Claffey, K. P. ; Yee, K. T. ; Kocher, O. ; Jackman, R. W. ; Berse, B. ; Dvorak, H. F. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J. Exp. Med., 1994, vol. 180, 1141-1146 [0111]
Creamer, D. ; Allen, Μ. H. ; Sousa, A. ; Poston, R. ; Barker, J. N. W. N. Localization of endothelial proliferation and microvascular expansion in active plaque psoriasis. Br. J. Dermatol., 1997, vol. 136, 859-865 [0111] Lie, J. T. Vasculitis simulators and vasculitis look-alikes. Curr. Opin. Rheumatol., 1992, vol. 4, 47-55 [0111] Klipple, G. L. ; Riordan, K. K. Rare inf lammatory and hereditary connective tissue diseases. Rheum. Dis. Clin. North Am., 1989, vol. 15, 383-398 [0111] Brahn, E. ;
Lehman, T. J. A. ; Peacock, D. J. ; Tang, C. ; Banquerigo, M. L. Suppression of coronary vasculitis in a murine model of Kawasaki disease using an angiogenesis inhibitor. Clin. Immunol. Im-munopathol., 1999, vol. 90, 147-151 [0111]
Cid, M. C. ; Grant, D. S. ; Hoffman, G. S. ; Auer-bach, R. ; Fauci, A. S. ; Kleinman, Η. K. Identification of Haptoglobin as an Angiogenic Factor in Sera from Patients with Systemic Vasculitis. J. Clin. Invest., 1993, vol. 91, 977-985 [0111] Hoffman, G. S. ; Filie, J. D. ; Schumacher, H. R.,Jr. ; Ortiz-Bravo, E. ; Tsokos, M. G. ; Marini, J. C. ; Kerr, G. S. ; Ling, Q. H. ; Trentham, D. E. Intractable vasculitis, resorptive osteolysis, and immunity to type I collagen in type VIII Ehlers-Danlos syndrome. Arthritis Rheum., 1991, vol. 34, 1466-1475 [0111]
Bauters, C. ; Isner, J. M. The biology of restenosis. Prog. Cardiovasc. Dis., 1997, vol. 40, 107-116 [0111] Begelman, S. M. ; Olin, J. W. Fibromuscular dys-plasia. Curr. Opin. Rheumatol., 2000, vol. 12, 41-47 [0111]
Palta, S. ; Pai, A. M. ; Gill, K. S. ; Pai, R. G. New insights into the progression of aortic stenosis : implications for secondary prevention. Circulation, 2000, vol. 101, 2497-2502 [0111]
Wilchek, M. ; Miron, T. Immobilization of enzymes and affinity ligands onto agarose via stable and uncharged 62 carbamate linkages. Biochem. Int., 1982, vol. 4, 629-635 [0111]
Soker, S. ; Takashima, S. ; Miao, H. Q. ; Neufeld, G. ; Klagsbrun, M. Neuropilin-1 is expressed by en-dothelial and tumor cells as an isoform specific receptor for vascular endothelial growth factor. Cell, 1998, vol. 92, 735-745 [0111] Zhang, Η. T. ; Craft, P. ; Scott, P. A. E. ; Ziche, M. ; Weich, Η. A. ; Harris, A. L. ; Bicknell, R. Enhancement of tumor growth and vascular density by trans-fection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cells. J. Nat. Câncer Inst., 1995, vol. 87, 213-219 [0111] Cohen, T. ; Gluzman-Poltorak, Z. ; Brodzky, A. ; Meytal, V. ; Sabo, E. ; Misselevich, I. ; Hassoun, M. ; Boss, J. H. ; Resnick, M. ; Shneyvas, D. Neu-roendocrine Cells along the Digestive Tract Express Neuropilin-2. Biochem. Biophys. Res. Commun., 2001, vol. 284, 395-403 [0111]
Mcleskey, S. W. ; Kurebayashi, J. ; Honig, S. F. ; Zwiebel, J. ; Lippman, Μ. E. ; Dickson, R. B. ; Kern, F. G. Fibroblast Growth Factor-4 Transfection of MCF-7 Cells Produces Cell Lines That Are Tum-origenic and Metastatic in Ovariectomized or Tamoxifen-Treated Athymic Nude Mice. Câncer Res., 1993, vol. 53, 2168-2177 [0111] Nakamura et al. Câncer Res, 2000, vol. 60 (3), 760-5 [0111]
Szczylik et al. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynu-cleotides. Science, 1991, vol. 253, 562 [0111]
Calabretta et al. Normal and leukemic hematopoietic cell manifest differential sensitivity to inhibitory effects of c-myc antisense oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. Proc. Natl. Acad. Sei. USA, 1991, vol. 88, 2351 [0111] Heikhila et al. A c-myc antisense oligodeoxynucle-otide inhibits entry into S phase but not progress from G(0) to G(l). Nature, 1987, vol. 328, 445 [0111] Burch ; Mahan. Oligodeoxynucleotides antisense to the interleukin I receptor m RNA block the effects of interleukin I in cultured murine and human fibroblasts and in mice. J. Clin. Invest., 1991, vol. 88, 1190 [0111]
Cook. Medicinal chemistry of antisense oligonucle-otides-future opportunities. Anti-Cancer Drug Design, 1991, vol. 6, 585 [0111] Carthew RW. Gene silencing by double-stranded RNA. Curr Opin Cell Biol, April 2001, vol. 13 (2), 244-8 [0111] S. ; Ikeda, J.E. Trapping of mammalian promoters by Cre-lox site-specific recombination. DNA Res, 1996, vol. 3, 73-80 [0111] Bedell, M.A. ; Jenkins, N.A. ; Copeland, N.G. 63
Mouse models of human disease. Part I: Techniques and resources for genetic analysis in mice. Genes and Development, 1997, vol. 11, 1-11 [0111] Bermingham, J.J. ; Scherer, S.S. ; 0'Connell, S. ; Arroyo, E. ; Kalla, K.A. ; Powell, F.L. ; Rosenfeld, M.G. Tst-l/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev, 1996, vol. 10, 1751-62 [0111] Welch P.J. ; Barber J.R. ; Wong-Staal F. Expression of ribozymes in gene transfer systems to modulate target RNA leveis. Curr. Opin. Biotechnol., 1998, vol. 9 (5), 486-496 [0111] Bedell-Hogan,D. ; Trackman,P. ; Abrams,W. ; Rosenbloom,J. ; Kagan,H. Oxidation, cross-linking, and insolubilization of recombinant tropoelastin by purified lysyl oxidase. J. Biol. Chem., 1993, vol. 268, 10345-10350 [0111]

Claims (4)

1 REIVINDICAÇÕES 1. Uma composição farmacêutica para utilização num método de tratamento de um distúrbio caracterizado por formação excessiva de vasos sanguíneos, compreendendo a composição uma molécula capaz de regular negativamente um nível e/ou actividade de LOR-1, em que a molécula é seleccionada a partir de: (a) um anticorpo ou um fragmento de anticorpo capaz de ligar-se com, e pelo menos inibir parcialmente a actividade de, LOR-1; (b) um oligonucleótido sintético que híbrida com ADN de cadeia dupla do gene de LOR-1; (c) um oligonucleótido antissense ou análogo que previne a transcrição de ARNm de LOR-1, previne a tradução de ARNm de LOR-1, leva a clivagem enzimática de um híbrido com ARNm de LOR-1, ou leva a interferência com splicing correcto de ARNm de LOR-1; (d) uma ribozima que inibe a expressão de LOR-1 por clivagem de ARNm de LOR-1; (e) um oligonucleótido de ARN que activa mecanismos de ARN de interferência (ARNi) , em que os mecanismos de ARNi regulam negativamente a expressão de LOR-1; e (f) uma construção de ácido nucleico que expressa o oligonucleótido antissense de (c).
2. A composição de acordo com a reivindicação 1, caracterizada por o dito anticorpo ou o dito fragmento de anticorpo ser direccionado contra pelo menos uma porção antigénica do polipéptido estabelecido em SEQ ID N0:2.
3. Uma composição farmacêutica para utilização num método de tratamento de um distúrbio caracterizado por formação excessiva de vasos sanguíneos, a composição que compreende uma molécula capaz de regular negativamente um nível e/ou 2 uma actividade de lisil oxidase de um polipéptido que tem pelo menos 75% de identidade de sequência de aminoácidos com o polipéptido estabelecido em SEQ ID NO: 2, em que a molécula é seleccionada a partir de: (a) um anticorpo ou um fragmento de anticorpo capaz de ligar-se com, e pelo menos inibir parcialmente a actividade de, LOR-1; (b) um oligonucleótido sintético que híbrida com ADN de cadeia dupla do gene de LOR-1; (c) um oligonucleótido antissense ou análogo que previne a transcrição de ARNm de LOR-1, previne a tradução de ARNm de LOR-1, leva a clivagem enzimática de um híbrido com ARNm de LOR-1, ou leva a interferência com splicing correcto de ARNm de LOR-1; (d) uma ribozima que inibe a expressão de LOR-1 por clivagem de ARNm de LOR-1; (e) um oligonucleótido de ARN que activa mecanismos de ARN de interferência (ARNi) , em que os mecanismos de ARNi regulam negativamente a expressão de LOR-1; e (f) uma construção de ácido nucleico que expressa o oligonucleótido antissense de (c).
4. A composição de acordo com a reivindicação 3, caracterizada por o dito anticorpo ou o dito fragmento de anticorpo ser direccionado contra pelo menos uma porção antigénica do polipéptido estabelecido em SEQ ID NO:2.
PT08020754T 2000-08-08 2001-08-07 Composições farmacêuticas e métodos úteis para modular a angiogénese PT2078531E (pt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22373900P 2000-08-08 2000-08-08

Publications (1)

Publication Number Publication Date
PT2078531E true PT2078531E (pt) 2012-08-06

Family

ID=22837793

Family Applications (4)

Application Number Title Priority Date Filing Date
PT100124585T PT2359854E (pt) 2000-08-08 2001-08-07 Composições farmacêuticas e métodos úteis para a modulação da angiogénese
PT08020754T PT2078531E (pt) 2000-08-08 2001-08-07 Composições farmacêuticas e métodos úteis para modular a angiogénese
PT100124577T PT2359853E (pt) 2000-08-08 2001-08-07 Composições farmacêuticas e métodos úteis para a modulação da angiogénese
PT01958338T PT1315519E (pt) 2000-08-08 2001-08-07 Composições farmacêuticas e métodos úteis para tratamento de cancro e fibrose hepática

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PT100124585T PT2359854E (pt) 2000-08-08 2001-08-07 Composições farmacêuticas e métodos úteis para a modulação da angiogénese

Family Applications After (2)

Application Number Title Priority Date Filing Date
PT100124577T PT2359853E (pt) 2000-08-08 2001-08-07 Composições farmacêuticas e métodos úteis para a modulação da angiogénese
PT01958338T PT1315519E (pt) 2000-08-08 2001-08-07 Composições farmacêuticas e métodos úteis para tratamento de cancro e fibrose hepática

Country Status (10)

Country Link
EP (4) EP1315519B1 (pt)
AT (1) ATE493147T1 (pt)
AU (1) AU2001280056A1 (pt)
CY (3) CY1111869T1 (pt)
DE (1) DE60143754D1 (pt)
DK (4) DK2359854T3 (pt)
ES (4) ES2358581T3 (pt)
HK (3) HK1161113A1 (pt)
PT (4) PT2359854E (pt)
WO (1) WO2002011667A2 (pt)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030114410A1 (en) * 2000-08-08 2003-06-19 Technion Research And Development Foundation Ltd. Pharmaceutical compositions and methods useful for modulating angiogenesis and inhibiting metastasis and tumor fibrosis
US20030224989A1 (en) * 2002-02-12 2003-12-04 Kerry Quinn Compositions and methods for treatment of osteoarthritis
FR2855968B1 (fr) * 2003-06-13 2012-11-30 Coletica Stimulation de la synthese et de l'activite d'une isoforme de la lysyl oxydase-like loxl pour stimuler la formation de fibres elastiques
US7255856B2 (en) 2004-01-23 2007-08-14 Massachusetts Eye & Ear Infirmary Lysyl oxidase-like 1 (LOXL1) and elastogenesis
WO2006128740A2 (en) * 2005-06-02 2006-12-07 Centelion Anti-vascular methods and therapies employing lysyl oxidase inhibitors
IL184627A0 (en) 2007-07-15 2008-12-29 Technion Res & Dev Foundation Agents for diagnosing and modulating metastasis and fibrosis as well as inflammation in a mammalian tissue
EP2537529B1 (en) 2007-08-02 2018-10-17 Gilead Biologics, Inc. Loxl2 inhibitory antibodies and uses thereof
DE102007051006A1 (de) * 2007-10-25 2009-04-30 Lanxess Deutschland Gmbh Stabile, synergistische Mischungen
US9107935B2 (en) 2009-01-06 2015-08-18 Gilead Biologics, Inc. Chemotherapeutic methods and compositions
AU2010284036B2 (en) 2009-08-21 2014-12-18 Gilead Biologics, Inc. Catalytic domains from lysyl oxidase and LOXL2
CN103370080A (zh) 2010-02-04 2013-10-23 吉联亚生物科技有限公司 结合赖氨酰氧化酶样2(loxl2)的抗体和其使用方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL154600B (nl) 1971-02-10 1977-09-15 Organon Nv Werkwijze voor het aantonen en bepalen van specifiek bindende eiwitten en hun corresponderende bindbare stoffen.
NL154598B (nl) 1970-11-10 1977-09-15 Organon Nv Werkwijze voor het aantonen en bepalen van laagmoleculire verbindingen en van eiwitten die deze verbindingen specifiek kunnen binden, alsmede testverpakking.
NL154599B (nl) 1970-12-28 1977-09-15 Organon Nv Werkwijze voor het aantonen en bepalen van specifiek bindende eiwitten en hun corresponderende bindbare stoffen, alsmede testverpakking.
US3901654A (en) 1971-06-21 1975-08-26 Biological Developments Receptor assays of biologically active compounds employing biologically specific receptors
US3853987A (en) 1971-09-01 1974-12-10 W Dreyer Immunological reagent and radioimmuno assay
US3867517A (en) 1971-12-21 1975-02-18 Abbott Lab Direct radioimmunoassay for antigens and their antibodies
NL171930C (nl) 1972-05-11 1983-06-01 Akzo Nv Werkwijze voor het aantonen en bepalen van haptenen, alsmede testverpakkingen.
US3850578A (en) 1973-03-12 1974-11-26 H Mcconnell Process for assaying for biologically active molecules
US3935074A (en) 1973-12-17 1976-01-27 Syva Company Antibody steric hindrance immunoassay with two antibodies
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4034074A (en) 1974-09-19 1977-07-05 The Board Of Trustees Of Leland Stanford Junior University Universal reagent 2-site immunoradiometric assay using labelled anti (IgG)
US3984533A (en) 1975-11-13 1976-10-05 General Electric Company Electrophoretic method of detecting antigen-antibody reaction
US4098876A (en) 1976-10-26 1978-07-04 Corning Glass Works Reverse sandwich immunoassay
US4879219A (en) 1980-09-19 1989-11-07 General Hospital Corporation Immunoassay utilizing monoclonal high affinity IgM antibodies
US5011771A (en) 1984-04-12 1991-04-30 The General Hospital Corporation Multiepitopic immunometric assay
US4666828A (en) 1984-08-15 1987-05-19 The General Hospital Corporation Test for Huntington's disease
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4801531A (en) 1985-04-17 1989-01-31 Biotechnology Research Partners, Ltd. Apo AI/CIII genomic polymorphisms predictive of atherosclerosis
US5021404A (en) * 1988-04-20 1991-06-04 The Children's Medical Center Corporation Angiostatic collagen modulators
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5272057A (en) 1988-10-14 1993-12-21 Georgetown University Method of detecting a predisposition to cancer by the use of restriction fragment length polymorphism of the gene for human poly (ADP-ribose) polymerase
US5192659A (en) 1989-08-25 1993-03-09 Genetype Ag Intron sequence analysis method for detection of adjacent and remote locus alleles as haplotypes
DK51092D0 (da) 1991-05-24 1992-04-15 Ole Buchardt Oligonucleotid-analoge betegnet pna, monomere synthoner og fremgangsmaade til fremstilling deraf samt anvendelser deraf
US5281521A (en) 1992-07-20 1994-01-25 The Trustees Of The University Of Pennsylvania Modified avidin-biotin technique
US6300092B1 (en) * 1999-01-27 2001-10-09 Millennium Pharmaceuticals Inc. Methods of use of a novel lysyl oxidase-related protein
AU2001261194A1 (en) * 2000-05-03 2001-11-12 University Of Hawaii Novel members of the lysyl oxidases family of amine oxidases related applications
US20030114410A1 (en) * 2000-08-08 2003-06-19 Technion Research And Development Foundation Ltd. Pharmaceutical compositions and methods useful for modulating angiogenesis and inhibiting metastasis and tumor fibrosis

Also Published As

Publication number Publication date
ES2440932T3 (es) 2014-01-31
ATE493147T1 (de) 2011-01-15
EP2359854B1 (en) 2013-10-09
WO2002011667A2 (en) 2002-02-14
EP2359853A1 (en) 2011-08-24
PT1315519E (pt) 2011-03-17
DK2078531T3 (da) 2012-09-10
ES2387329T3 (es) 2012-09-20
EP2359853B1 (en) 2013-11-06
EP2078531A2 (en) 2009-07-15
WO2002011667A3 (en) 2003-03-27
ES2437093T3 (es) 2014-01-08
DK1315519T3 (da) 2011-04-11
DK2359854T3 (da) 2013-11-04
DK2359853T3 (da) 2013-12-09
PT2359854E (pt) 2013-11-22
CY1111869T1 (el) 2015-11-04
PT2359853E (pt) 2013-12-26
EP2078531A3 (en) 2010-01-20
EP1315519B1 (en) 2010-12-29
DE60143754D1 (de) 2011-02-10
CY1114734T1 (el) 2016-12-14
AU2001280056A1 (en) 2002-02-18
EP2078531B1 (en) 2012-05-30
EP1315519A4 (en) 2005-09-14
EP1315519A2 (en) 2003-06-04
HK1161115A1 (en) 2012-08-24
HK1131912A1 (en) 2010-02-12
ES2358581T3 (es) 2011-05-12
HK1161113A1 (en) 2012-08-24
CY1113142T1 (el) 2016-04-13
EP2359854A1 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
US20030114410A1 (en) Pharmaceutical compositions and methods useful for modulating angiogenesis and inhibiting metastasis and tumor fibrosis
Takenaga et al. Expression of antisense RNA to S100A4 gene encoding an S100-related calcium-binding protein suppresses metastatic potential of high-metastatic Lewis lung carcinoma cells
Olivares et al. The 5, 6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase
Shorrosh et al. Molecular cloning of a putative plant endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatidylinositol-specific phospholipase C.
PT2179040E (pt) Composições e métodos para tratamento de tumores, fibrose e proteinose alveolar pulmonar
Medvedev et al. Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems
Bagnasco et al. Differential expression of individual UT-A urea transporter isoforms in rat kidney
PT2078531E (pt) Composições farmacêuticas e métodos úteis para modular a angiogénese
US8367619B2 (en) Methods for promoting elastogenesis and elastin fiber formation by increasing tropoelastin expression
Tobita-Teramoto et al. Autosomal albino chicken mutation (ca/ca) deletes hexanucleotide (-ΔGACTGG817) at a copper-binding site of the tyrosinase gene
Luss et al. Dedifferentiated human ventricular cardiac myocytes express inducible nitric oxide synthase mRNA but not protein in response to IL-1, TNF, IFNγ, and LPS
WO1996024379A1 (fr) Traitement du cancer
Papapetropoulos et al. cGMP accumulation and gene expression of soluble guanylate cyclase in human vascular tissue
JP2002511764A (ja) Pakキナーゼ遺伝子およびポリペプチドならびにそれらの使用方法
EP0988373B1 (en) Selection marker
US20120003207A1 (en) Methods and compositions for modulating proline levels
Davids A study of the differentiation and dedifferentiation of three human melanoma cell lines