PL81630B1 - - Google Patents

Download PDF

Info

Publication number
PL81630B1
PL81630B1 PL1971147758A PL14775871A PL81630B1 PL 81630 B1 PL81630 B1 PL 81630B1 PL 1971147758 A PL1971147758 A PL 1971147758A PL 14775871 A PL14775871 A PL 14775871A PL 81630 B1 PL81630 B1 PL 81630B1
Authority
PL
Poland
Prior art keywords
resilient
conductive members
block
frames
conductive
Prior art date
Application number
PL1971147758A
Other languages
Polish (pl)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of PL81630B1 publication Critical patent/PL81630B1/pl

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/714Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit with contacts abutting directly the printed circuit; Button contacts therefore provided on the printed circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/64Means for preventing incorrect coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/4922Contact or terminal manufacturing by assembling plural parts with molding of insulation

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Multi-Conductor Connections (AREA)
  • Push-Button Switches (AREA)

Abstract

An electrical connector comprises a plurality of elongated flexible conductors embedded in, and extending between surface of, a block of elastomeric insulating material.

Description

Uprawniony z patentu: International Computers Limited, Letchworth (Wielka Brytania) Sposób wytwarzania sprezynujacego lacznika elektrycznego do mikroobwodów oraz lacznik wytwarzany tym sposobem Przedmiotem wynalazku jest sposób wytwarzania sprezynujacego lacznika elektrycznego do mikro¬ obwodów oraz lacznik wytwarzany tym sposo¬ bem.Postep w technice produkcji mikroobwodów pozwolil na znaczne zmniejszenie wymiarów po¬ szczególnych elementów mikroobwodów, duza ilosc obwodów umieszcza sie w bardzo malej objetosci, w tak zwanym pakiecie ale wtedy trzeba wykonac odpowiednio duza ilosc polaczen takiego pakietu mikroobwodów. Jedna z trudnosci wykonania ta¬ kich polaczen elektrycznych jest to, ze wymiary oraz tolerancje polaczen pakietów mikroobwodów sa krancowo male i dlatego polaczenia te sa trudne do wykonania technika konwencjonalna.Konieczne jest równiez aby pakiet mikroobwo¬ dów byl latwo wymienialny, jezeli jednak mikro- obwód ma duza ilosc trwalych polaczen z obwo¬ dami zewnetrznymi to czas i wysilek potrzebny do rozlaczania i ponownego wykonania polaczen staje sie szczególnie dlugi i kosztowny. Trudnosc wymiany pakietów mikroobwodów, które sa przy- lutowywane do obwodów zewnetrznych, polega na tym, ze lut musi byc nastejtoiie bardzo starannie usumfiety z kazdego przewodu.W konwencjonalnych elementach elektrycznych styk elektryczny miedzy tymi elementami naj¬ czesciej zapewniony jest przez sprezyny wyko¬ nane z materialu przewodzacego elektrycznie za¬ pracowane w materiale izolacyjnym. Koniec spre- 2 zyny utrzymywany jest w styku z elektrycznie przewodzaca czescia elementu wtedy, gdy na co najmniej jeden z elementów wywarty jest nacisk a sprezyna zostaje scisnieta zapewniajac w ten 5 sposób polaczenie elektryczne miedzy elementami.Jednakze wraz z rozwojem mikroobwodów i wy¬ mogiem dokonania w urzadzeniu mikroobwodowym polaczenia elektrycznego wielkiej ilosci przewodów o bardzo malych wymiarach stwierdzono, ze do- io tychczas stosowane styki sprezynowe nielatwo poddaja sie miniaturyzacji. W wielu przypadkach zachodzi wiec koniecznosc montowania urzadzen mikroobwodowych na plytkach nosnych o znacznie wiekszych wymiarach, aby urzadzenie dalo sie 15 dostosowac do konwencjonalnych styków i laczni¬ ków elektrycznych, co zwieksza jednak wymiary oraz koszt pakietów mikroobwodów a wlasciwie przekresla zalety techniki miniaturyzacji.Celem wynalazku jest usuniecie powyzszych 20 niedogodnosci.Zadanie techniczne prowadzace do tego celu po¬ lega na opracowaniu sposobu wykonania sprezy¬ nujacego lacznika do mikroobwodów oraz latwego do montazu i demontazu mikroukladów, wyko- 25 nanegio tym sposobem.Zadanie to rozwiazano dzieki temu, ze wedlug wynalazku opracowany zostal sposób wykonania sprezynujacego lacznika elektrycznego mikroobwo¬ dów przez uzycie metalowej cienkiej plytki ma- 30 jacej ksztalt ramki, której dluzsze boki sa wza- SI 63081630 3 4 jemnie polaczone równomiernie rozmieszczonymi, równoleglymi czlonami paskowymi, po czym z tych ksztaltek tworzy sie stos ukladajac je jedna na druga, na przemian z przekladkami odleglosciowymi o takim samym ksztalcie jak ksztaltki metalowe ale bez czlonów paskowych, nastepnie przestrzen miedzy bokami ksztaltek stosu wypelnia sie cieklym zestalajacym sie elastomeTycznym ma¬ terialem izolacyjnym, po zestaleniu materialu, na¬ stepuje usuniecie boków ramek.Zgodnie z drugim zadaniem wynalazku opra¬ cowany zostal lacznik elektryczny wykonywany tym sposobem; lacznik zawiera wiele wydluzonych giet¬ kich sprezynujacych czlonów przewodzacych osadzo¬ nych w bloku z elastomerycznego materialu izolacyj¬ nego* przy czym kazdy z czlonów przewodzacych miesci sie miedzy powierzchniami tego bloku, a konce czlonów^ przewodzacych wystaja z obsza¬ rów .powierzchniowych czlonu. Lacznik taki two¬ rzy szereg przewodzacych sciezek miedzy dwoma mikroobwodami, z których kazdy znajduje sie w styku z odpowiednia czescia jednego z dwu ob¬ szarów powierzchniowych. Najkorzystniej te ob¬ szary powierzchniowe sa równoleglymi, przeciw¬ stawnymi sobie powierzchniami czolowymi plyty tworzacej blok. Do zapewnienia dobrego styku wystarcza stosunkowo mala sila dociskajaca. Naj¬ korzystniej jest, gdy krance czlonów przewodza¬ cych wystaja nieco z powierzchni bloku. Krance wystajace moga byc wykonane z materialu róz¬ niacego sie od materialu czlonów sprezynujacych na przyklad z materialu posredniego, od którego wymaga sie dobrego powiazania, oraz z warstwy krancowej wykonanej z metalu szlachetnego.Przedmiot wynalazku przedstawiony jest w przy¬ kladzie wykonania na rysunku, na którym fig. 1 przedstawia czlon sprezynujacy wygiety pod katem prostym, fig. 2 — czlon sprezynujacy majacy ksztalt krzywoliniowy, fig. 3 — czlon sprezynujacy osa¬ dzony w materiale elastomerycznym, fig. 4 — laczniki elektryczne w praktycznym wykonaniu, fig. 5 — czlon sprezynujacy jako czesc ramki, fig. 6 — ramke metalowa, która sluzy jako od- stepnlk, fig. 7 —r stos zawierajacy na przemian ulozone elementy przedstawione na fig. 5 i 6, fig. 8 — inne wykonanie lacznika, a fig. 9 — przedstawia lacznik z fig. 8 w zastosowaniu.Sposób wytwarzania sprezynujacego lacznika elektrycznego do mikroobwodów przedstawionego na fig. 3 jest nastepujacy. Konwencjonalna techni¬ ka trawienia chemicznego wytwarza sie szablon w postaci cienkiej metalowej plytki majacej ksztalt ramki 32 (fig. 5) z wielka iloscia sprezynujacych czlonów 10. W kazdym rogu ramki wykonuje sie ?twór lub wyciecie 36 dla nastepnego dokladnego zlozenia i ustawienia ramek. W procesie chemicz¬ nego trawienia w jednej operacji wykonuje sie duza ilosc ramek, przy czym wszystkie maja do¬ kladnie jednakowe wymiary. Nastepnie na ram¬ ce 32 ustawia sie przedstawiony na fig. 6 czlon odleglosciowy czyli odstepnik 33, po czym buduje sie stos, który zawiera na przemian ramki 32 i czlony odleglosciowe 33, przy czym grubosc czlo- „ nów odleglosciowych dokladnie okresla odstep mie- dzy kazdymi dwiema ramkami 32. Caly stos sciska sie nastepnie miedzy koncowymi plytkami 34 i 35 przy pomocy kolków 37, tak jak to Jest przedsta¬ wione na fig. 7, przez co tworzy sie wneke za¬ wierajaca duza ilosc dokladnie rozmieszczonych 5 czlonów sprezynujacych 10. Wneke wypelnia sie odpowiednim cieklym elastomerem, którym na przyklad moze byc guma silikonowa.Z kolei elastomer polimeryzuje sie, po czym usuwa sie koncowe plytki 34 i 35 oraz czlony od¬ leglosciowe to jest odstepniki 33. Nastepnie techni¬ ka trawienia chemicznego usuwa sie ramki 32 tak, ze w bloku spolimeryzowanego elastomeru pozo¬ staja tylko czlony sprezynujace 10 precyzyjnie na stale rozmieszczone w materiale elastomerycz¬ nym 21. Powierzchnie materialu 21 w razie po¬ trzeby poddaje sie procesowi szlifowania w celu poprawienia jej plaskosci.W ten sposób wytworzony zostaje sprezynujacy elektryczny lacznik do mikroobwodów 1, w któ¬ rym miedzy jedna strona arkusza gietkiego ela- stomerycznego materialu, a jego druga strona znaj¬ duje sie duza ilosc sciezek przewodzacych elek¬ trycznie wzajemnie odizolowanych. W ten sposób wytworzony jest wiec plaski lacznik 1, który ma anizotropowa charakterystyke przewodnictwa, to jest w jednym kierunku posiada wysoki stopien przewodnosci, natomiast w kierunku ortogenalnym do tegoz kierunku posiada niski, wzglednie pomi- jalny stopien przewodnosci. W wyniku takich wlasciwosci mikroobwód majacy styki wzglednie przewodzace powierzchnie stykowe stykajace sie z pewna liczba sprezynujacych czlonów 10 umiesz¬ czonych w elastomerze 21 jest polaczony elektrycz¬ nie z obwodami zewnetrznymi, wykonanymi na przyklad jako obwody drukowane, zaopatrzone dla zapewnienia wzajemnego polaczenia,' w styki wzglednie przewodzace powierzchnie stykowe o takiej samej geometrii rozmieszczenia jak mikro¬ obwód. Polaczenie elektryczne miedzy mikroobwó- dem a plytka z obwodami drukowanymi uzyskuje sie po prostu przez umieszczenie sprezynujacego lacznika 1 pomiedzy mikroobwodem a plytka z obwodami drukowanymi, oraz poddanie tego ze¬ stawu malemu naciskowi w celu zapewnienia nie¬ zawodnych polaczen elektrycznych.Nawiazujac do fig. 1 sprezynujacy czlon 10 wedlug wynalazku ma odpowiednie na górze 1 na dole powierzchnie stykowe czolowe 11 i 12. Spre¬ zynujacy czlon 10 jest utworzony z przewodzacego elektrycznie materialu sprezystego, takiego jak na przyklad braz fosforowy. Inne wykonanie czlonu sprezynujacego jest przedstawione na fig. 2, czlon 40 posiada dwie przeciwlegle powierzchnie sty¬ kowe, czolowe 41 i 42. Sprezynujace czlony 10 i 40 maja wymiary przekroju rzedu 25 |ji a dlugosc ich siega rzedu 2 mm. Na fig. 3 przedstawiony jest sprezynujacy lacznik elektryczny 1, w którym za¬ stosowana jest duza ilosc czlonów sprezynujacycfti takich jak 10 lub 40. \Kazdy czlon sprezynujacy It) jest osadzony w elastomerycznym materiale 21 który zarówno fizycznie jak i elektrycznie wzajem¬ nie oddziela kazdy czlon 10 od siebie tworzac lacz¬ nik 1. Elastomeryczny material 21 w celu popra¬ wienia plaskosci jego powierzchni szlifuje sie i pod¬ czas tego procesu powierzchnie stykowe 11, 12 20 25 30 35 40 45 50 55 60 .81630 5 sprezynujacych czlonów 10 wglebiaja sie, jak to jest pokazane, nieco ponizej powierzchni mate¬ rialu 21. Korzystnie przeciwstawne stykowe po¬ wierzchnie czolowe 11 i 12 pokrywa sie bezpra- dowo innym materialem przewodzacym i tworzy sie jak to przedstawiono na fig. 3, styki 13, 1$, 19, 20, 22 i 23. Powierzchnie stykowe przewodza¬ cego elementu 14 mikroobwodu 15 sa tak roz¬ mieszczone ze tworza styk elektryczny ze styka¬ mi 13, 18 i 19.Podobnie element przewodzacy 16 jest umiesz¬ czony tak, ze: laczy elektrycznie styki 20, 22 1 23 z nie pokazanym na rysunku zewnetrznym mikro- óbwodem elektrycznym. Element przewodzacy 16 jest na przyklad przewodzaca czescia plytki z ob¬ wodami drukowanymi. W ten sposób przez umiesz¬ czenie elementu przewodzacego 16 na sztywnym podlozu oraz przez przylozenia sily, na przyklad o wartosci 50 gramów, do mikroobwodu 15 utwo¬ rzone jest przy pomocy sprezystego lacznika 1 niezawodne sprezynujace, .;polaczenie elektryczne miedzy powierzchnia styku przewodzacego ele¬ mentu 14 oraz elementem przewodzacym 16. Na¬ lezy podkreslic, ze tak uksztaltowany lacznik 1 nie musi byc poddawany dokladnej kontroli od¬ nosnie wysokosci znajdujacych sie w nim czesci przewodzacych elektrycznie, jak to ma miejsce wówczas, gdy jako czlony laczace elektrycznie stosowane sa elementy konwencjonalne, zagadnienie to znika, poniewaz lacznik 1 jest w pelni sprezynu¬ jacy: Równiez dlatego, ze zadna czesc sprezystego lacznika 1 nie jest zwiazana lub w staly sposób polaczona z przewodzacymi powierzchniami styko- -wymi elementów 14 i 16 wymiana poszczególnego •podzespolu takiego jak na przyklad mikroobwo- . du 15 jest latwo realizowana przez usuniecie pod¬ zespolu ze stanu styku z lacznikiem 1.Na fig. 3 element przewodzacy 16 przedstawiony jest w styku z trzema stykami 20, 22, 23 sprezy¬ nujacych czlonów, jednak oczywiscie element prze¬ wodzacy 16 moze byc W styku z wieksza liczba styków, przykladowo z piecioma lub szescioma, bez wplywu na jakosc polaczenia istniejacego mie¬ dzy przewodnikiem 16 oraz powierzchnia styku przewodzacego elementu 14. Przedstawione jako majace ksztalt kopul styki 14, 18 i 19 oraz 20, 22 i 23 mozna równiez zrobic jako plaskie tak, ze styki te leza na tej samej powierzchni co i po¬ wierzchnia elastomerycznego materialu 21, a wtedy kopuly tworzace styki staja sie zbyteczne.Nawiazujac do fig. 4 przedstawiajacej zastosowa¬ nie sprezynujacego lacznika elektrycznego 1 w ze¬ spole elektrycznym na chlodzonym woda radia¬ torze 25 zamontowany jest mikroobwód 15 ze sprezynujacym lacznikiem elektrycznym 1 zamon¬ towanym na obwodzie 15. Plytka z obwodami dru¬ kowanymi jest przy pomocy kolków ustalaja¬ cych 26 i 27 odpowiednio usytuowana w stosunku do róznych mikroobwodów 15, a trzpienie z na¬ kretkami 28 i 29 sluza do utrzymywania plytki z obwodami drukowanymi w styku ze sprezynu¬ jacym lacznikiem 1 przez wywieranie na niego stalego nacisku. Koncówki 30 na plytce z obwoda¬ mi drukowanymi moga byc wówczas podlaczone 6 do sprezynujacego elektrycznego lacznika 1 przy pomocy zapewniajacych wzajemne polaczenie ele¬ mentów 31 na plytce z obwodami drukowanymi.Mimo, ze czlon sprezynujacy 10 przedstawiony zo- / 5 stal na fig. li fig. 2 w dwóch róznych posta¬ ciach nalezy podkreslic, iz te postacie sa jedynie przykladowymi i ze moga byc zastosowane inne . ksztalty. Jednakze w kazdym indywidualnym przy¬ padka sam czlon sprezynujacy 10 lub 40 nie ma 10 wystarczajacej wytrzymalosci aby mógl podtrzy- \ mywac element mikroobwodu 15 i dopiero przez osadzenie w materiale elastomerycznym 21 zostaje stworzona wystarczajaca wytrzymalosc pewnej ilosci takich sprezynujacych czlonów 10. ,-15 Innym przykladem realizacji wynalazku lest za¬ stopowanie na sprezysty czlon materialu porowa¬ tego. W porach, osadza sie selektywnie odpowiednie . metale 'tworzac wielka ilosc: przewodzacych elek¬ trycznie sciezek od jednej powieractai sprezystego 20 czlonu do jego drugiej powierzchni.Nawiazujac do fig. 3 nalezy zauwazyc, ze frag¬ menty styków 13, 18 i dalszych, tworza kopuly, wystajace nieco poza powierzchnie bloku 21 ma¬ terialu elastomerycznego, có ulatwia uzyskiwanie 25 odpowiedniego nacisku przez fragmenty styków elementów przewodzacych bez nadmiernego obcia¬ zenia sasiadujacych elementów obwodu co moglo¬ by powodowac przemieszczanie bloku elastomery-. . cznego, szczególnie wtedy, gdy przewodzace obszary 30 stykowe skojarzonego mikroobwodu i/lub plytki z obwodami leza na tej samej plaszczyznie.Elastomeryczny material, w praktyce, nie daje sie latwo przemieszczac, poniewaz miekki mate¬ rial posiada dosc wysoki wspólczynnik tarcia, w 35 wyniku czego powierzchnia czolowa bloku znaj¬ dujaca sie w styku z elementem obwodu ma sklon¬ nosc do przeciwstawiania sie bocznym przemiesz¬ czeniom w stosunku do powierzchni czolowej elementu. Tendencja ta wzraslta wraz ze wzrostem 40 nacisku w wyniku czego praktyczne naciski przy¬ kladane do elementów moga wytwarzac niewielkie wybrzuszenia na krancach bloku lacznika 1. Ko¬ rzystne jest aby konce osadzonych w bloku czlo¬ nów przewodzacych wystawaly* nieco z powierzchni 45 tego bloku, bowiem sily przylozone do elementów obwodu powoduja wówczas jedynie powstanie skutecznych nacisków miedzy osadzonymi czlonami, oraz przewodzacymi obszarami elementów obwodu.Korzystne jest, jak to jest pokazane ha fig. 8, 50 aby kraniec styku posiadal zewnetrzna warstwe 71 wykonana z metalu szlachetnego, na przyklad ze zlota. W zaleznosci od materialu uzytego na osa¬ dzone w elastomerycznym bloku czlony przewo¬ dzace 72 moze byc niezbedne zastosowanie po- 55 sredniego fragmentu w postaci warstw 70 z inne¬ go przewodzacego materialu, aby w ten sposób zapewnic dobre wzajemne powiazanie materialów.Te posrednie warstwy 70 tworza wystajace kon¬ ce czlonów przewodzacych 72. Blok 21 moze miec 60 czlony przewodzace 72 wykonane na przyklad z miedzi berylowej lub stopu fosforobromowego, zgiete w ksztalcie litery V dla zapewnienia wr~ maganej sprezystosci w tym kierunku w jakim przykladany jest nacisk. Konce czlonów 72 sa 65 poczatkowo tak umieszczone aby byly w zasa-81630 7 dzie na takim samym poziomie jaki maja plasz¬ czyzny czolowe 79 i 79a. Nastepnie nad koncami cztonów 72 formuje sie warstwe 70 na przyklad z miedzi przy pomocy procesu elektrolitycznego, w procesie osadzania miedziana warstwa 70 two¬ rzy kopule nad kazdym koncem czlonu 72. Na¬ stepnie kolejna warstwe 71, na przyklad ze zlota, w podobnym procesie osadza sie na kopulach miedzianych 70, tak ze warstwy zlota tworzace styk wystaja z czolowych powierzchni 79 i 79a.Nawiazujac do fig. 9, która ilustruje przyklad zamontowania miedzy para elementów 74 i 75 mikroobwodów posiadajacych przewodzace obsza¬ ry 76 i 77, bloku stykowego podobnego do tego z fig. 8 oraz przylozenie nacisku w celu uzyskania wzajemnego styku, widac, ze oprócz powstania wybrzuszenia na brzegach bloku 21 w przestrzeni miedzy powierzchniami 74 i 74a elementów 74 i 75 oraz wybrzuszen na poczatkowo plaskich powierzch¬ niach 79, 79a bloku, elastomeryczny material bloku nie ulega przemieszczeniu. Nalezy równiez pod¬ kreslic, ze poniewaz przy montazu poczatkowo docisk miedzy powierzchniami 79, 79a bloku oraz powierzchniami 74, 74a elementów nie wystepuje, to przed przylozeniem nacisku wystepuje tylko niewielkie tarcie, które zapobiega niewielkiemu wzglednemu przemieszczeniu miedzy blokiem oraz elementami 74 i 75. Skuteczny styk elektryczny miedzy przewodzacymi powierzchniami 76 i 77 jest zapewniony w -trojaki sposób.Po pierwsze poszczególne naciski miedzy two¬ rzacymi styk koncami czlonów 72 oraz odpo¬ wiednimi obszarami 76 i 77 sa malo zalezne od odpornosci na sciskanie elastomerycznego mate¬ rialu bloku 21.Po drugie pokrycie materialem szlachetnym kon¬ ców czlonów 72 zapewnia dalsze polepszenie styku, oraz po trzecie kazde tendencje do bocznego prze¬ mieszczenia bloku 21 wywoluja dzialanie docisko¬ we odpowiednio miedzy tworzacymi styk koncami czlonów 72 oraz przewodzacymi obszarami 76 i 77.Na fig. 9 pokazane jest, ze przy zastosowaniu tego rodzaju zestawu bloku stykowego dopuszczal¬ ny jest pewien stopien tolerancji w usytuowaniu na boki elementów obwodu 74 i 75 na przyklad czlon oznaczony przez 72a jest w styku z przewodzacym obszarem 77 w elemencie 75, nastomiast nie jest w styku z obszarem 76 w elemencie 74, przeciwnie, czlon 72b jest w styku z obszarem 76 w elemen¬ cie 74, natomiast nie jest w styku z obszarem 77 w elemencie 75. Dlatego tez dopuszczalne jest wzgledne boczne przemieszczenie miedzy elemen¬ tami 74 i 75, rzedu przedstawionego na rysunku, które nie powoduje zwarcia sasiadujacych obsza¬ rów 76 lub 77, oraz nie powoduje obawy, ze od¬ powiadajace sobie obszary 76 i 77 zostana nie po¬ laczone. PL PLProprietor of the patent: International Computers Limited, Letchworth (Great Britain) Manufacturing of a resilient electrical connector for microcircuits and a connector produced by this method The invention relates to a method of manufacturing a resilient electrical connector for microcircuits and a connector manufactured by this method. it allowed for a significant reduction in the dimensions of individual microcircuit elements, a large number of circuits are placed in a very small volume, in a so-called bundle, but then a correspondingly large number of connections of such a microcircuit packet must be made. One of the difficulties in making such electrical connections is that the dimensions and tolerances of the connections of the microcircuit packets are extremely small and therefore these connections are difficult to make using conventional technique. It is also necessary that the microcircuit pack be easily interchangeable, but if the microcircuit has a large number of persistent connections to external circuits, the time and effort required to disconnect and re-establish connections becomes particularly long and expensive. The difficulty in replacing the microcircuit packets, which are soldered to the external circuits, is that the solder must then be very carefully fused with each wire. In conventional electrical components, electrical contact between these components is most often provided by springs made of an electrically conductive material incorporated into the insulating material. The end of the spring is kept in contact with the electrically conductive part of the element when pressure is exerted on at least one of the elements and the spring is compressed, thus ensuring an electrical connection between the elements. However, with the development of the micro-circuits and the need to do so, In the micro-circuit device of electrical connection of a large number of wires of very small dimensions, it was found that the spring contacts used so far are not easily miniaturized. In many cases, it is therefore necessary to mount the microcircuit devices on carrier plates of much larger dimensions in order for the device to adapt to conventional electrical contacts and connectors, which, however, increases the dimensions and cost of the microcircuit packets and in fact undermines the advantages of the miniaturization technique. the elimination of the above-mentioned inconveniences. The technical task leading to this aim is to develop a method of making a resilient connector for microcircuits and easy to assemble and disassemble microcircuits, accomplished in this way. This task was solved thanks to the fact that according to the invention was developed a method of making a spring-loaded electric microcircuit connector by using a metal thin plate having the shape of a frame, the longer sides of which are similar to 63081630 3-4 jointly connected by evenly spaced, parallel strip members, and then the shapes are stacked by stacking them one by one and on the other, alternating with spacers of the same shape as the metal shapes but without strip members, then the space between the sides of the stack shapes is filled with a liquid hardening elastomeric insulating material, after the material solidifies, it will remove the step sides. with a second object of the invention, an electrical switch produced by this method was developed; The connector comprises a plurality of elongated flexible resilient conductive members embedded in a block of elastomeric insulating material, each of the conductive members located between the surfaces of the block and the ends of the conductive members protruding from the surface areas of the member. Such a connector forms a series of conductive paths between two microcircuits, each of which is in contact with a corresponding part of one of the two surface areas. Most preferably, these surface areas are parallel, opposing faces of the slab forming the block. A relatively low contact force is sufficient to ensure good contact. It is most preferred that the ends of the conductive members protrude slightly from the surface of the block. The protruding ends may be made of a material different from the material of the spring members, for example, an intermediate material which requires good bonding, and an end layer made of noble metal. The subject of the invention is illustrated in an example of embodiment in the figure, where fig. 1 shows a spring member bent at a right angle, fig. 2 - a spring member having a curvilinear shape, fig. 3 - a spring member embedded in an elastomeric material, fig. 4 - electric connectors in a practical embodiment, fig. 5 - a member resilient as part of the frame, fig. 6 - metal frame, which serves as a spacer, fig. 7 - a stack containing alternately arranged elements shown in figs. 5 and 6, fig. 8 - another embodiment of the connector, and fig. 9 - shows the connector of figure 8 in use. A method for producing the resilient electrical connector for microcircuits shown in figure 3 is as follows. A conventional chemical etching technique produces a template in the form of a thin metal plate having the shape of a frame 32 (FIG. 5) with a large number of spring members 10. A formation or cut 36 is made at each corner of the frame for the next accurate assembly and alignment of the frames. In the chemical etching process, a large number of frames are made in one operation, all of them having exactly the same dimensions. Then, on the frame 32, the spacing member, or spacer 33, shown in Fig. 6 is set, and then a stack is built, which alternately comprises frames 32 and spacing members 33, the thickness of the spacing segments accurately determining the distance between each two frames 32. The entire stack is then squeezed between the end plates 34 and 35 by pins 37 as shown in FIG. 7, thereby forming a cavity containing a large number of carefully spaced 5 spring members 10. The cavity is filled with a suitable liquid elastomer, which may be silicone rubber, for example. The elastomer is then polymerized and the end plates 34 and 35 and the spacers 33 are removed, and the frames 32 are then removed by chemical etching. so that in the block of polymerized elastomer only the resilient members 10 precisely permanently arranged in the elastomeric material 21 remain. if necessary, it is subjected to a grinding process in order to improve its flatness. In this way, a spring-loaded electrical connector for microcircuits 1 is produced, in which between one side of a sheet of flexible elastomeric material and its other side a large amount of electrically conductive paths isolated from each other. Thus, a flat connector 1 is produced which has an anisotropic conductivity characteristic, ie has a high degree of conductivity in one direction and a low or negligible degree of conductivity in the direction orthogeneous to that direction. As a result of such properties, a microcircuit having contacts, relatively conductive, the contact surfaces in contact with a number of spring members 10 housed in elastomer 21 is electrically connected to external circuits, for example, as printed circuits, provided with contacts to ensure mutual connection. relatively conductive contact surfaces with the same geometry as the microcircuit. The electrical connection between the microcircuit and the printed circuit board is achieved simply by placing a spring-loaded connector 1 between the microcircuit and the printed circuit board, and applying little pressure to this assembly to ensure reliable electrical connections. Referring to Fig. 1, the spring member 10 according to the invention has contact surfaces 11 and 12, respectively, at the top and bottom. The spring member 10 is formed of an electrically conductive elastic material, such as, for example, phosphor bronze. Another embodiment of the spring member is shown in FIG. 2, member 40 has two opposite contact surfaces 41 and 42. The spring members 10 and 40 have a cross-sectional dimension of the order of 25 µ and a length of 2 mm. 3 shows a spring-loaded electrical connector 1 in which a large number of spring members such as 10 or 40 are used. Each spring member It) is embedded in an elastomeric material 21 which both physically and electrically separates each other. link 10 from one another forming the link 1. In order to improve the flatness of its surface, the elastomeric material 21 is ground and during this process the contact surfaces 11, 12 20 25 30 35 40 45 50 55 60. 81 630 5 resilient members 10 are deepened as shown, slightly below the surface of the material 21. Preferably, the opposing contact faces 11 and 12 are directly overlapped by another conductive material and formed as shown in FIG. 3, contacts 13, 1 A, 19, 20, 22 and 23. The contact surfaces of the conductive element 14 of the microcircuit 15 are arranged so as to form an electrical contact with contacts 13, 18 and 19. Likewise, the conductive element 16 is arranged in a position. It is so that: it electrically connects contacts 20, 22 and 23 with an external electric micro-circuit, not shown in the drawing. The conductive element 16 is, for example, the conductive part of a printed circuit board. In this way, by arranging the conductive element 16 on a rigid substrate and by applying a force, for example of 50 grams, to the microcircuit 15, a reliable spring is created by means of the flexible connector 1; the electrical connection between the contact surface of the conductive ele- ments 14 and the conductive element 16. It should be emphasized that such a shaped connector 1 does not need to be subjected to a thorough control with regard to the height of the electrically conductive parts contained in it, as is the case when conventional elements are used as electrically connecting elements , this problem disappears because the connector 1 is fully resilient: Also because no part of the spring connector 1 is tied or permanently connected to the conductive contact surfaces of elements 14 and 16 replacement of a particular component such as example microcircuit. 15 is easily realized by removing the sub-assembly from the state of contact with the connector 1. In FIG. 3, the conductive element 16 is shown in contact with three contacts 20, 22, 23 of the resilient members, but of course the conductive element 16 may be In contact with a greater number of contacts, for example five or six, without affecting the quality of the existing connection between the conductor 16 and the contact surface of the conductive element 14. The dome-shaped contacts 14, 18 and 19 and 20, 22 and 23 can also be be made flat so that the contacts lie on the same surface as the surface of the elastomeric material 21, and then the domes forming the contacts are redundant. Referring to Fig. 4 showing the use of electric spring-loaded connector 1 in an electric joint on the water-cooled radiator 25 is fitted with a microcircuit 15 with a spring-loaded electric switch 1 mounted on the periphery 15. The printed circuit board is By means of retaining pins 26 and 27, respectively positioned in relation to the various microcircuits 15, the spindles 28 and 29 serve to hold the printed circuit board in contact with the spring-loaded fastener 1 by applying constant pressure to it. The terminals 30 on the printed circuit board can then be connected 6 to the resilient electrical connector 1 by means of interconnectable components 31 on the printed circuit board, although the spring member 10 is shown in Fig. 2 in two different forms, it should be emphasized that these figures are merely exemplary and that other forms may be used. shapes. However, in each individual case, the spring member 10 or 40 itself does not have sufficient strength to support the microcircuit element 15, and only by embedding it in the elastomeric material 21 is sufficient strength of a number of such spring members 10, 15. An example of the implementation of the invention is the stopping on an elastic member of a porous material. In the pores, it settles selectively appropriate. metals creating a large number of: electrically conductive paths from one mirror and elastic member 20 to its other surface. Referring to Fig. 3, it should be noted that the parts of contacts 13, 18 and further, form domes, protruding slightly beyond the surfaces of block 21 of the elastomeric material, which facilitates the achievement of adequate pressure by the contact portions of the conductive elements without overloading the adjacent circuit elements, which could cause the elastomer block to move. . Especially when the conductive contact areas of the associated microcircuit and / or the circuit plates lie on the same plane. The elastomeric material, in practice, is not easy to move because the soft material has a fairly high coefficient of friction, as a result of the face of the block in contact with the perimeter element tends to resist lateral displacement with respect to the face of the element. This tendency increases with increasing pressure, whereby the practical pressures applied to the elements may generate slight bulges at the ends of the connector block 1. It is preferable that the ends of the conductive parts embedded in the block protrude slightly from the surface of the block. for the forces applied to the circuit elements then only cause effective pressures between the seated members and the conductive regions of the circuit elements. It is preferable, as shown in Fig. 8, 50, that the contact end has an outer layer 71 made of noble metal, for example gold. Depending on the material used for the conductive members 72 embedded in the elastomeric block, it may be necessary to use an intermediate portion in the form of layers 70 of another conductive material in order to ensure good bonding of the materials to one another. 70 forms the protruding ends of the conductive members 72. Block 21 may have conductive members 72 made of, for example, beryllium copper or phosphorus alloy, bent in a V-shape to provide a backward resilience in the direction in which the pressure is applied. The ends of the members 72 are initially positioned so as to be on the same level as the front planes 79 and 79a on the same day. A layer 70, for example copper, for example, is formed over the ends of the trunks 72 by an electrolytic process, a copper layer 70 is formed by a deposition process over each end of the member 72. Then another layer 71, for example gold, is deposited by a similar process. on the copper domes 70 so that the gold layers forming the contact protrude from the face surfaces 79 and 79a. Referring to Fig. 9 which illustrates an example of mounting between a pair of microcircuit elements 74 and 75 having conductive regions 76 and 77, a contact block similar to 8 and applying pressure to make mutual contact, it can be seen that in addition to the bulging at the edges of the block 21 in the space between the surfaces 74 and 74a of the elements 74 and 75 and the bulges on the initially flat surfaces 79, 79a of the block, the elastomeric material block is not moved. It should also be emphasized that, since there is no initial pressure between the block surfaces 79, 79a and the element surfaces 74, 74a upon assembly, only slight friction occurs prior to the application of pressure, which prevents a slight relative displacement between the block and elements 74 and 75. Effective Electrical contact between the conductive surfaces 76 and 77 is provided in three ways. First, the individual pressures between the contact ends 72 and the respective regions 76 and 77 are little dependent on the compressive strength of the elastomeric material of block 21. the second noble material coating of the ends of the members 72 provides a further improvement in the contact, and thirdly, each tendency to move the block 21 laterally produces a pressing action between the contacting ends 72 and the conductive regions 76 and 77, respectively. it is that when using this kind of contact block assembly it is possible There is some degree of tolerance in the lateral positioning of the circuit elements 74 and 75, for example the member denoted by 72a is in contact with the conductive area 77 in the member 75, and not in contact with the area 76 in the member 74, on the contrary, the member 72b is in contact with area 76 in element 74, but not in contact with area 77 in element 75. Therefore, a relative lateral displacement between elements 74 and 75, of the row shown in the drawing, is permissible without short-circuiting adjacent areas. 76 or 77, and there is no fear that corresponding regions 76 and 77 will become unconnected. PL PL

Claims (8)

1. Zastrzezenia patentowe 1. Sposób wytwarzania sprezynujacego lacznika elektrycznego do mikroobwodów, w którym duza ilosc wydluzonych, sprezynujacych przewodzacych czlonów osadza sie w bloku o ksztalcie plytki elastomerycznego materialu, znamienny tym, ze 8 duza ilosc metalowych ramek (32), z których kazda zawiera pare rozstawionych boków polaczonych te soba przez duza ilosc równomiernie rozmieszczo¬ nych, równoleglych, sprezynujacych czlonów prze- 5 wodzacych (10) oraz duza ilosc przekladek (33) formuje sie w stos wedlug rejestru, przy czym przekladki (33) wklada sie na przemian z ramkami (32), a przestrzen dookola czlonów przewodza¬ cych (10) wypelnia sie plynnym materialem izola- io cyjnym (21), który przeprowadza sie w stan ela¬ stomeryczny i utwardza w celu umiejscowienia czlonów przewodzacych (10), po czym usuwa sie boki ramek (32) i przekladek (33).1. Claims 1. A method for producing a resilient electrical connector for microcircuits, in which a large number of elongated, resilient conductive members are embedded in a block shaped like a plate of elastomeric material, characterized in that a large number of metal frames (32) each contain a number of spaced sides connected by a large number of evenly spaced, parallel, resilient guiding members (10) and a large number of spacers (33) are stacked according to the register, with the spacers (33) being alternately placed with frames (32), and the space around the conductive members (10) is filled with a liquid insulating material (21), which is transformed into an elastomeric state and hardens in order to locate the conductive members (10), then removed sides of frames (32) and spacers (33). 2. Sposób wedlug zastrz. 1, znamienny tym, ze 15 stos ramek (32) i przekladek (33) umieszcza sie miedzy plytkami koncowymi (34, 35) tak ze tworzy sie otwarta wneke posiadajaca scianki utworzone przez boki, ramek (32) i przekladek (33) a operacje wypelniania przeprowadza sie przez wypelnianie 20 wneki od jej otwartego konca.2. The method according to claim The method of claim 1, characterized in that a stack of frames (32) and spacers (33) is positioned between the end-plates (34, 35) so that an open cavity is formed having walls formed by the sides, frames (32) and spacers (33) and the operations the filling is performed by filling the cavity from its open end. 3. Sposób wedlug zastrz. 1 lub 2, znamienny tym, ze boki ramek (32) zawierajacych elementy spre¬ zyste usuwa sie przez chemiczne trawienie.3. The method according to p. The method of claim 1 or 2, characterized in that the sides of the frames (32) containing the elastic elements are removed by chemical etching. 4. Sposób wedlug zastrz. 1, 2 lub 3, znamienny 25 tym, ze na .powierzchniach czolowych (11, 12) sprezynujacych czlonów przewodzacych formuje sie z innego przewodzacego materialu styki (13, 18, 19, 20, 22, 23, 70).4. The method according to p. The process of claim 1, 2 or 3, characterized in that on the front surfaces (11, 12) of the resilient conductive members, contacts (13, 18, 19, 20, 22, 23, 70) are formed from another conductive material. 5. Sposób wedlug zastrz. 4, znamienny tym, ze 30 krancowe czesci, sprezynujacego czlonu przewo¬ dzacego (13, 70) pokrywa sie kapturkiem lub ko¬ pula (71) ze szlachetnego metalu.5. The method according to p. The method of claim 4, characterized in that the end portions of the resilient conductive member (13, 70) are covered by a cap or a noble metal cap (71). 6. Lacznik elektryczny do mikroobwodów, stano¬ wiacy blok elastomerycznego materialu izolacyjne- 35 go w ksztalcie plytki posiadajacy pare przeciwleg¬ lych powierzchni, znamienny tym, ze zawiera duza ilosc czlonów przewodzacych osadzonych w ma¬ teriale izolacyjnym miedzy przeciwleglymi po¬ wierzchniami elastomerycznego bloku (21) tak, ze 40 konce tych sprezynujacych czlonów przewodzacych sa odsloniete, przy czym kazdy sprezynujacy czlon (10) z gladkiej blachy metalowej posiada podobny prostokatny przekrój poprzeczny, oraz tym, ze czlony przewodzace (10) sa symetrycznie 45 rozmieszczone w obrebie elastomerycznego blo¬ ku (21). i sa równomiernie rozstawione w dwu kierunkach, przy czym sprezynujace czlony prze¬ wodzace (10, 40) tworza katy zblizone do prostego lub posiadaja podobne nie prostoliniowe podluzne 50 ksztalty miedzy przeciwleglymi powierzchniami blo¬ ku (21).6. Electrical connector for microcircuits, constituting a block of a plate-shaped elastomeric insulation material having a pair of opposite surfaces, characterized in that it comprises a large number of conductive members embedded in the insulation material between the opposite surfaces of the elastomeric block ( 21) so that 40 ends of these resilient conductive members are exposed, each resilient member (10) made of smooth sheet metal having a similar rectangular cross-section, and that the conductive members (10) are symmetrically distributed within the elastomeric block towards (21). and are evenly spaced in two directions, the resilient conductive members (10, 40) forming angles close to straight or having similar non-rectilinear longitudinal shapes between the opposite surfaces of the block (21). 7. Sprezynujacy lacznik elektryczny wedlug zastrz. 6, znamienny tym, ze partie krancowe (13, 70) sprezynujacych czlonów przewodzacych (10, 72) 55 wystaja z powierzchni bloku elastomerycznego (21). 8. Sprezynujacy lacznik elektryczny wedlug zastrz. 6 lub 7, znamienny tym, ze partie konco¬ we (13, 70) sprezynujacych czlonów przewodza¬ cych stanowia warstwe (70) innego materialu prze- 60 wodzacego niz pozostala czesc czlonów przewo¬ dzacych. 9. Sprezynujacy lacznik elektryczny wedlug zastrz. 8, znamienny tym, ze warstwa innego ma¬ terialu przewodzacego (70) jest pokryta warstwa 65 metalu szlachetnego (71).81630 FIG 5 ^J3 FIG 681630 -as FIG.7. Spring-loaded electrical connector according to claim The process of claim 6, characterized in that end portions (13, 70) of the resilient conductive members (10, 72) 55 protrude from the surface of the elastomeric block (21). 8. Resilient electrical connector according to claim The method of claim 6 or 7, characterized in that the end portions (13, 70) of the resilient conductive members constitute a layer (70) of a different conductive material than the rest of the conductive members. 9. The spring-loaded electrical connector according to claim The method of claim 8, wherein the layer of another conductive material (70) is covered with a layer 65 of a noble metal (71). 81630 FIG. 8. 73CL 72 76 74 7A 75 7 7^ 71'75 ^77 v73a Bltk 3128/75 r. 115 egz. A4 Cena 10 zl PL PL8. 73CL 72 76 74 7A 75 7 7 ^ 71'75 ^ 77 v73a Bltk 3128/75 r. 115 copies A4 Price PLN 10 PL PL
PL1971147758A 1970-05-05 1971-04-24 PL81630B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2160970 1970-05-05
GB4519670 1970-09-23

Publications (1)

Publication Number Publication Date
PL81630B1 true PL81630B1 (en) 1975-08-30

Family

ID=26255424

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1971147758A PL81630B1 (en) 1970-05-05 1971-04-24

Country Status (6)

Country Link
US (1) US3795037A (en)
DE (1) DE2119567C2 (en)
FR (1) FR2091247A5 (en)
GB (1) GB1341037A (en)
PL (1) PL81630B1 (en)
SE (1) SE384105B (en)

Families Citing this family (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE794428A (en) * 1972-01-29 1973-07-23 Amp Inc ELECTRICAL CONNECTOR AND ITS MANUFACTURING PROCESS
US3795049A (en) * 1972-02-22 1974-03-05 Trw Inc Method of making a printed circuit edge connector
GB1431185A (en) * 1972-10-31 1976-04-07 Int Computers Ltd Electrical connectors and to methods for making electrical connec tors
NL152716B (en) * 1973-08-08 1977-03-15 Amp Inc ELECTRICAL CONNECTING DEVICE FOR DETACHABLE CONNECTION OF TWO FIXED CONTACT SUPPLIES TO EITHER SIDES AND PROCEDURE FOR MANUFACTURING SUCH ELECTRICAL CONNECTING DEVICE.
NL158033B (en) * 1974-02-27 1978-09-15 Amp Inc IMPROVEMENT OF AN ELECTRICAL CONNECTOR FOR DETACHABLE CONNECTION OF TWO FIXED CONTACT CARRIERS AND METHOD FOR MANUFACTURING SUCH AN ELECTRICAL CONNECTOR.
JPS5519981Y2 (en) * 1974-03-13 1980-05-13
US4142780A (en) * 1974-03-29 1979-03-06 Sharp Kabushiki Kaisha Exchangeable liquid crystal panel
US3916513A (en) * 1974-05-03 1975-11-04 Ampex Forming interconnections between circuit layers
CA1056031A (en) * 1974-05-10 1979-06-05 Leonard S. Buchoff Layered strip connector
US4016647A (en) * 1974-07-22 1977-04-12 Amp Incorporated Method of forming a matrix connector
JPS5140095A (en) * 1974-09-30 1976-04-03 Sharp Kk
US4008519A (en) * 1975-02-11 1977-02-22 Amp Incorporated Elastomeric connector and its method of manufacture
US4003621A (en) * 1975-06-16 1977-01-18 Technical Wire Products, Inc. Electrical connector employing conductive rectilinear elements
US4400234A (en) * 1975-11-13 1983-08-23 Tektronix, Inc. Method of manufacturing electrical connector
JPS5265892A (en) * 1975-11-26 1977-05-31 Shinetsu Polymer Co Nonnisotropic conductiveesheet type composite materials and method of manufacture thereof
DE2740195A1 (en) * 1976-09-09 1978-03-16 Toray Industries Elastomer sheet contg. wires parallel with sheet thickness - and used for connections in computers or other electronic appts.
US4067104A (en) * 1977-02-24 1978-01-10 Rockwell International Corporation Method of fabricating an array of flexible metallic interconnects for coupling microelectronics components
JPS5915376B2 (en) * 1977-10-18 1984-04-09 信越ポリマ−株式会社 electronic circuit parts
JPS54158691A (en) * 1977-10-21 1979-12-14 Univ Melbourne Electrical connector
US4257661A (en) * 1977-10-28 1981-03-24 Technical Wire Products, Inc. Retainer for elastomeric electrical connector
US4199209A (en) * 1978-08-18 1980-04-22 Amp Incorporated Electrical interconnecting device
US4344662A (en) * 1979-04-30 1982-08-17 Technical Wire Products, Inc. Retainer for elastomeric electrical connector
JPS568081U (en) * 1979-06-29 1981-01-23
JPS6038809B2 (en) * 1979-11-20 1985-09-03 信越ポリマ−株式会社 Method for manufacturing elastic structure with anisotropic conductivity
JPS5740874A (en) * 1980-08-22 1982-03-06 Shinetsu Polymer Co Pressure contact holding type connector
US4420203A (en) * 1981-06-04 1983-12-13 International Business Machines Corporation Semiconductor module circuit interconnection system
AU553463B2 (en) * 1981-07-06 1986-07-17 Honeywell Information Systems High density connector
FR2519228A1 (en) * 1981-12-29 1983-07-01 Inst Kolloidnoi Khim Electric connector e.g. for integrated circuits - has matrix of contacts designed as springy pieces of wire arranged in rows
DE3151933C2 (en) * 1981-12-30 1984-09-06 Institut Kolloidnoj Chimii i Chimii Vody imeni A.V. Dumanskogo Akademii Nauk Ukrainskoj SSR, Kiev Electrical connector
US4533205A (en) * 1982-09-30 1985-08-06 Burndy Corporation Collapsible wedge for electrical connector
EP0118239B1 (en) * 1983-02-24 1990-08-01 Westland Group plc Carbon fibre structures
US4518648A (en) * 1983-03-10 1985-05-21 Alps Electric Co., Ltd. Sheet material and production method thereof
US4581679A (en) * 1983-05-31 1986-04-08 Trw Inc. Multi-element circuit construction
GB8330391D0 (en) * 1983-11-15 1983-12-21 Gen Electric Co Plc Electrical interface arrangement
GB2153160B (en) * 1984-01-20 1988-03-16 Sharp Kk Connection between power supply and printed circuit board
US4548451A (en) * 1984-04-27 1985-10-22 International Business Machines Corporation Pinless connector interposer and method for making the same
US4593961A (en) * 1984-12-20 1986-06-10 Amp Incorporated Electrical compression connector
US4634199A (en) * 1985-01-22 1987-01-06 Itt Corporation Connector assembly for making multiple connections in a thin space
US5262718A (en) * 1985-08-05 1993-11-16 Raychem Limited Anisotropically electrically conductive article
US5476211A (en) 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US5917707A (en) 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US4924353A (en) * 1985-12-20 1990-05-08 Hughes Aircraft Company Connector system for coupling to an integrated circuit chip
US4793814A (en) * 1986-07-21 1988-12-27 Rogers Corporation Electrical circuit board interconnect
US5597313A (en) * 1986-06-19 1997-01-28 Labinal Components And Systems, Inc. Electrical connectors
US5672062A (en) * 1991-01-30 1997-09-30 Labinal Components And Systems, Inc. Electrical connectors
US4992053A (en) * 1989-07-05 1991-02-12 Labinal Components And Systems, Inc. Electrical connectors
US4752231A (en) * 1986-08-25 1988-06-21 General Patent Counsel/ Amp Inc. Electrical connector for use between spaced apart circuit boards
US4764848A (en) * 1986-11-24 1988-08-16 International Business Machines Corporation Surface mounted array strain relief device
US4814857A (en) * 1987-02-25 1989-03-21 International Business Machines Corporation Circuit module with separate signal and power connectors
US4820376A (en) * 1987-11-05 1989-04-11 American Telephone And Telegraph Company At&T Bell Laboratories Fabrication of CPI layers
US5637925A (en) * 1988-02-05 1997-06-10 Raychem Ltd Uses of uniaxially electrically conductive articles
US4806104A (en) * 1988-02-09 1989-02-21 Itt Corporation High density connector
US4871316A (en) * 1988-10-17 1989-10-03 Microelectronics And Computer Technology Corporation Printed wire connector
US5127837A (en) * 1989-06-09 1992-07-07 Labinal Components And Systems, Inc. Electrical connectors and IC chip tester embodying same
US5485351A (en) * 1989-06-09 1996-01-16 Labinal Components And Systems, Inc. Socket assembly for integrated circuit chip package
US4998886A (en) * 1989-07-07 1991-03-12 Teledyne Kinetics High density stacking connector
US4923404A (en) * 1989-10-20 1990-05-08 Amp Incorporated Sealed chip carrier
US4998885A (en) * 1989-10-27 1991-03-12 International Business Machines Corporation Elastomeric area array interposer
US5049084A (en) * 1989-12-05 1991-09-17 Rogers Corporation Electrical circuit board interconnect
US5245751A (en) * 1990-04-27 1993-09-21 Circuit Components, Incorporated Array connector
US5071359A (en) * 1990-04-27 1991-12-10 Rogers Corporation Array connector
US5069627A (en) * 1990-06-19 1991-12-03 Amp Incorporated Adjustable stacking connector for electrically connecting circuit boards
US7198969B1 (en) * 1990-09-24 2007-04-03 Tessera, Inc. Semiconductor chip assemblies, methods of making same and components for same
US5258330A (en) * 1990-09-24 1993-11-02 Tessera, Inc. Semiconductor chip assemblies with fan-in leads
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US20010030370A1 (en) * 1990-09-24 2001-10-18 Khandros Igor Y. Microelectronic assembly having encapsulated wire bonding leads
US5679977A (en) * 1990-09-24 1997-10-21 Tessera, Inc. Semiconductor chip assemblies, methods of making same and components for same
US5148266A (en) * 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies having interposer and flexible lead
US5634801A (en) * 1991-01-09 1997-06-03 Johnstech International Corporation Electrical interconnect contact system
US5388996A (en) * 1991-01-09 1995-02-14 Johnson; David A. Electrical interconnect contact system
US5282312A (en) * 1991-12-31 1994-02-01 Tessera, Inc. Multi-layer circuit construction methods with customization features
US5367764A (en) * 1991-12-31 1994-11-29 Tessera, Inc. Method of making a multi-layer circuit assembly
US5226823A (en) * 1992-01-09 1993-07-13 Teledyne Kinectics Indexing mechanism for precision alignment of electrical contacts
US5268815A (en) * 1992-02-14 1993-12-07 International Business Machines Corporation High density, high performance memory circuit package
US5299939A (en) * 1992-03-05 1994-04-05 International Business Machines Corporation Spring array connector
US5415559A (en) * 1992-05-18 1995-05-16 Japan Aviation Electronics Industry, Ltd. Electrical connector having a plurality of contact pin springs
US5259767A (en) * 1992-07-10 1993-11-09 Teledyne Kinetics Connector for a plated or soldered hole
JP2545675B2 (en) * 1992-07-17 1996-10-23 信越ポリマー株式会社 Elastic connector manufacturing method
US20050062492A1 (en) * 2001-08-03 2005-03-24 Beaman Brian Samuel High density integrated circuit apparatus, test probe and methods of use thereof
US5371654A (en) * 1992-10-19 1994-12-06 International Business Machines Corporation Three dimensional high performance interconnection package
US5386344A (en) * 1993-01-26 1995-01-31 International Business Machines Corporation Flex circuit card elastomeric cable connector assembly
US20030048108A1 (en) * 1993-04-30 2003-03-13 Beaman Brian Samuel Structural design and processes to control probe position accuracy in a wafer test probe assembly
US5810607A (en) * 1995-09-13 1998-09-22 International Business Machines Corporation Interconnector with contact pads having enhanced durability
US5811982A (en) * 1995-11-27 1998-09-22 International Business Machines Corporation High density cantilevered probe for electronic devices
US5474458A (en) * 1993-07-13 1995-12-12 Fujitsu Limited Interconnect carriers having high-density vertical connectors and methods for making the same
US5378160A (en) * 1993-10-01 1995-01-03 Bourns, Inc. Compliant stacking connector for printed circuit boards
US7073254B2 (en) 1993-11-16 2006-07-11 Formfactor, Inc. Method for mounting a plurality of spring contact elements
US7200930B2 (en) * 1994-11-15 2007-04-10 Formfactor, Inc. Probe for semiconductor devices
US20020053734A1 (en) 1993-11-16 2002-05-09 Formfactor, Inc. Probe card assembly and kit, and methods of making same
US7084656B1 (en) 1993-11-16 2006-08-01 Formfactor, Inc. Probe for semiconductor devices
US5820014A (en) * 1993-11-16 1998-10-13 Form Factor, Inc. Solder preforms
US20030199179A1 (en) * 1993-11-16 2003-10-23 Formfactor, Inc. Contact tip structure for microelectronic interconnection elements and method of making same
US5455390A (en) * 1994-02-01 1995-10-03 Tessera, Inc. Microelectronics unit mounting with multiple lead bonding
TW381328B (en) * 1994-03-07 2000-02-01 Ibm Dual substrate package assembly for being electrically coupled to a conducting member
JP3578232B2 (en) * 1994-04-07 2004-10-20 インターナショナル・ビジネス・マシーンズ・コーポレーション Electrical contact forming method, probe structure and device including the electrical contact
US5830782A (en) * 1994-07-07 1998-11-03 Tessera, Inc. Microelectronic element bonding with deformation of leads in rows
US5518964A (en) * 1994-07-07 1996-05-21 Tessera, Inc. Microelectronic mounting with multiple lead deformation and bonding
US6429112B1 (en) 1994-07-07 2002-08-06 Tessera, Inc. Multi-layer substrates and fabrication processes
US6117694A (en) * 1994-07-07 2000-09-12 Tessera, Inc. Flexible lead structures and methods of making same
US6848173B2 (en) * 1994-07-07 2005-02-01 Tessera, Inc. Microelectric packages having deformed bonded leads and methods therefor
US6828668B2 (en) * 1994-07-07 2004-12-07 Tessera, Inc. Flexible lead structures and methods of making same
US5798286A (en) * 1995-09-22 1998-08-25 Tessera, Inc. Connecting multiple microelectronic elements with lead deformation
US5688716A (en) 1994-07-07 1997-11-18 Tessera, Inc. Fan-out semiconductor chip assembly
US6361959B1 (en) 1994-07-07 2002-03-26 Tessera, Inc. Microelectronic unit forming methods and materials
US5590460A (en) 1994-07-19 1997-01-07 Tessera, Inc. Method of making multilayer circuit
US5915170A (en) * 1994-09-20 1999-06-22 Tessera, Inc. Multiple part compliant interface for packaging of a semiconductor chip and method therefor
AU4283996A (en) * 1994-11-15 1996-06-19 Formfactor, Inc. Electrical contact structures from flexible wire
US7276919B1 (en) * 1995-04-20 2007-10-02 International Business Machines Corporation High density integral test probe
US20100065963A1 (en) * 1995-05-26 2010-03-18 Formfactor, Inc. Method of wirebonding that utilizes a gas flow within a capillary from which a wire is played out
AU5937096A (en) * 1995-07-07 1997-02-10 Minnesota Mining And Manufacturing Company Separable electrical connector assembly having a planar array of conductive protrusions
US5785538A (en) * 1995-11-27 1998-07-28 International Business Machines Corporation High density test probe with rigid surface structure
US5994152A (en) * 1996-02-21 1999-11-30 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
US8033838B2 (en) 1996-02-21 2011-10-11 Formfactor, Inc. Microelectronic contact structure
US6403226B1 (en) 1996-05-17 2002-06-11 3M Innovative Properties Company Electronic assemblies with elastomeric members made from cured, room temperature curable silicone compositions having improved stress relaxation resistance
US5890915A (en) * 1996-05-17 1999-04-06 Minnesota Mining And Manufacturing Company Electrical and thermal conducting structure with resilient conducting paths
US6030856A (en) 1996-06-10 2000-02-29 Tessera, Inc. Bondable compliant pads for packaging of a semiconductor chip and method therefor
US6247228B1 (en) * 1996-08-12 2001-06-19 Tessera, Inc. Electrical connection with inwardly deformable contacts
US5859472A (en) * 1996-09-12 1999-01-12 Tessera, Inc. Curved lead configurations
US7282945B1 (en) * 1996-09-13 2007-10-16 International Business Machines Corporation Wafer scale high density probe assembly, apparatus for use thereof and methods of fabrication thereof
US6133072A (en) * 1996-12-13 2000-10-17 Tessera, Inc. Microelectronic connector with planar elastomer sockets
US5937276A (en) * 1996-12-13 1999-08-10 Tessera, Inc. Bonding lead structure with enhanced encapsulation
US6686015B2 (en) 1996-12-13 2004-02-03 Tessera, Inc. Transferable resilient element for packaging of a semiconductor chip and method therefor
US6820330B1 (en) * 1996-12-13 2004-11-23 Tessera, Inc. Method for forming a multi-layer circuit assembly
US6525551B1 (en) * 1997-05-22 2003-02-25 International Business Machines Corporation Probe structures for testing electrical interconnections to integrated circuit electronic devices
US6188028B1 (en) 1997-06-09 2001-02-13 Tessera, Inc. Multilayer structure with interlocking protrusions
US6028498A (en) * 1997-09-05 2000-02-22 Hewlett-Packard Company Low inductance interconnect having a comb-like resilient structure
JP3063839B2 (en) * 1997-11-18 2000-07-12 日本電気株式会社 Mounting structure and mounting method of mounted components
US6703640B1 (en) 1998-01-20 2004-03-09 Micron Technology, Inc. Spring element for use in an apparatus for attaching to a semiconductor and a method of attaching
US6456100B1 (en) 1998-01-20 2002-09-24 Micron Technology, Inc. Apparatus for attaching to a semiconductor
US6078500A (en) * 1998-05-12 2000-06-20 International Business Machines Inc. Pluggable chip scale package
DE19856083A1 (en) * 1998-12-04 2000-06-21 Siemens Ag Electrical connection arrangement for data communications equipment e.g. between contact pads especially of electro=optical module and terminals of circuit board
JP3328596B2 (en) * 1999-01-22 2002-09-24 信越ポリマー株式会社 Press-connecting connector and method of manufacturing the same
US6434817B1 (en) 1999-12-03 2002-08-20 Delphi Technologies, Inc. Method for joining an integrated circuit
US6444921B1 (en) 2000-02-03 2002-09-03 Fujitsu Limited Reduced stress and zero stress interposers for integrated-circuit chips, multichip substrates, and the like
JP2001236073A (en) * 2000-02-23 2001-08-31 Citizen Electronics Co Ltd Sound producing body having contact point spring
US7262611B2 (en) * 2000-03-17 2007-08-28 Formfactor, Inc. Apparatuses and methods for planarizing a semiconductor contactor
US6426638B1 (en) 2000-05-02 2002-07-30 Decision Track Llc Compliant probe apparatus
US7254889B1 (en) * 2000-09-08 2007-08-14 Gabe Cherian Interconnection devices
DE20019641U1 (en) * 2000-11-18 2001-04-05 Amrhein Herbert Contacting device for establishing an electrically conductive connection
US6846115B1 (en) * 2001-01-29 2005-01-25 Jds Uniphase Corporation Methods, apparatus, and systems of fiber optic modules, elastomeric connections, and retention mechanisms therefor
US6604950B2 (en) 2001-04-26 2003-08-12 Teledyne Technologies Incorporated Low pitch, high density connector
US6586684B2 (en) * 2001-06-29 2003-07-01 Intel Corporation Circuit housing clamp and method of manufacture therefor
US6729019B2 (en) * 2001-07-11 2004-05-04 Formfactor, Inc. Method of manufacturing a probe card
WO2003101162A2 (en) * 2002-05-28 2003-12-04 Molex Incorporated Connector packaging and transport assembly
US20040105244A1 (en) * 2002-08-06 2004-06-03 Ilyas Mohammed Lead assemblies with offset portions and microelectronic assemblies with leads having offset portions
DE10324450A1 (en) * 2003-05-28 2005-01-05 Infineon Technologies Ag Contacting device for electronic circuit units and manufacturing method
US6945791B2 (en) * 2004-02-10 2005-09-20 International Business Machines Corporation Integrated circuit redistribution package
CN101053079A (en) 2004-11-03 2007-10-10 德塞拉股份有限公司 Stacked packaging improvements
DE102004061853A1 (en) * 2004-12-22 2006-03-02 Infineon Technologies Ag Combined support structure and manufacturing jig panel for integrated circuit with chip, jig panel and supporting circuit board
US20070040565A1 (en) * 2005-08-19 2007-02-22 National University of Singapore, Agency For Science, Technology and Research Compliant probes and test methodology for fine pitch wafer level devices and interconnects
US20070075717A1 (en) * 2005-09-14 2007-04-05 Touchdown Technologies, Inc. Lateral interposer contact design and probe card assembly
US8058101B2 (en) 2005-12-23 2011-11-15 Tessera, Inc. Microelectronic packages and methods therefor
FR2896914B1 (en) * 2006-01-30 2008-07-04 Valeo Electronique Sys Liaison ELECTRONIC MODULE AND METHOD FOR ASSEMBLING SUCH A MODULE
ITMI20060478A1 (en) * 2006-03-16 2007-09-17 Eles Semiconductor Equipment Spa SYSTEM FOR CONTACTING ELECTRONIC DEVICES AND ITS PRODUCTION METHOD BASED ON WIRED CONDUCTOR IN INSULATING MATERIAL
FR2917236B1 (en) * 2007-06-07 2009-10-23 Commissariat Energie Atomique METHOD FOR PRODUCING VIA IN A RECONSTITUTED SUBSTRATE
US7982305B1 (en) * 2008-10-20 2011-07-19 Maxim Integrated Products, Inc. Integrated circuit package including a three-dimensional fan-out / fan-in signal routing
CN101826467B (en) * 2009-03-02 2012-01-25 清华大学 Preparation method of thermal interface material
JP2010251319A (en) 2009-04-15 2010-11-04 Chou Hsien Tsai Socket structure with duplex electrical connection
US8519527B2 (en) * 2009-09-29 2013-08-27 Bae Systems Information And Electronic Systems Integration Inc. Isostress grid array and method of fabrication thereof
US8407888B2 (en) * 2010-05-07 2013-04-02 Oracle International Corporation Method of assembling a circuit board assembly
AU2011257975B2 (en) 2010-05-28 2014-10-09 Apple Inc. Dual orientation connector with external contacts
EP2577812A4 (en) 2010-05-28 2014-12-17 Apple Inc D-shaped connector
EP2580824A4 (en) 2010-06-09 2014-12-10 Apple Inc Flexible trs connector
WO2011160138A2 (en) * 2010-06-18 2011-12-22 Zenith Investments Llc Dual orientation connector with side contacts
CN103004035A (en) 2010-06-21 2013-03-27 苹果公司 External contact plug connector
TWI492463B (en) 2010-06-21 2015-07-11 Apple Inc External contact plug connector
US8482111B2 (en) 2010-07-19 2013-07-09 Tessera, Inc. Stackable molded microelectronic packages
US9159708B2 (en) 2010-07-19 2015-10-13 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
KR101075241B1 (en) 2010-11-15 2011-11-01 테세라, 인코포레이티드 Microelectronic package with terminals on dielectric mass
US20120146206A1 (en) 2010-12-13 2012-06-14 Tessera Research Llc Pin attachment
KR101128063B1 (en) 2011-05-03 2012-04-23 테세라, 인코포레이티드 Package-on-package assembly with wire bonds to encapsulation surface
US8618659B2 (en) 2011-05-03 2013-12-31 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US8836136B2 (en) * 2011-10-17 2014-09-16 Invensas Corporation Package-on-package assembly with wire bond vias
US8708745B2 (en) 2011-11-07 2014-04-29 Apple Inc. Dual orientation electronic connector
US9112327B2 (en) 2011-11-30 2015-08-18 Apple Inc. Audio/video connector for an electronic device
US8946757B2 (en) 2012-02-17 2015-02-03 Invensas Corporation Heat spreading substrate with embedded interconnects
US9349706B2 (en) 2012-02-24 2016-05-24 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US8372741B1 (en) 2012-02-24 2013-02-12 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US8835228B2 (en) 2012-05-22 2014-09-16 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9391008B2 (en) 2012-07-31 2016-07-12 Invensas Corporation Reconstituted wafer-level package DRAM
US9502390B2 (en) 2012-08-03 2016-11-22 Invensas Corporation BVA interposer
US9093803B2 (en) 2012-09-07 2015-07-28 Apple Inc. Plug connector
US8777666B2 (en) 2012-09-07 2014-07-15 Apple Inc. Plug connector modules
US9160129B2 (en) * 2012-09-11 2015-10-13 Apple Inc. Connectors and methods for manufacturing connectors
US9054477B2 (en) 2012-09-11 2015-06-09 Apple Inc. Connectors and methods for manufacturing connectors
US9059531B2 (en) 2012-09-11 2015-06-16 Apple Inc. Connectors and methods for manufacturing connectors
US8975738B2 (en) 2012-11-12 2015-03-10 Invensas Corporation Structure for microelectronic packaging with terminals on dielectric mass
US9325097B2 (en) 2012-11-16 2016-04-26 Apple Inc. Connector contacts with thermally conductive polymer
US8878353B2 (en) 2012-12-20 2014-11-04 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
US20140206209A1 (en) 2013-01-24 2014-07-24 Apple Inc. Reversible usb connector
US9136254B2 (en) 2013-02-01 2015-09-15 Invensas Corporation Microelectronic package having wire bond vias and stiffening layer
US9034696B2 (en) 2013-07-15 2015-05-19 Invensas Corporation Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation
US9023691B2 (en) 2013-07-15 2015-05-05 Invensas Corporation Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation
US8883563B1 (en) 2013-07-15 2014-11-11 Invensas Corporation Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
US9167710B2 (en) 2013-08-07 2015-10-20 Invensas Corporation Embedded packaging with preformed vias
US9685365B2 (en) 2013-08-08 2017-06-20 Invensas Corporation Method of forming a wire bond having a free end
US20150076714A1 (en) 2013-09-16 2015-03-19 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US9082753B2 (en) 2013-11-12 2015-07-14 Invensas Corporation Severing bond wire by kinking and twisting
US9087815B2 (en) 2013-11-12 2015-07-21 Invensas Corporation Off substrate kinking of bond wire
US9263394B2 (en) 2013-11-22 2016-02-16 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9583456B2 (en) 2013-11-22 2017-02-28 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9379074B2 (en) 2013-11-22 2016-06-28 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US9583411B2 (en) 2014-01-17 2017-02-28 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US9484699B2 (en) * 2014-03-13 2016-11-01 Apple Inc. Elastomeric connectors
US9214454B2 (en) 2014-03-31 2015-12-15 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
JP2015207433A (en) * 2014-04-18 2015-11-19 矢崎総業株式会社 Conductive elastic member and connector
US10381326B2 (en) 2014-05-28 2019-08-13 Invensas Corporation Structure and method for integrated circuits packaging with increased density
US9646917B2 (en) 2014-05-29 2017-05-09 Invensas Corporation Low CTE component with wire bond interconnects
US9412714B2 (en) 2014-05-30 2016-08-09 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
US9735084B2 (en) 2014-12-11 2017-08-15 Invensas Corporation Bond via array for thermal conductivity
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US9502372B1 (en) 2015-04-30 2016-11-22 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US9761554B2 (en) 2015-05-07 2017-09-12 Invensas Corporation Ball bonding metal wire bond wires to metal pads
US9490222B1 (en) 2015-10-12 2016-11-08 Invensas Corporation Wire bond wires for interference shielding
US10490528B2 (en) 2015-10-12 2019-11-26 Invensas Corporation Embedded wire bond wires
US10332854B2 (en) 2015-10-23 2019-06-25 Invensas Corporation Anchoring structure of fine pitch bva
US10181457B2 (en) 2015-10-26 2019-01-15 Invensas Corporation Microelectronic package for wafer-level chip scale packaging with fan-out
US9911718B2 (en) 2015-11-17 2018-03-06 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
US9659848B1 (en) 2015-11-18 2017-05-23 Invensas Corporation Stiffened wires for offset BVA
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US10392033B2 (en) * 2016-07-12 2019-08-27 Amsted Rail Company, Inc. Railway truck with improved bearing adapter
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US10299368B2 (en) 2016-12-21 2019-05-21 Invensas Corporation Surface integrated waveguides and circuit structures therefor
US20200072871A1 (en) * 2017-03-31 2020-03-05 Intel Corporation Ultra low-cost, low leadtime, and high density space transformer for fine pitch applications
JP7080879B2 (en) * 2017-05-18 2022-06-06 信越ポリマー株式会社 Electrical connector and its manufacturing method
US10600739B1 (en) * 2017-09-28 2020-03-24 Hrl Laboratories, Llc Interposer with interconnects and methods of manufacturing the same
CN113453418A (en) * 2021-06-28 2021-09-28 浙江挚领科技有限公司 Heat conduction device and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126440A (en) * 1964-03-24 Shielding and sealing gasket material
US2852639A (en) * 1954-11-08 1958-09-16 Leach Corp Relay
US2885459A (en) * 1955-11-02 1959-05-05 Pulsifer Verne Sealing and conducting gasket material
US3056195A (en) * 1959-06-04 1962-10-02 Western Gold And Platinum Comp Method of brazing
GB940518A (en) * 1961-01-03 1963-10-30 Burndy Corp Tape cable interconnection
US3391456A (en) * 1965-04-30 1968-07-09 Sylvania Electric Prod Multiple segment array making
US3509296A (en) * 1967-10-23 1970-04-28 Ncr Co Resilient variable-conductivity circuit controlling means
US3613230A (en) * 1969-04-29 1971-10-19 Bunker Ramo Method of fabricating coaxial circuitry
US3722053A (en) * 1971-07-26 1973-03-27 Dresser Ind Method of making well pressure sealing cup reinforcing structure

Also Published As

Publication number Publication date
DE2119567C2 (en) 1983-07-14
SE384105B (en) 1976-04-12
FR2091247A5 (en) 1972-01-14
DE2119567A1 (en) 1971-11-25
GB1341037A (en) 1973-12-19
US3795037A (en) 1974-03-05

Similar Documents

Publication Publication Date Title
PL81630B1 (en)
US4453795A (en) Cable-to-cable/component electrical pressure wafer connector assembly
US6042387A (en) Connector, connector system and method of making a connector
US6488513B1 (en) Interposer assembly for soldered electrical connections
US5030109A (en) Area array connector for substrates
US4150420A (en) Electrical connector
US3945705A (en) Wire-splicing apparatus and contact element therefor
JP2738498B2 (en) Electrical interconnection of supported protruding structures
EP0236763A1 (en) Laminated print coil structure
US4255003A (en) Electrical connector
USRE31114E (en) Electrical connector
KR102493829B1 (en) Conductive terminal and electronic device
CN111193126A (en) Conductive terminal and electric connector
JPH0381275B2 (en)
WO2006132108A1 (en) Electric connector
US4734045A (en) High density connector
US3315133A (en) Integrated circuit interconnect and method
JPS63200481A (en) Small connector and manufacture thereof
JP4532234B2 (en) connector
US4400234A (en) Method of manufacturing electrical connector
JPH07230837A (en) Terminal for hybrid integrated circuit board
GB2183406A (en) Resilient clamping connection of electrical circuits
GB2142477A (en) Electrical circuit assembly
CN110999549B (en) Electrical device
US6514088B1 (en) Uniform pressure pad for electrical contacts