US20150076714A1 - Microelectronic element with bond elements to encapsulation surface - Google Patents

Microelectronic element with bond elements to encapsulation surface Download PDF

Info

Publication number
US20150076714A1
US20150076714A1 US14027571 US201314027571A US2015076714A1 US 20150076714 A1 US20150076714 A1 US 20150076714A1 US 14027571 US14027571 US 14027571 US 201314027571 A US201314027571 A US 201314027571A US 2015076714 A1 US2015076714 A1 US 2015076714A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
wire bonds
surface
portions
semiconductor die
compliant material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14027571
Inventor
Belgacem Haba
Richard DeWitt Crisp
Wael Zohni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invensas Corp
Original Assignee
Invensas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/49Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions wire-like arrangements or pins or rods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05555Shape in top view being circular or elliptic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1183Reworking, e.g. shaping
    • H01L2224/1184Reworking, e.g. shaping involving a mechanical process, e.g. planarising the bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/1191Forming a passivation layer after forming the bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13012Shape in top view
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13012Shape in top view
    • H01L2224/13013Shape in top view being rectangular or square
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13012Shape in top view
    • H01L2224/13014Shape in top view being circular or elliptic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13017Shape in side view being non uniform along the bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/13076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/1369Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1405Shape
    • H01L2224/14051Bump connectors having different shapes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16104Disposition relative to the bonding area, e.g. bond pad
    • H01L2224/16105Disposition relative to the bonding area, e.g. bond pad the bump connector connecting bonding areas being not aligned with respect to each other
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16108Disposition the bump connector not being orthogonal to the surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1705Shape
    • H01L2224/17051Bump connectors having different shapes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/9202Forming additional connectors after the connecting process
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92143Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06506Wire or wire-like electrical connections between devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06589Thermal management, e.g. cooling
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

A microelectronic structure includes a semiconductor having conductive elements at a first surface. Wire bonds have bases joined to the conductive elements and free ends remote from the bases, the free ends being remote from the substrate and the bases and including end surfaces. The wire bonds define edge surfaces between the bases and end surfaces thereof. A compliant material layer extends along the edge surfaces within first portions of the wire bonds at least adjacent the bases thereof and fills spaces between the first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer. Second portions of the wire bonds are defined by the end surfaces and portions of the edge surfaces adjacent the end surfaces that are extend from a third surface of the compliant later.

Description

    BACKGROUND OF THE INVENTION
  • The subject matter of the present application relates to a microelectronic element including a semiconductor chip with structures to achieve improved reliability when assembled with external microelectronic components, including compliant connection structures, and methods of fabricating the microelectronic element.
  • Semiconductor chips are flat bodies with contacts disposed on a front surface that are connected to internal electrical circuitry of the chip. The chips are typically packaged to form a microelectronic package having terminals that are electrically connected to the chip contacts. The terminals of the package may then be connected to an external microelectronic component, such as a circuit panel.
  • Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.
  • Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.
  • Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.
  • Mismatches or differences between coefficients of thermal expansion (“CTE”) of the components in such a package can adversely impact their reliability and performance. In an example, a semiconductor chip may have a lower CTE than that of a substrate or printed circuit board to which it is mounted. As the chip undergoes heating and cooling due to the use cycle thereof, the components will expand and contract according to their differing CTEs. In this example, the substrate will expand more and at a greater rate than the semiconductor die. This can cause stress in the solder masses (or other structures) used to both mount and electrically connect the semiconductor die and the substrate. Such stress can cause the solder mass to disconnect from either or both of the semiconductor die or the substrate, thereby interrupting the signal transmission that it otherwise facilitates. Various structures have been used to compensate for such variations in CTE, yet many fail to offer a significant amount of compensation on a scale appropriate for the fine pitch arrays being increasingly utilized in microelectronic packages.
  • BRIEF SUMMARY OF THE INVENTION
  • An aspect of the present disclosure relates to a microelectronic structure including a first semiconductor die having first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface. The structure also includes wire bonds having bases joined to respective ones of the conductive elements. The wire bonds further have free ends remote from the bases, the free ends being remote from the substrate and the bases and including end surfaces thereon. The wire bonds define edge surfaces extending between the bases and end surfaces thereof. A compliant material layer overlies and extends from the first surface of the semiconductor die outside of the bases of the wire bonds. The compliant material layer further extends along first portions of the edge surfaces of the wire bonds at least adjacent the bases thereof and fills spaces between the first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer. The compliant material layer further has a third surface facing away from the first surface of the semiconductor die. Second portions of the wire bonds are defined by the end surfaces and portions of the edge surfaces adjacent the end surfaces that are uncovered by the third surface and extend away therefrom.
  • The first portions of the wire bonds can be encapsulated entirely by the compliant material. Further, the second portions of the wire bonds can be moveable with respect to the bases thereof. In an example, the compliant material layer can have a Young's modulus of 2.5 GPa or less.
  • The second portions of the wire bonds can extend along axes of the wire bonds that are disposed at angles of at least 30 degrees with respect to the third surface. The end surfaces of the wire bonds can be positioned above the third surface by a distance of at least 50 microns. Further, the end surfaces of the wire bonds can be positioned above the third surface at a distance of less than 200 microns.
  • The semiconductor die can further define edge surfaces extending between the first and second surfaces, and the compliant material layer can further include edge surfaces extending from the third surface thereof to the first surface of the semiconductor die so as to be substantially coplanar with the edge surfaces of the semiconductor die. At least one of the wire bonds can have a shape such that the wire bond defines an axis between the free end and the base thereof and such that the wire bond defines a plane. In such an example a bent portion of the at least one wire bond can extending away from the axis within the plane. The shape of the at least one wire bond can be further such that a substantially straight portion of the wire bond extends between the free end and the bent portion along the axis.
  • The microelectronic structure can further include conductive metal masses joined with the second portions of the wire bonds and contacting the third surface of the compliant material layer. In such an example, at least one of the conductive metal masses encapsulates at least some of the second portion of a respective one of the wire bonds. The conductive metal masses can be configured to join the second portions of the wire bonds with external conductive features by reflow thereof.
  • In an example, the semiconductor die can be a first semiconductor die having a first region and a second region surrounding the first region. The electrically conductive elements of the first semiconductor die can be within the second region. The microelectronic structure in such an example, can further include a second semiconductor die mounted on the first semiconductor die within the first region. The second semiconductor die can be electrically connected with at least some of the conductive elements of the first semiconductor die. The compliant material layer can cover the second semiconductor die.
  • In another example, the semiconductor die can be a first semiconductor die having a first region and a second region surrounding the first region. The electrically conductive elements of the first semiconductor die can be within the second region. The microelectronic structure can further include a second semiconductor die mounted on the first semiconductor die within the first region. The second semiconductor die can have first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface facing away from the first surface of the first semiconductor die. Additional wire bonds can have bases joined to respective ones of the conductive elements of the second semiconductor die. The additional wire bonds can further have free ends remote from the bases, and the free ends can be remote from the first surface of the second semiconductor die and the bases and including the end surfaces thereon. The wire bonds can define edge surfaces extending between the bases and end surfaces thereof. The compliant material layer can further overlie and extend from the first surface of the second semiconductor die outside of the bases of the additional wire bonds, and the compliant material layer can further extending along first portions of the edge surfaces of the additional wire bonds. Second portions of the additional wire bonds can be defined by the end surfaces and portions of the edge surfaces extending from the end surfaces that are uncovered by and extend away from the compliant material layer at the third surface.
  • Another aspect of the present disclosure can relate to a microelectronic package including a microelectronic element having a first semiconductor die with first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface. The element can further have wire bonds with bases joined to respective ones of the conductive elements at the first surface and end surfaces, the end surfaces being remote from the substrate and the bases. Each of the wire bonds extends from the base to the end surface thereof. A compliant material layer overlies and extends from the first portion of the first surface of the substrate and fills spaces between first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer. The compliant material layer has a third surface facing away from the first surface of the substrate, and second portions of the wire bonds are defined by at least portions of the end surfaces of the wire bonds that are uncovered by the compliant material layer at the third surface. The package further includes a substrate having a fourth surface and a plurality of terminals exposed at the fourth surface. The microelectronic element is mounted on the substrate with the third surface facing the fourth surface and at least some of the wire bonds are joined, at the second portions thereof, to respective ones of the terminals.
  • The second portions of the wire bonds can be electrically and mechanically joined to the terminals by conductive metal masses. The microelectronic package can further include a molded dielectric layer formed over at least a portion of the fourth surface of the substrate and extending away therefrom so as to extend along at least a portion of the microelectronic element. The Young's modulus of the molded dielectric layer can be greater than the Young's Modulus of the compliant material layer. The compliant material layer can have a Young's modulus of less than 2.5 GPa.
  • The wire bonds can further define edge surfaces extending between the bases and end surfaces thereof, and the compliant material layer can extend along portions of the edge surfaces of the wire bonds at least adjacent the bases thereof and within the first portions of the wire bonds. Portions of the edge surfaces of the wire bonds that extend from the end surfaces thereof can be uncovered by the compliant material layer around entire circumferences thereof at the third surface thereof.
  • Another aspect of the present disclosure relates to a method for making a microelectronic structure. The method includes forming wire bonds on a semiconductor die, the semiconductor die having first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface. The wire bonds are formed having bases joined to respective ones of the conductive elements and having end surfaces remote from the substrate and the bases. Edge surfaces of the wire bonds extend between the bases and the end surfaces. The method further includes forming a compliant material layer overlying and extending from the first surface of the semiconductor die outside of the bases of the wire bonds. The compliant material is further formed to extend along portions of the edge surfaces of first portions of the wire bonds to fill spaces between the first portions of the wire bonds and to separate the first portions of the wire bonds from one another. The compliant material layer is further formed to have a third surface facing away from the first surface of the substrate with second portions of the wire bonds being defined by at least the end surfaces and portions of the edge surfaces of the wire bonds that are uncovered by the conductive material layer at the third surface so as to extend away therefrom.
  • The method can further include the step of mounting the microelectronic package on a substrate with the third surface facing a surface of the substrate. The surface of the substrate can have terminals at the surface thereof, and the mounting can include joining at least some of the second portions of the wire bonds with the terminals. The second portions of the wire bonds can be joined with the terminals including reflowing of conductive metal masses joined with the second portions of the wire bonds. At least one of the conductive metal masses can encapsulate at least some of the second portion of a respective one of the wire bonds at least after the reflowing thereof. In an alternative example, the second portions of the wire bonds can be joined with the terminals including reflowing of conductive metal masses joined with the terminals.
  • The method can further include forming a molded dielectric over at least a portion of the surface of the substrate and extending away therefrom so as to extend along at least a portion of the compliant material layer and along at least a portion of the semiconductor die.
  • The compliant material layer can be deposited over the semiconductor die so as to cover the wire bonds, including the end surfaces thereof, and forming the compliant material layer can further include removing a portion thereof to form the third surface thereof and to uncover the second portions of the wire bonds. Alternatively, forming the compliant material layer can include molding the compliant material over the semiconductor die so as to form the third surface thereof such that the second portions of the wire bonds extend therefrom.
  • Forming the wire bond can include severing a wire segment joined with one of the conductive elements at least by pressing the wire segment into contact with a secondary surface using a capillary of a bonding tool so as to form the end surface of the wire bond remote from the base.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional view depicting a microelectronic element according to an aspect of the disclosure.
  • FIG. 2 is a sectional view of a microelectronic package including the microelectronic element of FIG. 1.
  • FIGS. 3A-3C are schematic views of example wire bonds that can be used in the microelectronic element of FIG. 1.
  • FIG. 4 is a detail view of a tip of the example wire bonds of FIGS. 3A-3C.
  • FIG. 5 is a sectional view of an alternative microelectronic element according to another example of the disclosure.
  • FIG. 6 is a sectional view of an alternative microelectronic element according to another example of the disclosure.
  • FIGS. 7-12 show various sectional views of an in process unit during steps of a method for fabricating a microelectronic element according to another aspect of the disclosure.
  • FIG. 13 shows a method step that can be used in a variation of the method depicted in FIGS. 7-12
  • FIGS. 14 and 15 show schematic views of successive steps in a method for fabricating a wire bond that can be incorporated in the method depicted in FIGS. 7-12 and the variation incorporating the step of FIG. 13.
  • DETAILED DESCRIPTION
  • Turning now to the figures, where similar numeric references are used to indicate similar features, there is shown in FIG. 1 a microelectronic structure 10 that can be in the form of a microelectronic element according to an embodiment of the present invention. The embodiment of FIG. 1 is a microelectronic element in the form of a semiconductor die 12 (also referred to as a semiconductor chip) having a plurality of wire bonds 32 extending from contacts 28 thereof to extending portions 40 thereof that extend above a compliant material layer 42 that covers and separates remaining portions of the wire bonds 32 from each other, including portions thereof adjacent semiconductor die 12. The structure 10 can then used in computer or other electronic applications either alone or in an assembly with further components.
  • The microelectronic element 10 of FIG. 1 includes semiconductor die 12 having a first surface 14 and a second surface 16. For purposes of this discussion, the first surface 14 may be described as being positioned opposite or remote from second surface 16. Such a description, as well as any other description of the relative position of elements used herein that refers to a vertical or horizontal position of such elements is made for illustrative purposes only to correspond with the position of the elements within the Figures, and is not limiting.
  • Conductive elements 28 are at the first surface 14 of semiconductor die 12. As used in the present description, when an electrically conductive element is described as being “at” the surface of another element having dielectric structure, it indicates that the electrically conductive structure is available for contact with a theoretical point moving in a direction perpendicular to the surface of the dielectric structure toward the surface of the dielectric structure from outside the dielectric structure. Thus, a terminal or other conductive structure that is at a surface of a dielectric structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the dielectric. Conductive elements 28 can be flat, thin elements of a solid metal material such as copper, gold, nickel, or other materials that are acceptable for such an application, including various alloys including one or more of copper, gold, nickel or combinations thereof. In one example, conductive elements 28 can be substantially circular.
  • Microelectronic element 10 further includes a plurality of wire bonds 32 joined to at least some of the conductive elements 28. Wire bonds 32 are joined at a base 34 thereof to the conductive elements 28 and extend to a corresponding free end 36 remote from the base 34 and from the first surface 14 of semiconductor die 12, the free ends 36 being within the extending portions 40 of the wire bonds 32. The ends 36 of wire bonds 32 are characterized as being free in that they are not connected or otherwise joined to semiconductor die 12 or any other conductive features within microelectronic element 10 that are, in turn, connected to semiconductor die 12. In other words, free ends 36 are available for electronic connection, either directly or indirectly as through a solder ball or other features discussed herein, to a conductive feature of a component external to microelectronic element 10, such as, for example, a printed circuit board (“PCB”) or another substrate with conductive contacts or terminals thereat. The fact that ends 36 held in a predetermined neutral position by, for example, compliant material layer 42 (as described further below) or otherwise joined or electrically connected to another external component does not mean that they are not “free”. Conversely, base 34 is not free as it is either directly or indirectly electrically connected to semiconductor die 12, as described herein. As shown in FIG. 1, base 34 can be substantially rounded in shape, extending outward from an edge surface 37 (as shown, for example, in FIGS. 3A-C) of wire bond 32 defined between base 34 and end 36.
  • The particular size and shape of base 34 can vary according to the type of material used to form wire bond 32, the desired strength of the connection between wire bond 32 and conductive element 28, or the particular process used to form wire bond 32. Example methods for making wire bonds 32 are and are described in U.S. Pat. No. 7,391,121 to Otremba and in U.S. Pat. App. Pub. Nos. 2012/0280386 (“the '386 Publication”) and 2005/0095835 (“the '835 Publication,” which describes a wedge-bonding procedure that can be considered a form of wire bonding) the disclosures of which are incorporated herein by reference in their entireties.
  • Wire bonds 32 can be made from a conductive material such as copper, gold, nickel, solder, aluminum or the like. Additionally, wire bonds 32 can be made from combinations of materials, such as from a core of a conductive material, such as copper or aluminum, for example, with a coating applied over the core. The coating can be of a second conductive material, such as aluminum, nickel or the like. Alternatively, the coating can be of an insulating material, such as an insulating jacket. In an example, the wire used to form wire bonds 32 can have a thickness, i.e., in a dimension transverse to the wire's length, of between about 15 μm and 150 μm. In other examples, including those in which wedge bonding is used, wire bonds 32 can have a thickness of up to about 500 μm. In general, a wire bond is formed on a conductive element, such as conductive element 28 within contact portion 30 using specialized equipment.
  • As described further below, during formation of a wire bond of the type shown and described herein, a leading end of a wire segment is heated and pressed against the receiving surface to which the wire segment bonds, typically forming a ball or ball-like base 34 joined to the surface of the conductive element 28. The desired length of the wire segment to form the wire bond is drawn out of the bonding tool, which can then cut the wire bond at the desired length. Wedge bonding, which can be used to form wire bonds of aluminum, for example, is a process in which the heated portion of the wire is dragged across the receiving surface to form a wedge that lies generally parallel to the surface. The wedge-bonded wire bond can then be bent upward, if necessary, and extended to the desired length or position before cutting. In a particular embodiment, the wire used to form a wire bond can be cylindrical in cross-section. Otherwise, the wire fed from the tool to form a wire bond or wedge-bonded wire bond may have a polygonal cross-section such as rectangular or trapezoidal, for example.
  • The extending portions 40 of the wire bonds 32 can form at least a part of a connection feature in an array formed by respective extending portions 40 of a plurality of wire bonds 32. Such an array can be formed in an area array configuration, variations of which could be implemented using the structures described herein. Such an array can be used to electrically and mechanically connect the microelectronic element 10 to another microelectronic structure, such as to a printed circuit board (“PCB”), a substrate (in a packaged configuration for microelectronic element 10, an example of which is shown in FIG. 2), or to other external components or structures. Solder masses 66 (FIG. 2) can be used to connect the wire bonds 32 to conductive features of such components or structures such as by electronically and mechanically attaching extending portions 40 thereof, including free ends 36 and corresponding end surfaces 38 (FIGS. 3A-3C), thereto.
  • Microelectronic element 10 further includes a compliant material layer 42 formed from a dielectric material having a Young's modulus of less than about 2.5 GPa. As shown in FIG. 1, compliant material layer 42 extends over the portions of first surface 14 of semiconductor die 12 that are not otherwise covered by or occupied by bases 34 of wire bonds 32. Similarly, compliant material layer 42 extends over the portions of conductive elements 28 that are not otherwise covered by bases 34 of wire bonds 32. Compliant material layer 42 can also partially cover wire bonds 32, including the bases 34 and at least a portion of edge surfaces 37 thereof. Extending portion 40 of wire bonds 32 remains uncovered by compliant material layer 42, thereby making the wire bonds 32 available for electrical connection to a feature or element located outside of compliant material layer 42, as discussed above. In the examples shown in the Figures, a surface, such as major surface 44 of compliant material layer 42 can be spaced apart from first surface 14 of semiconductor 12 at a distance great enough to cover, for example, bases 34 and portions of the edge surfaces 37 of wire bonds 32 to provide some level of mechanical support therefor and to separate and electrically insulate the wire bonds 32 from each other. Other configurations for compliant material layer 42 are possible. For example, a compliant material layer can have multiple surfaces with varying heights.
  • The example of wire bonds 32 shown in FIG. 1, which are shown in further detail in FIGS. 3A and 4, define a particular curved shape that can be imparted on the wire bonds 32 by a process of making the wire bonds 32 that utilizes a secondary surface. Such a method is further described below in connection with FIGS. 7-13. The shape of wire bonds 32 can be such that the end surfaces 38 are aligned along an axis 50 with a base end 35 of the wire bond 32 that is immediately adjacent the base 34. In the example of wire bond 32 shown in FIG. 3A, the axis is generally perpendicular to the conductive element 28 such that the end surface 38 is positioned directly above the base end 35. Such a configuration can be useful for a plurality of wire bonds 32 in an array wherein the array of connections on major surface 44 of compliant material layer 42 are intended to have a pitch that generally matches a pitch of the conductive elements 28 to which the wire bonds 32 are respectively joined. In such a configuration, the axis 50 can also be angled with respect to contact portion 30 such that end surface 38 is offset slightly from the base end 35 but is still positioned above base 34. In such an example, the axis 50 can be at an angle of 85° to 90° with respect to contact portion 30.
  • Wire bond 32 can be configured such that a first portion 52 thereof, on which the end surface 38 is defined, extends generally along a portion of the axis 50. The first portion 52 can have a length that is between about 10% and 50% of the total length of wire bond 32 (as defined by the length of axis 50, for example). A second portion 54 of the wire bond 32 can be curved, or bent, so as to extend away from the axis from a location adjacent the first portion 52 to an apex 56 that is spaced apart from the axis 50. The second portion 54 is further curved so as to be positioned along axis 50 at a location at or near base end 35 and to also extend away from the axis 50 to apex 56 from the side of base end 35. It is noted that first portion 52 need not be straight or follow axis 50 exactly and that there may be some degree of curvature or variation therein. It is also noted that there may be abrupt or smooth transitions between first portion 52 and second portion 54 that may themselves be curved. It is noted, however, that the wire bonds 32 depicted in FIGS. 1 and 3A, including second portion 54, are further configured to lie on a single plane on which axis 50 also lies.
  • Further, both first 52 and second 54 portions of the wire bond 32 can be configured such that any portions thereof that do not intersect axis 50 are all on the same, single side of axis 50. That is, some of first and second portions 52 and 54 may be, for example, on a side of axis 50 opposite the apex 56 of the curved shape defined by second portion 54; however, any such portions would be in areas of the wire bond 32 that axis 50 intersects at least partially. In other words, first and second portions 52 and 54 of wire bond 32 can be configured to not fully cross axis 50 such that the edge surface 37 within those portions is only spaced apart from axis 50 on a single side of axis 50. In the example of FIG. 3A the plane can be along the page on which the illustration of wire bond 32 is presented.
  • FIGS. 3B and 3C show examples of wire bonds 32 with ends 36 that are not positioned directly above the respective bases 34 thereof. That is, considering first surface 14 of semiconductor die 12 as extending in two lateral directions, so as to substantially define a plane, an end 36 of one of the wire bonds 32 can be displaced in at least one of these lateral directions from a corresponding lateral position of base 34. As shown in FIGS. 3B and 3C, wire bonds 32 can be of the same general shape as the wire bonds of FIG. 3A and can have an end 36 that is aligned with the portion of the wire bond 32 immediately adjacent the base 34 thereof to define an axis 50. The wire bonds 32 can, similarly, include a first portion 52 that extends generally along axis 50 and a second portion 54 that is curved so as to define an apex 56 that is spaced apart from axis 50 on a single side thereof to define a plane that extends along axis 50. The wire bonds 32 of FIGS. 3B and 3C, however, can be configured such that the axis 50, defined as described above, is angled with respect to contact portion 30 at an angle of, for example, less than 85°. In another example, angle 58 can be between about 30° and 75°.
  • Wire bond 32 can be such that the apex 56 defined within second portion 54 of wire bond can be either exterior to the angle 58, as shown in FIG. 3B, or interior thereto, as shown in FIG. 3C. Further, axis 50 can be angled with respect to contact portion 30 such that end surface 38 of wire bond 32 is laterally displaced relative to contact portion 30 in multiple lateral directions. In such an example, the plane defined by second portion 54 and axis 50 can itself be angled with respect to conductive element 28 and/or first surface 14. Such an angle can be substantially equal to or different than angle 58. That is the displacement of end 36 relative to base 34 can be in two lateral directions and can be by the same or a different distance in each of those directions.
  • In an example, various ones of wire bonds 32 can be displaced in different directions and by different amounts throughout microelectronic element 10. Such an arrangement allows for microelectronic element 10 to have an array of extending portions 40 that is configured differently on the level of surface 44 compared to on the level of first surface 14 of semiconductor die 12. For example, an array can cover a smaller overall area or have a smaller pitch on surface 44 than at the first surface 14 of semiconductor die 12. In a variation of the microelectronic element 10 of FIG. 1, wire bonds 32 can be angled as shown in FIG. 3B, FIG. 3C, or a combination thereof.
  • As shown in FIG. 4, the free ends 36 of at least some of the wire bonds can have an asymmetrical configuration the end surfaces 38 thereof defined on tips 62 of the wire bonds 32 that are narrower than the adjacent portions of thereof, at least in one direction. The narrow tip 62 of the free end 36 can be imparted on wire bond 32 by a process used for manufacture thereof, an example of which is discussed further below. As shown, the narrow tip 62 can be offset such that an axis 60 through the center thereof is offset from an axis 62 through the center of the adjacent portion of the wire bond 32. Further, a centroid 64 of the end surface 38 can be along axis 60 such that it is offset from the adjacent wire bond portion. The tip 62 of wire bond 32 may also be narrowed in a direction perpendicular to the dimensions shown in FIG. 11 or can be the same width as the adjacent portion of wire bond 32 or can be somewhat wider. The extending portions 40 of the wire bonds 32 may include all or part of the tips 62 of wire bonds having such tips or may include the entire tips 62 and portions of the wire bonds extending beyond the tips 62.
  • As discussed above, wire bonds 32 can be used to connect microelectronic element 10 with an external component. FIG. 2 shows an example of an assembly 24 of a microelectronic element 10 that can be as described in connection with FIG. 1, or any of the variations thereof described in connection therewith. The extending portions 40 of wire bonds 32 are joined with contact pads 48 of a substrate 46 by solder masses 66 that extend along the extending portions 40 of wire bonds 32 and along contact pads 48. Substrate 46 can be in the form of a dielectric element that is substantially flat. The dielectric element may be sheet-like and may be thin. In particular embodiments, the dielectric element can include one or more layers of organic dielectric material or composite dielectric materials, such as, without limitation: polyimide, polytetrafluoro-ethylene (“PTFE”), epoxy, epoxy-glass, FR-4, BT resin, thermoplastic, or thermoset plastic materials. The thickness of substrate 46 is preferably within a range of generally acceptable thicknesses for the desired application and, in an example, can be between about 25 and 500 μm. The substrate 46 can further include terminals 49 opposite the contact pads 48 in the same or different array configuration. The terminals 49 can be connected with the contact pads 48 by routing circuitry 64 within substrate 46.
  • The assembly 24 can further include a molded dielectric layer 68 that can, for example, be molded over the surface of the substrate 46 facing microelectronic element 10. The molded dielectric layer 68 be an encapsulant, for example, and can fill spaces between the solder masses 66 and can contact the substrate 46 and the third surface 44 of the compliant material layer 42 in the area therebetween. Molded dielectric 68 can further extend outwardly along substrate 46 and upwardly along the edge surfaces 45 and 23 of the compliant material layer 42 and of semiconductor die 12, respectively, and can optionally cover microelectronic element 10 by extending over second surface 16 of semiconductor die 12. Substrate 46 can include package terminals opposite contact pads 48 or other structures to facilitate connection of the package assembly 24 with an external component.
  • In another example, a microelectronic element can similarly be joined directly with a printed circuit board (“PCB”) in place of substrate 46. Such a PCB can be assembled within an electronic device such that connection of microelectronic element 10 with the PCB can be done in assembling microelectronic element 10 with such a device. Further, such assembling can be carried out without the incorporation of a molded dielectric.
  • In either such assembly or application of a microelectronic element 10 as described herein, the structure of the wire bonds 32, along with the incorporation of compliant material layer 42 according to the principles described herein, can help improve the reliability of the attachment of microelectronic element 10 with a substrate in a package assembly or with a PCB (or other component). In particular, the reliability of the connections therebetween, which in the case of microelectronic element 10, is made between the extending portions 40 of wire bonds 32 and corresponding conductive features of the connected component (e.g. contact pads 48) can be improved relative to, for example, a direct connection between contacts of a semiconductor die and terminals of a substrate. This improvement can be accomplished by the ability of wire bonds 32 to flex or bend to accommodate relative movement between the conductive elements 28 of semiconductor die 12 and the contact pads 48 of substrate 46 (or PCB or other similar structure). Such movement can be caused by handling of the components, movement of the device, e.g., in which microelectronic element 10 or an assembly thereof is used, or testing of the microelectronic element 10 or assembly 24. Further, such relative movement can be caused by expansion and corresponding contraction of the components during the use cycle thereof caused by heat generated by the components and/or surrounding structures. Such thermal expansion is related to the coefficient of thermal expansion (“CTE”) of the components, and the relative movement between components in different structures can be caused by a difference, or mismatch, in the CTEs of the various structures or the materials thereof. For example, a semiconductor die can have a CTE of between about 2 and 5 parts per million per degree, Celsius (ppm/° C.). In the same assembly, a PCB or substrate can have a CTE of 15 ppm/° C. or greater.
  • The CTE of either component can be a “composite” CTE, which refers to a the CTE of the finished structure, which can approximate, but may not exactly match, the CTE of the primary material from which such a structure is constructed and can depend on the construction of the structure and the presence of other materials with different CTEs. In an example, the CTE of the semiconductor die can be on the order of Silicon or another semiconductor material, from which the die is primarily constructed. In another example, substrate 46 can have a CTE on the order of PTFE or another dielectric material, from which substrate 46 can be constructed.
  • Accordingly, a CTE mismatch between materials can cause relative movement between the conductive elements 28 of semiconductor die 12 and the contact pads 48 of substrate 46 (or another structure, such as a PCB or the like) as the semiconductor die 12 and the substrate 46 expand and contract during thermal cycling of the assembly 24 thereof because the semiconductor die 12 and substrate 46 expand at different rates and by different amounts in response to the same temperature change. This can cause displacement of the contact pads 48 with respect to the conductive elements 28, particularly in the peripheral areas of the substrate 46 or the semiconductor die 12 (i.e. toward edge surfaces 23 thereof) or in other areas depending on the particular configurations of the components and/or conductive elements 28 and contact pads 46.
  • The flexibility of wire bonds 32 along the respective lengths thereof can allow the end surfaces 38 thereof to displace with respect to the bases 34 in a resilient manner. Such flexibility can be used to compensate for relative movement of the associated conductive elements 28 and contact pads 46 between which the wire bonds 32 are connected. Because wire bonds 32 are flexible, however, they may not themselves be able to reliably support semiconductor die 12 relative to substrate 46 or other structure. For example, the flexing of unsupported wire bonds 32 could lead to adjacent wire bonds 32 coming into contact with one another, which could cause shorting or otherwise damage wire bonds 32 or the associated components. Accordingly, compliant material layer 42 is configured to separate wire bonds 32 from each other and to adding to the structural rigidity along the height thereof, while permitting desired flexing of wire bonds 32 to compensate for displacement of contact pads 46 relative to conductive elements 28. Accordingly, compliant material layer 42 can be made of a resiliently deformable (i.e. compliant) composition such as a material with a Young's modulus of less than 2.5 GPa. Further, compliant material layer 42, as mentioned above, can be dielectric so as to electrically insulate the wire bonds 32 from one another without requiring additional coatings or the like. Suitable materials for compliant material layer include silicone, benzocyclobutene (“BCB”), epoxy, or the like.
  • In such a structure, it may be beneficial to configure microelectronic element 10 to be able to make a connection with substrate 12 with the connection being robust enough to cause and flexing of wire bonds 32 within compliant layer 42 (which requires deformation of compliant layer 42). The extending portions 40 of wire bonds 132 can be configured to achieve such a connection. For example, by being uncovered by compliant material layer 42 so as to be physically separated therefrom, extending portions 40 allow conductive metal masses 66 to completely surround at least some of the edge surfaces 37 of wire bonds 32 within extending portions 40, which can provide a more robust connection than one achieved by a mass 66 that simply extends along a side thereof, for example. To allow adequate access for a conductive metal mass 66 to surround a extending portion 40, the extending portions 40 can be oriented relative compliant material layer 42 such that the axes 50 of wire bonds 32 within extending portions 40 are at an angle of between about 30° and 90° with respect to surface 44. Further, the strength of the bond can be increased by structuring wire bonds 32 and compliant material layer 42 such that extending portions have a height above surface 44 of 200 μm or less. In an example, extending portions 40 can have heights of between 50 and 200 μm.
  • In some examples where a molded dielectric 68 is also included in an assembly 24 with microelectronic element 10, the molded dielectric can itself be compliant, with a Young's modulus that, in an example, can be greater than that of compliant material layer 42 and, in a further example, less than that of either semiconductor die 12 or substrate 46.
  • FIGS. 5 and 6 show examples of microelectronic elements 110 and 210 that incorporate multiple semiconductor dies in a stacked arrangement. In the example of FIG. 5, first surface 114 of semiconductor die 112 is considered as being divided into a first region 118 and a second region 120. The first region 118 lies within the second region 120 and includes a central portion of first surface 114 and extends outwardly therefrom. The second region 120 substantially surrounds the first region 118 and extends outwardly therefrom to the outer edges of semiconductor die 112. In this example, no specific characteristic of the semiconductor die 112 physically separates the two regions; however, the regions are demarked for purposes of discussion herein with respect to treatments or features applied thereto or contained therein. The wire bonds 132 are connected with conductive elements 128 at surface 114 within the second region 120.
  • A second semiconductor die 122 is mounted on semiconductor die 112 within first region 118. In the example shown in FIG. 5, semiconductor die 122 is mounted face down on semiconductor die 112 and is electrically and mechanically joined therewith by conductive metal masses 66 that can be solder masses, for example. In such a structure, conductive elements at the surface of semiconductor die 122 that faces first surface 114 can be connected with routing circuitry at face 114 of semiconductor die 112 that extends within first region 118. Such routing circuitry can include traces, for example, that extend into second region 120 and connect with some of the conductive elements 128 at face 114 within second region 120. Other conductive elements 128 are connected to the internal components of semiconductor die 112. As such, wire bonds 132 can be used to facilitate connections with both semiconductor die 112 and semiconductor die 122 at third surface 144 of compliant layer 142. To achieve such a structure, both wire bonds 132 and compliant layer 142 can be of a height sufficient for extending portions 140 of wire bonds 132 to be positioned above semiconductor die 122, which can be covered by compliant layer 142. Microelectronic element 110 can be mounted to a substrate, PCB, or other structure in a manner similar to microelectronic element 10, described above, in which wire bonds 132 within compliant layer 142 can compensate for a CTE mismatch between components in a similar manner.
  • In the example of FIG. 6, second semiconductor die 222 is mounted on semiconductor die 212 within first region 218. Semiconductor die has conductive elements 228 a disposed within second region 220 surrounding semiconductor die 222 with wire bonds 232 a connected therewith. In this example, however, semiconductor die 222 is mounted face-up on semiconductor die 212 such that the conductive elements 228 b thereof face away from surface 214 of semiconductor die 212. In this structure, second wire bonds 232 b are connected with conductive elements 228 b and extend to ends 238 remote from the conductive elements 228 b. Compliant material layer 242 covers surface 214 of semiconductor die 212 in areas outside of wire bonds 232 a and outside of semiconductor die 222. Compliant material layer further covers semiconductor die 222 such that compliant material layer 242 separates and extends between the edge surfaces 237 of wire bonds 232 a and 232 b. As such, microelectronic element 210 can be mounted on a substrate, PCB, or other structure by connecting the extending portions 240 of wire bonds 232 a and 232 b with features of that structure in a manner similar to microelectronic element 10, described above.
  • In such a structure, it may be desired to configure wire bonds 232 a and 232 b with heights sufficient to compensate for a CTE mismatch among components, as described above. In this structure, wire bonds 232 a and 232 b can be configured with a height sufficient to provide a desired height for extending portions 240 and sufficient compensation for displacement of features with which they are connected due to CTE mismatch. Displacement of contact pads on a substrate, for example, relative to the conductive elements 228 a may be greater than with respect to conductive elements 228 b because displacement is greater towards the peripheries of such structures. Accordingly, wire bonds 232 b may have heights that are less than would be necessary within a similarly-sized microelectronic element including only one semiconductor die.
  • FIGS. 7-12 show a microelectronic element 10 in various steps of a fabrication method thereof. FIG. 7 shows in-process unit 10′ consisting of semiconductor die 12, as described above, with conductive elements 28 at first surface 14 thereof. In FIG. 8, in process unit 10″ is shown having a wire bonds 32 formed on conductive element 28 of the semiconductor die 12. Such wire bonds can be formed using specially-adapted equipment that can be configured to form a plurality of successive wire bonds in an assembly by heating a leading end of a wire that passes through a bonding capillary. The capillary is aligned with one of the conductive elements 28, which accordingly aligns the leading end of the wire therewith. The base 34 of a wire bond is then formed joined to the conductive element 28 by pressing the heated free end thereagainst by appropriate movement of the capillary.
  • After a desired length of the wire has been drawn out of the capillary so as to extend above first surface 14 of semiconductor die 12 at an appropriate distance for the height of the wire bond to be formed (which can also include positioning of the wire to achieve a desired location for the free end 36 thereof and/or shaping of the wire bond 32 itself), the wire is severed to detach the wire bond 32 at the end surface 38 from a portion of the wire that remains in the capillary and is used in the formation of a successive wire bond. This process is repeated until the desired number of wire bonds is formed. Various steps and structures can be used to sever the wire bonds 32, including electronic flame-off (“EFO”), various forms of cutting or the like, examples of which are provided in U.S. patent application Ser. Nos. 13/462,158 and 13/404,408, and in U.S. Pat. No. 8,372,741. A further example of wire bond severing is discussed below with respect to FIGS. 14 and 15. In variations of the above-described wire bond formation steps, wire bonds 32 can be formed on the in-process unit 10″ by edge bonding steps, including wedge bonding or stitch bonding, using specially-adapted equipment, as described in U.S. patent application Ser. No. 13/404,408.
  • After formation of the desired number of wire bonds 32, compliant material layer 42 can be formed by depositing the desired material in a flowable state over in-process unit 10″, as shown in FIG. 9, before being allowed to harden or cure in place. This can be done by placing the unit 10′ in an appropriately-configured mold having a cavity in the desired shape of the compliant material layer 42 that can receive unit 10′. Such a mold and the method of forming a compliant material layer therewith can be done in a procedure similar to the procedure for forming an encapsulation layer over wire bonds on a substrate that is shown and described in U.S. Pat. App. Pub. No 2010/0232129, the disclosure of which is incorporated by reference herein in its entirety. Compliant material layer 42 can be formed such that, initially, surface 44 thereof is spaced above end surfaces 38 of wire bonds 32. To form extending portions 40, including end surfaces 38, the portion of encapsulation layer 42 that is above end surfaces can be removed, creating a new surface 44 that is positioned below end surfaces 38. Alternatively, compliant material layer 42 can be formed such that surface 44 is initially below end surfaces 38 at a distance to define the desired height of detached portions 40. Removal, if necessary, of a portion of encapsulation layer 42 can be achieved by grinding, dry etching, laser etching, wet etching, lapping, or the like. If desired, a portion of the free ends 36 of wire bonds 32 can also be removed in the same, or an additional, step to achieve substantially planar end surfaces 38 that are substantially even with each other.
  • As discussed above, the microelectronic element 10 resulting from the above steps, or variations thereof, can be packaged on a substrate or mounted on a PCB. Either of these subsequent steps can be carried out in a similar manner. In an example shown in FIG. 10, microelectronic element 10 can be prepared for bonding with an external component by depositing conductive metal masses 66, which can be of solder or the like over the extending portions 40 of wire bonds 32. The masses 66 can be allowed to cool and solidify so that the masses 66 remain at least temporarily fixed in the locations on respective extending portions 40. As shown in FIG. 11, the microelectronic element 10 from FIG. 10 can be aligned with a PCB 90 with the masses 66, and accordingly the extending portions 40 of the wire bonds 32, aligned with contact pads 92 of the PCB. The masses 66 can then be brought into contact with the pads 92 and heated to reflow the conductive material to join it with the pads 92 and to fix microelectronic element 10 to PCB 90, as shown in FIG. 12.
  • In a variation of the mounting steps of FIGS. 10-12, conductive metal masses 66 can be deposited on contact pads 92, as shown in FIG. 13 in preparation for microelectronic element mounting. Microelectronic element 10 can then be positioned over PCB 90 with extending portions 40 of wire bonds 32 aligned with the masses 66 (and, thus, with contact pads 92). The masses 66 can be heated to cause reflow and microelectronic element 10 can be moved toward PCB 90 such that extending portions 40 are positioned within masses 66, which can then be allowed to cool to join with extending portions 40.
  • Either of the above-discussed steps (from FIGS. 10-12 and 13) can also be used to join a microelectronic element 10, formed as described above, to a substrate 46 in a package assembly 24, as described above with respect to FIG. 2. Such a package 24 can be further processes to deposit molded dielectric 68 thereon, as shown in FIG. 2, which can be done using molding or other methods used elsewhere for molded dielectric formation in microelectronic packaging. Alternatively, an underfill can be deposited in the area between the microelectronic element 10 and the substrate 46 surrounding the conductive metal masses 66.
  • Variations of the above-described method steps can also be used to form and package or mount the multi-die arrangements shown in FIGS. 5 and 6. In such variations, second die 22 can be mounted on die 12 before or after wire bond formation (which can be done by any of the methods discussed herein). In the example of FIG. 6, mounting die 222 on die 212 before wire bond formation could result in the wire bonds 232 being formed all at once, instead of in subsequent steps. After die mounting and wire bond formation, the compliant layers 242 and 342 can be deposited as discussed above, and the packages can be mounted, as previously discussed and in the same manner as single die microelectronic device 10.
  • FIGS. 14 and 15 show an in-process unit 10′ during particular method steps that can be used in wire bond formation. As shown in FIG. 14, capillary 70 of a wire bonding tool in proximity to the first surface 14 of substrate 12. The capillary 70 shown schematically in FIG. 4, along with the bonding tool (not shown) with which it is associated can be of the type generally described above and can join the bases 34 of wire bonds 32 to the conductive elements 28 of semiconductor die 12.
  • In this particular set of method steps, after a desired length of the wire 74 has been drawn out of capillary 70 for the desired height of the wire bond to be formed, the wire 77 is severed and appropriately positioned using a face 76 of the capillary 70 and a secondary surface 80. As shown in FIG. 14, the severing and positioning is started by moving capillary 70 to a position over a secondary surface 80, which is shown schematically as a surface of an element in FIG. 14. In various applications, the secondary surface 80 can be on an element of sufficient hardness for the severing application described below such as metal or the like. Such an element can be attached with the bonding tool in a position to follow capillary 70 as it is moved during the wire bonding process.
  • In another example, the element can be fixed relative to the bonding tool in the area of the semiconductor die 12.
  • In the example shown in FIG. 14, the capillary 70 is positioned over the secondary surface 80. After capillary 70 is appropriately positioned, it is pressed toward secondary surface 80 with a portion of the wire 74 between secondary surface 80 and a face 76 of capillary 70 that extends outwardly from wire 74. Pressure is then applied to the wire to move face 76 toward secondary surface 80, which compresses wire 74 therebetween, causing plastic deformation of wire 74, e.g., flattening or constriction of the wire, in area 78. Through such deformation, area 78 of wire 74 becomes somewhat weaker than the remaining portions of wire 74 on either side thereof and weaker than the joint between base 34 and contact portion 30. For example, area 78 may be somewhat flattened, constricted, or twisted relative to other portions of the wire 74 on either side thereof.
  • After deformation of area 78 of wire 74, the capillary 70 is then moved back toward a final desired position for the free end 36 of the wire bond 32 to-be formed. This position can be directly above base 43 or can be laterally displaced therefrom, as discussed above with respect to the examples of FIGS. 3B and 3C. The position of capillary 70 can be generally in the desired lateral area of free end 36 and can be just somewhat closer to first surface 14 than the desired final position. Further, the wire may remain partially bent, including a shape similar to the shape of the finished wire bonds 32 discussed above including a first portion 52 and second portion 54.
  • Capillary 70 can then be moved away from surface 14 to apply tension to the segment of wire 74 (which can be clamped or otherwise secured within capillary 70) between capillary 70 and base 34. This tension causes wire 74 to break within area 78, as shown in FIG. 15, which separates wire bond 32 from the remaining portion of wire 74 with a portion of area 78 forming the tip 62 of free end 36 with end surface 38 defined thereon. A remaining portion of area 78 remains on a new leading end 72′ of the wire 74. These steps can be repeated on other conductive elements 28 at the surface 14 of the semiconductor die 12 to form an array of wire bonds 32 in a desired pattern.
  • Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (21)

  1. 1. A microelectronic structure, comprising:
    a semiconductor die having first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface;
    wire bonds having bases joined to respective ones of the conductive elements, the wire bonds further having free ends remote from the bases, the free ends being remote from the substrate and the bases and including end surfaces thereon, the wire bonds defining edge surfaces extending between the bases and end surfaces thereof; and
    a compliant material layer overlying and extending from the first surface of the semiconductor die outside of the bases of the wire bonds, the compliant material layer further extending along first portions of the edge surfaces of the wire bonds at least adjacent the bases thereof and filling spaces between the first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer, the compliant material layer further having a third surface facing away from the first surface of the semiconductor die, wherein second portions of the wire bonds extend away from the third surface, the second portions including the free ends of the wire bonds.
  2. 2. The microelectronic structure of claim 1, wherein the first portions of the wire bonds are encapsulated entirely by the compliant material, and wherein the second portions of the wire bonds are moveable with respect to the bases thereof.
  3. 3. The microelectronic structure of claim 1, wherein the compliant material layer has a Young's modulus of 2.5 GPa or less.
  4. 4. The microelectronic structure of claim 1, wherein the second portions of the wire bonds extend along axes of the wire bonds that are disposed at angles of at least 30 degrees with respect to the third surface.
  5. 5. The microelectronic structure of claim 1, wherein the end surfaces of the wire bonds are positioned above the third surface by a distance of at least 50 microns.
  6. 6. The microelectronic structure of claim 1, wherein the semiconductor die further defines edge surfaces extending between the first and second surfaces, and wherein the compliant material layer further includes edge surfaces extending from the third surface thereof to the first surface of the semiconductor die so as to be substantially coplanar with the edge surfaces of the semiconductor die.
  7. 7. The microelectronic structure of claim 1, wherein at least one of the wire bonds has a shape such that the wire bond defines an axis between the free end and the base thereof and such that the wire bond defines a plane, a bent portion of the at least one wire bond extending away from the axis within the plane.
  8. 8. The microelectronic structure of claim 7, wherein the shape of the at least one wire bond is further such that a substantially straight portion of the wire bond extends between the free end and the bent portion along the axis.
  9. 9. The microelectronic structure of claim 1, further including conductive metal masses joined with the second portions of the wire bonds and contacting the third surface of the compliant material layer.
  10. 10. The microelectronic structure of claim 9, wherein at least one of the conductive metal masses encapsulates at least some of the second portion of a respective one of the wire bonds.
  11. 11. The microelectronic structure of claim 9, wherein the conductive metal masses are configured to join the second portions of the wire bonds with external conductive features by reflow thereof.
  12. 12. The microelectronic structure of claim 1, wherein:
    the semiconductor die is a first semiconductor die having a first region and a second region surrounding the first region;
    the electrically conductive elements of the first semiconductor die are within the second region;
    the microelectronic structure further includes a second semiconductor die mounted on the first semiconductor die within the first region, the second semiconductor die being electrically connected with at least some of the conductive elements of the first semiconductor die; and
    the compliant material layer covers the second semiconductor die.
  13. 13. The microelectronic structure of claim 1, wherein:
    the semiconductor die is a first semiconductor die having a first region and a second region surrounding the first region;
    the electrically conductive elements of the first semiconductor die are within the second region;
    the microelectronic structure further includes a second semiconductor die mounted on the first semiconductor die within the first region, the second semiconductor die having first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface facing away from the first surface of the first semiconductor die, and wherein additional wire bonds have bases joined to respective ones of the conductive elements of the second semiconductor die, the additional wire bonds further having free ends remote from the bases, the free ends being remote from the first surface of the second semiconductor die and the bases and including the end surfaces thereon, the wire bonds defining edge surfaces extending between the bases and end surfaces thereof; and
    the compliant material layer further overlies and extends from the first surface of the second semiconductor die outside of the bases of the additional wire bonds, the compliant material layer further extending along first portions of the edge surfaces of the additional wire bonds, wherein second portions of the additional wire bonds are defined by the end surfaces and portions of the edge surfaces extending from the end surfaces that are uncovered by and extend away from the compliant material layer at the third surface.
  14. 14. A microelectronic package, comprising:
    a microelectronic element, including
    a first semiconductor die having first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface;
    wire bonds having bases joined to respective ones of the conductive elements at the first surface and end surfaces, the end surfaces being remote from the substrate and the bases, each of the wire bonds extending from the base to the end surface thereof; and
    a compliant material layer overlying and extending from the first portion of the first surface of the substrate and filling spaces between first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer, the compliant material layer having a third surface facing away from the first surface of the substrate, wherein second portions of the wire bonds extend away from the third surface, the second portions including the free ends of the wire bonds; and
    a substrate having a fourth surface and a plurality of terminals exposed at the fourth surface;
    wherein the microelectronic element is mounted on the substrate with the third surface facing the fourth surface and at least some of the wire bonds are joined, at the second portions thereof, to respective ones of the terminals.
  15. 15. The microelectronic package of claim 14, wherein the second portions of the wire bonds are electrically and mechanically joined to the terminals by conductive metal masses.
  16. 16. The microelectronic package of claim 14, further including a molded dielectric layer formed over at least a portion of the fourth surface of the substrate and extending away therefrom so as to extend along at least a portion of the microelectronic element.
  17. 17. The microelectronic package of claim 16, wherein the Young's modulus of the molded dielectric layer is greater than the Young's Modulus of the compliant material layer.
  18. 18. The microelectronic package of claim 14, wherein the compliant material layer has a Young's modulus of less than 2.5 GPa.
  19. 19. The microelectronic package of claim 14, wherein the wire bonds further define edge surfaces extending between the bases and end surfaces thereof, and wherein the compliant material layer extends along portions of the edge surfaces of the wire bonds at least adjacent the bases thereof and within the first portions of the wire bonds.
  20. 20. The microelectronic package of claim 19, wherein portions of the edge surfaces of the wire bonds that extend from the end surfaces thereof are uncovered by the compliant material layer around entire circumferences thereof at the third surface thereof.
  21. 21. A method for making a microelectronic structure, comprising:
    forming wire bonds on a semiconductor die, the semiconductor die having first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface, the wire bonds being formed having bases joined to respective ones of the conductive elements and having end surfaces remote from the substrate and the bases, edge surfaces of the wire bonds extending between the bases and the end surfaces; and
    forming a compliant material layer overlying and extending from the first surface of the semiconductor die outside of the bases of the wire bonds, the compliant material further being formed to extend along portions of the edge surfaces of first portions of the wire bonds to fill spaces between the first portions of the wire bonds and to separate the first portions of the wire bonds from one another, wherein the compliant material layer is further formed to have a third surface facing away from the first surface of the substrate with second portions of the wire bonds extending away from the third surface, the second portions including the free ends of the wire bonds.
US14027571 2013-09-16 2013-09-16 Microelectronic element with bond elements to encapsulation surface Abandoned US20150076714A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14027571 US20150076714A1 (en) 2013-09-16 2013-09-16 Microelectronic element with bond elements to encapsulation surface

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14027571 US20150076714A1 (en) 2013-09-16 2013-09-16 Microelectronic element with bond elements to encapsulation surface
TW103131875A TWI540693B (en) 2013-09-16 2014-09-15 Microelectronic element with bond elements to encapsulation surface
PCT/US2014/055695 WO2015039043A3 (en) 2013-09-16 2014-09-15 Microelectronic element with bond elements and compliant material layer
KR20167009441A KR20160057421A (en) 2013-09-16 2014-09-15 Microelectronic element with bond elements and compliant material layer
US15286086 US10008477B2 (en) 2013-09-16 2016-10-05 Microelectronic element with bond elements to encapsulation surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15286086 Division US10008477B2 (en) 2013-09-16 2016-10-05 Microelectronic element with bond elements to encapsulation surface

Publications (1)

Publication Number Publication Date
US20150076714A1 true true US20150076714A1 (en) 2015-03-19

Family

ID=51627374

Family Applications (2)

Application Number Title Priority Date Filing Date
US14027571 Abandoned US20150076714A1 (en) 2013-09-16 2013-09-16 Microelectronic element with bond elements to encapsulation surface
US15286086 Active US10008477B2 (en) 2013-09-16 2016-10-05 Microelectronic element with bond elements to encapsulation surface

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15286086 Active US10008477B2 (en) 2013-09-16 2016-10-05 Microelectronic element with bond elements to encapsulation surface

Country Status (3)

Country Link
US (2) US20150076714A1 (en)
KR (1) KR20160057421A (en)
WO (1) WO2015039043A3 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9165904B1 (en) * 2014-06-17 2015-10-20 Freescale Semiconductor, Inc. Insulated wire bonding with EFO before second bond
US9646946B2 (en) 2015-10-07 2017-05-09 Invensas Corporation Fan-out wafer-level packaging using metal foil lamination
US9812402B2 (en) 2015-10-12 2017-11-07 Invensas Corporation Wire bond wires for interference shielding
US9842745B2 (en) 2012-02-17 2017-12-12 Invensas Corporation Heat spreading substrate with embedded interconnects
US9852969B2 (en) 2013-11-22 2017-12-26 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US9911718B2 (en) 2015-11-17 2018-03-06 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US9953914B2 (en) 2012-05-22 2018-04-24 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US10008477B2 (en) 2013-09-16 2018-06-26 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US10008469B2 (en) 2015-04-30 2018-06-26 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US10026717B2 (en) 2013-11-22 2018-07-17 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US10062661B2 (en) 2011-05-03 2018-08-28 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US10115678B2 (en) 2017-11-06 2018-10-30 Invensas Corporation Wire bond wires for interference shielding

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295729B1 (en) * 1992-10-19 2001-10-02 International Business Machines Corporation Angled flying lead wire bonding process
US20020117330A1 (en) * 1993-11-16 2002-08-29 Formfactor, Inc. Resilient contact structures formed and then attached to a substrate
US6653170B1 (en) * 2001-02-06 2003-11-25 Charles W. C. Lin Semiconductor chip assembly with elongated wire ball bonded to chip and electrolessly plated to support circuit
US20050133916A1 (en) * 2003-12-17 2005-06-23 Stats Chippac, Inc Multiple chip package module having inverted package stacked over die
US20060139893A1 (en) * 2004-05-20 2006-06-29 Atsushi Yoshimura Stacked electronic component and manufacturing method thereof
US20080308305A1 (en) * 2007-06-15 2008-12-18 Ngk Spark Plug Co., Ltd. Wiring substrate with reinforcing member
US20090212418A1 (en) * 2008-02-27 2009-08-27 Texas Instruments Incorporated Thermal interface material design for enhanced thermal performance and improved package structural integrity
US20100314748A1 (en) * 2009-06-15 2010-12-16 Kun Yuan Technology Co., Ltd. Chip packaging method and structure thereof
US20120280386A1 (en) * 2011-05-03 2012-11-08 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US20130082399A1 (en) * 2011-10-04 2013-04-04 Won-keun Kim Semiconductor package and method of manufacturing the same
US20130093087A1 (en) * 2011-10-17 2013-04-18 Invensas Corporation Package-on-package assembly with wire bond vias

Family Cites Families (710)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2230663A (en) 1940-01-18 1941-02-04 Alden Milton Electric contact and wire assembly mechanism
DE1439262B2 (en) 1963-07-23 1972-03-30 Method of contacting of semiconductor devices by thermocompression
US3358897A (en) 1964-03-31 1967-12-19 Tempress Res Co Electric lead wire bonding tools
US3430835A (en) 1966-06-07 1969-03-04 Westinghouse Electric Corp Wire bonding apparatus for microelectronic components
US3623649A (en) 1969-06-09 1971-11-30 Gen Motors Corp Wedge bonding tool for the attachment of semiconductor leads
DE2119567C2 (en) 1970-05-05 1983-07-14 International Computers Ltd., London, Gb
DE2228703B2 (en) 1972-06-13 1974-11-28 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt
JPS5150661A (en) 1974-10-30 1976-05-04 Hitachi Ltd
US4072816A (en) 1976-12-13 1978-02-07 International Business Machines Corporation Integrated circuit package
US4067104A (en) 1977-02-24 1978-01-10 Rockwell International Corporation Method of fabricating an array of flexible metallic interconnects for coupling microelectronics components
US4213556A (en) 1978-10-02 1980-07-22 General Motors Corporation Method and apparatus to detect automatic wire bonder failure
US4327860A (en) 1980-01-03 1982-05-04 Kulicke And Soffa Ind. Inc. Method of making slack free wire interconnections
US4422568A (en) 1981-01-12 1983-12-27 Kulicke And Soffa Industries, Inc. Method of making constant bonding wire tail lengths
US4437604A (en) 1982-03-15 1984-03-20 Kulicke & Soffa Industries, Inc. Method of making fine wire interconnections
JPS6243784B2 (en) 1983-04-12 1987-09-16 Alps Electric Co Ltd
JPS61125062A (en) 1984-11-22 1986-06-12 Hitachi Ltd Method and device for attaching pin
US4667267A (en) 1985-01-22 1987-05-19 Rogers Corporation Decoupling capacitor for pin grid array package
US4604644A (en) 1985-01-28 1986-08-05 International Business Machines Corporation Solder interconnection structure for joining semiconductor devices to substrates that have improved fatigue life, and process for making
US4642889A (en) 1985-04-29 1987-02-17 Amp Incorporated Compliant interconnection and method therefor
JPS61269345A (en) 1985-05-24 1986-11-28 Hitachi Ltd Semiconductor device
US4716049A (en) 1985-12-20 1987-12-29 Hughes Aircraft Company Compressive pedestal for microminiature connections
US4924353A (en) 1985-12-20 1990-05-08 Hughes Aircraft Company Connector system for coupling to an integrated circuit chip
JPS62158338A (en) 1985-12-28 1987-07-14 Tanaka Denshi Kogyo Kk Semiconductor device
US4695870A (en) 1986-03-27 1987-09-22 Hughes Aircraft Company Inverted chip carrier
JPS62226307A (en) 1986-03-28 1987-10-05 Toshiba Corp Robot device
US4771930A (en) 1986-06-30 1988-09-20 Kulicke And Soffa Industries Inc. Apparatus for supplying uniform tail lengths
US4793814A (en) 1986-07-21 1988-12-27 Rogers Corporation Electrical circuit board interconnect
JPS6397941A (en) 1986-10-14 1988-04-28 Fuji Photo Film Co Ltd Photosensitive material
US4955523A (en) * 1986-12-17 1990-09-11 Raychem Corporation Interconnection of electronic components
DE3703694A1 (en) 1987-02-06 1988-08-18 Dynapert Delvotec Gmbh Ball-bond method and apparatus for performing same
KR970003915B1 (en) 1987-06-24 1997-03-22 미다 가쓰시게 Semiconductor device and the use memory module
US5138438A (en) 1987-06-24 1992-08-11 Akita Electronics Co. Ltd. Lead connections means for stacked tab packaged IC chips
JPS6412769A (en) 1987-07-07 1989-01-17 Sony Corp Correction circuit for image distortion
US4804132A (en) 1987-08-28 1989-02-14 Difrancesco Louis Method for cold bonding
JP2642359B2 (en) 1987-09-11 1997-08-20 日立デバイスエンジニアリング株式会社 Semiconductor device
US4845354A (en) 1988-03-08 1989-07-04 International Business Machines Corporation Process control for laser wire bonding
JPH01313969A (en) 1988-06-13 1989-12-19 Hitachi Ltd Semiconductor device
US4998885A (en) 1989-10-27 1991-03-12 International Business Machines Corporation Elastomeric area array interposer
US5077598A (en) 1989-11-08 1991-12-31 Hewlett-Packard Company Strain relief flip-chip integrated circuit assembly with test fixturing
US5095187A (en) 1989-12-20 1992-03-10 Raychem Corporation Weakening wire supplied through a wire bonder
CA2034703A1 (en) 1990-01-23 1991-07-24 Masanori Nishiguchi Substrate for packaging a semiconductor device
US5948533A (en) 1990-02-09 1999-09-07 Ormet Corporation Vertically interconnected electronic assemblies and compositions useful therefor
US5376403A (en) 1990-02-09 1994-12-27 Capote; Miguel A. Electrically conductive compositions and methods for the preparation and use thereof
US5083697A (en) 1990-02-14 1992-01-28 Difrancesco Louis Particle-enhanced joining of metal surfaces
US4975079A (en) 1990-02-23 1990-12-04 International Business Machines Corp. Connector assembly for chip testing
US4999472A (en) 1990-03-12 1991-03-12 Neinast James E Electric arc system for ablating a surface coating
US5241456A (en) 1990-07-02 1993-08-31 General Electric Company Compact high density interconnect structure
US5679977A (en) 1990-09-24 1997-10-21 Tessera, Inc. Semiconductor chip assemblies, methods of making same and components for same
US5148266A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies having interposer and flexible lead
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5067382A (en) 1990-11-02 1991-11-26 Cray Computer Corporation Method and apparatus for notching a lead wire attached to an IC chip to facilitate severing the wire
KR940001149B1 (en) 1991-04-16 1994-02-14 김광호 Chip bonding method of semiconductor device
JPH04346436A (en) 1991-05-24 1992-12-02 Fujitsu Ltd Bump manufacturing method and device
US5316788A (en) 1991-07-26 1994-05-31 International Business Machines Corporation Applying solder to high density substrates
US5133495A (en) 1991-08-12 1992-07-28 International Business Machines Corporation Method of bonding flexible circuit to circuitized substrate to provide electrical connection therebetween
US5203075A (en) 1991-08-12 1993-04-20 Inernational Business Machines Method of bonding flexible circuit to cicuitized substrate to provide electrical connection therebetween using different solders
WO1993004375A1 (en) 1991-08-23 1993-03-04 Nchip, Inc. Burn-in technologies for unpackaged integrated circuits
US5220489A (en) 1991-10-11 1993-06-15 Motorola, Inc. Multicomponent integrated circuit package
US5238173A (en) 1991-12-04 1993-08-24 Kaijo Corporation Wire bonding misattachment detection apparatus and that detection method in a wire bonder
JP2931936B2 (en) 1992-01-17 1999-08-09 株式会社日立製作所 A lead frame for semiconductor device manufacturing method and a semiconductor device lead frame and resin-sealed semiconductor device
US5241454A (en) 1992-01-22 1993-08-31 International Business Machines Corporation Mutlilayered flexible circuit package
US5831836A (en) 1992-01-30 1998-11-03 Lsi Logic Power plane for semiconductor device
US5222014A (en) 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
US5438224A (en) 1992-04-23 1995-08-01 Motorola, Inc. Integrated circuit package having a face-to-face IC chip arrangement
US5494667A (en) 1992-06-04 1996-02-27 Kabushiki Kaisha Hayahibara Topically applied hair restorer containing pine extract
JP3151219B2 (en) 1992-07-24 2001-04-03 テツセラ,インコーポレイテッド Semiconductor connection structure and method of manufacturing which includes a removable lead support
US5977618A (en) 1992-07-24 1999-11-02 Tessera, Inc. Semiconductor connection components and methods with releasable lead support
US6054756A (en) 1992-07-24 2000-04-25 Tessera, Inc. Connection components with frangible leads and bus
US20030048108A1 (en) 1993-04-30 2003-03-13 Beaman Brian Samuel Structural design and processes to control probe position accuracy in a wafer test probe assembly
US7368924B2 (en) 1993-04-30 2008-05-06 International Business Machines Corporation Probe structure having a plurality of discrete insulated probe tips projecting from a support surface, apparatus for use thereof and methods of fabrication thereof
US20050062492A1 (en) 2001-08-03 2005-03-24 Beaman Brian Samuel High density integrated circuit apparatus, test probe and methods of use thereof
JP3262531B2 (en) 1997-10-02 2002-03-04 インターナショナル・ビジネス・マシーンズ・コーポレーション Bent flying lead wire bonding process
US5371654A (en) 1992-10-19 1994-12-06 International Business Machines Corporation Three dimensional high performance interconnection package
JP2716336B2 (en) 1993-03-10 1998-02-18 日本電気株式会社 Integrated circuit device
JPH06268101A (en) 1993-03-17 1994-09-22 Hitachi Ltd Semiconductor device and its manufacture, electronic device, lead frame, and mounting substrate
US5340771A (en) 1993-03-18 1994-08-23 Lsi Logic Corporation Techniques for providing high I/O count connections to semiconductor dies
JPH06333931A (en) 1993-05-20 1994-12-02 Nippondenso Co Ltd Manufacture of fine electrode of semiconductor device
JP2981385B2 (en) 1993-09-06 1999-11-22 シャープ株式会社 Structure and manufacturing method thereof chip-type led
US5346118A (en) 1993-09-28 1994-09-13 At&T Bell Laboratories Surface mount solder assembly of leadless integrated circuit packages to substrates
US5476211A (en) 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US6741085B1 (en) 1993-11-16 2004-05-25 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US5917707A (en) 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US5455390A (en) 1994-02-01 1995-10-03 Tessera, Inc. Microelectronics unit mounting with multiple lead bonding
US5976912A (en) 1994-03-18 1999-11-02 Hitachi Chemical Company, Ltd. Fabrication process of semiconductor package and semiconductor package
US5578869A (en) 1994-03-29 1996-11-26 Olin Corporation Components for housing an integrated circuit device
US5615824A (en) 1994-06-07 1997-04-01 Tessera, Inc. Soldering with resilient contacts
US5802699A (en) 1994-06-07 1998-09-08 Tessera, Inc. Methods of assembling microelectronic assembly with socket for engaging bump leads
JPH07335783A (en) 1994-06-13 1995-12-22 Fujitsu Ltd Semiconductor device and semiconductor device unit
US5468995A (en) 1994-07-05 1995-11-21 Motorola, Inc. Semiconductor device having compliant columnar electrical connections
US5518964A (en) 1994-07-07 1996-05-21 Tessera, Inc. Microelectronic mounting with multiple lead deformation and bonding
US5989936A (en) 1994-07-07 1999-11-23 Tessera, Inc. Microelectronic assembly fabrication with terminal formation from a conductive layer
US6117694A (en) 1994-07-07 2000-09-12 Tessera, Inc. Flexible lead structures and methods of making same
US6828668B2 (en) 1994-07-07 2004-12-07 Tessera, Inc. Flexible lead structures and methods of making same
US5688716A (en) 1994-07-07 1997-11-18 Tessera, Inc. Fan-out semiconductor chip assembly
US5656550A (en) 1994-08-24 1997-08-12 Fujitsu Limited Method of producing a semicondutor device having a lead portion with outer connecting terminal
US5659952A (en) 1994-09-20 1997-08-26 Tessera, Inc. Method of fabricating compliant interface for semiconductor chip
US5541567A (en) 1994-10-17 1996-07-30 International Business Machines Corporation Coaxial vias in an electronic substrate
US5495667A (en) 1994-11-07 1996-03-05 Micron Technology, Inc. Method for forming contact pins for semiconductor dice and interconnects
US6826827B1 (en) 1994-12-29 2004-12-07 Tessera, Inc. Forming conductive posts by selective removal of conductive material
US6177636B1 (en) 1994-12-29 2001-01-23 Tessera, Inc. Connection components with posts
US5736074A (en) 1995-06-30 1998-04-07 Micro Fab Technologies, Inc. Manufacture of coated spheres
US5971253A (en) 1995-07-31 1999-10-26 Tessera, Inc. Microelectronic component mounting with deformable shell terminals
US5872051A (en) 1995-08-02 1999-02-16 International Business Machines Corporation Process for transferring material to semiconductor chip conductive pads using a transfer substrate
US5886412A (en) 1995-08-16 1999-03-23 Micron Technology, Inc. Angularly offset and recessed stacked die multichip device
US5874781A (en) 1995-08-16 1999-02-23 Micron Technology, Inc. Angularly offset stacked die multichip device and method of manufacture
US5810609A (en) 1995-08-28 1998-09-22 Tessera, Inc. Socket for engaging bump leads on a microelectronic device and methods therefor
US5766987A (en) 1995-09-22 1998-06-16 Tessera, Inc. Microelectronic encapsulation methods and equipment
US6211572B1 (en) 1995-10-31 2001-04-03 Tessera, Inc. Semiconductor chip package with fan-in leads
JP3332308B2 (en) 1995-11-07 2002-10-07 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
JPH09134934A (en) 1995-11-07 1997-05-20 Sumitomo Kinzoku Erekutorodebaisu:Kk Semiconductor package and semiconductor device
US5718361A (en) 1995-11-21 1998-02-17 International Business Machines Corporation Apparatus and method for forming mold for metallic material
US5811982A (en) 1995-11-27 1998-09-22 International Business Machines Corporation High density cantilevered probe for electronic devices
US5731709A (en) 1996-01-26 1998-03-24 Motorola, Inc. Method for testing a ball grid array semiconductor device and a device for such testing
US7166495B2 (en) 1996-02-20 2007-01-23 Micron Technology, Inc. Method of fabricating a multi-die semiconductor package assembly
US5994152A (en) 1996-02-21 1999-11-30 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
JP3146345B2 (en) * 1996-03-11 2001-03-12 アムコー テクノロジー コリア インコーポレーティド Bump forming method of the bumps chip scale semiconductor package
US6000126A (en) 1996-03-29 1999-12-14 General Dynamics Information Systems, Inc. Method and apparatus for connecting area grid arrays to printed wire board
US6821821B2 (en) 1996-04-18 2004-11-23 Tessera, Inc. Methods for manufacturing resistors using a sacrificial layer
DE19618227A1 (en) 1996-05-07 1997-11-13 Herbert Streckfus Gmbh Method and apparatus for soldering of electronic components on a printed circuit board
KR0186333B1 (en) 1996-06-20 1999-03-20 Joong-Ha Yu Chip-sized semiconductor package and its manufacturing method
JPH10135220A (en) 1996-10-29 1998-05-22 Taiyo Yuden Co Ltd Bump-forming method
EP2270846A3 (en) 1996-10-29 2011-12-21 ALLVIA, Inc. Integrated circuits and methods for their fabrication
JPH10135221A (en) 1996-10-29 1998-05-22 Taiyo Yuden Co Ltd Bump-forming method
US6399426B1 (en) 1998-07-21 2002-06-04 Miguel Albert Capote Semiconductor flip-chip package and method for the fabrication thereof
US6492719B2 (en) 1999-07-30 2002-12-10 Hitachi, Ltd. Semiconductor device
US5976913A (en) 1996-12-12 1999-11-02 Tessera, Inc. Microelectronic mounting with multiple lead deformation using restraining straps
US6133072A (en) 1996-12-13 2000-10-17 Tessera, Inc. Microelectronic connector with planar elastomer sockets
US6225688B1 (en) 1997-12-11 2001-05-01 Tessera, Inc. Stacked microelectronic assembly and method therefor
US6054337A (en) 1996-12-13 2000-04-25 Tessera, Inc. Method of making a compliant multichip package
US6121676A (en) 1996-12-13 2000-09-19 Tessera, Inc. Stacked microelectronic assembly and method therefor
US5736785A (en) 1996-12-20 1998-04-07 Industrial Technology Research Institute Semiconductor package for improving the capability of spreading heat
JP3400279B2 (en) 1997-01-13 2003-04-28 株式会社新川 Bump forming method
US5898991A (en) 1997-01-16 1999-05-04 International Business Machines Corporation Methods of fabrication of coaxial vias and magnetic devices
US5839191A (en) 1997-01-24 1998-11-24 Unisys Corporation Vibrating template method of placing solder balls on the I/O pads of an integrated circuit package
JPH1118364A (en) 1997-06-27 1999-01-22 Matsushita Electric Ind Co Ltd Capstan motor
DE69838849T2 (en) 1997-08-19 2008-12-11 Hitachi, Ltd. A multi-chip module structure, and their preparation
CA2213590C (en) 1997-08-21 2006-11-07 Keith C. Carroll Flexible circuit connector and method of making same
JP3859318B2 (en) 1997-08-29 2006-12-20 シチズン電子株式会社 Package method of the electronic circuit
US6525414B2 (en) 1997-09-16 2003-02-25 Matsushita Electric Industrial Co., Ltd. Semiconductor device including a wiring board and semiconductor elements mounted thereon
JP3937265B2 (en) 1997-09-29 2007-06-27 エルピーダメモリ株式会社 Semiconductor device
JP2978861B2 (en) 1997-10-28 1999-11-15 九州日本電気株式会社 Mold bga type semiconductor device and a manufacturing method thereof
US6038136A (en) 1997-10-29 2000-03-14 Hestia Technologies, Inc. Chip package with molded underfill
JP3393800B2 (en) 1997-11-05 2003-04-07 新光電気工業株式会社 A method of manufacturing a semiconductor device
JPH11219984A (en) 1997-11-06 1999-08-10 Sharp Corp Semiconductor device package, its manufacture and circuit board therefor
US6222136B1 (en) 1997-11-12 2001-04-24 International Business Machines Corporation Printed circuit board with continuous connective bumps
US6038133A (en) 1997-11-25 2000-03-14 Matsushita Electric Industrial Co., Ltd. Circuit component built-in module and method for producing the same
US6002168A (en) 1997-11-25 1999-12-14 Tessera, Inc. Microelectronic component with rigid interposer
JPH11163022A (en) 1997-11-28 1999-06-18 Sony Corp Semiconductor and manufacture of the same and electronic equipment
US6124546A (en) 1997-12-03 2000-09-26 Advanced Micro Devices, Inc. Integrated circuit chip package and method of making the same
US6260264B1 (en) 1997-12-08 2001-07-17 3M Innovative Properties Company Methods for making z-axis electrical connections
US6052287A (en) 1997-12-09 2000-04-18 Sandia Corporation Silicon ball grid array chip carrier
US5973391A (en) 1997-12-11 1999-10-26 Read-Rite Corporation Interposer with embedded circuitry and method for using the same to package microelectronic units
JPH11220082A (en) 1998-02-03 1999-08-10 Oki Electric Ind Co Ltd Semiconductor device
JP3536650B2 (en) 1998-02-27 2004-06-14 富士ゼロックス株式会社 Bump forming method and apparatus
JPH11260856A (en) 1998-03-11 1999-09-24 Matsushita Electron Corp Semiconductor device and its manufacture and mounting structure of the device
US5933713A (en) 1998-04-06 1999-08-03 Micron Technology, Inc. Method of forming overmolded chip scale package and resulting product
US6222276B1 (en) 1998-04-07 2001-04-24 International Business Machines Corporation Through-chip conductors for low inductance chip-to-chip integration and off-chip connections
KR100260997B1 (en) 1998-04-08 2000-07-01 마이클 디. 오브라이언 Semiconductor package
US6329224B1 (en) 1998-04-28 2001-12-11 Tessera, Inc. Encapsulation of microelectronic assemblies
US6180881B1 (en) 1998-05-05 2001-01-30 Harlan Ruben Isaak Chip stack and method of making same
JPH11330134A (en) 1998-05-12 1999-11-30 Hitachi Ltd Wire-bonding method and device, and semiconductor device
KR100266693B1 (en) 1998-05-30 2000-09-15 김영환 Stackable ball grid array semiconductor package and fabrication method thereof
KR100265563B1 (en) 1998-06-29 2000-09-15 김영환 Ball grid array package and fabricating method thereof
US6414391B1 (en) 1998-06-30 2002-07-02 Micron Technology, Inc. Module assembly for stacked BGA packages with a common bus bar in the assembly
US6164523A (en) 1998-07-01 2000-12-26 Semiconductor Components Industries, Llc Electronic component and method of manufacture
US5854507A (en) 1998-07-21 1998-12-29 Hewlett-Packard Company Multiple chip assembly
US6515355B1 (en) 1998-09-02 2003-02-04 Micron Technology, Inc. Passivation layer for packaged integrated circuits
JP2000091383A (en) 1998-09-07 2000-03-31 Ngk Spark Plug Co Ltd Wiring board
US6194250B1 (en) 1998-09-14 2001-02-27 Motorola, Inc. Low-profile microelectronic package
US6158647A (en) 1998-09-29 2000-12-12 Micron Technology, Inc. Concave face wire bond capillary
US6684007B2 (en) 1998-10-09 2004-01-27 Fujitsu Limited Optical coupling structures and the fabrication processes
JP2000311915A (en) 1998-10-14 2000-11-07 Texas Instr Inc <Ti> Semiconductor device and bonding method
JP3407275B2 (en) 1998-10-28 2003-05-19 インターナショナル・ビジネス・マシーンズ・コーポレーション Bump and a method of forming
US6332270B2 (en) 1998-11-23 2001-12-25 International Business Machines Corporation Method of making high density integral test probe
US6255126B1 (en) 1998-12-02 2001-07-03 Formfactor, Inc. Lithographic contact elements
US7683482B2 (en) 1999-01-29 2010-03-23 Panasonic Corporation Electronic component unit
US6206273B1 (en) 1999-02-17 2001-03-27 International Business Machines Corporation Structures and processes to create a desired probetip contact geometry on a wafer test probe
KR100319609B1 (en) 1999-03-09 2002-01-05 김영환 A wire arrayed chip size package and the fabrication method thereof
US6177729B1 (en) 1999-04-03 2001-01-23 International Business Machines Corporation Rolling ball connector
US6211574B1 (en) 1999-04-16 2001-04-03 Advanced Semiconductor Engineering Inc. Semiconductor package with wire protection and method therefor
JP2000323516A (en) 1999-05-14 2000-11-24 Fujitsu Ltd Manufacture of wiring substrate, wiring substrate, and semiconductor device
US6258625B1 (en) 1999-05-18 2001-07-10 International Business Machines Corporation Method of interconnecting electronic components using a plurality of conductive studs
US6376769B1 (en) 1999-05-18 2002-04-23 Amerasia International Technology, Inc. High-density electronic package, and method for making same
JP3398721B2 (en) 1999-05-20 2003-04-21 アムコー テクノロジー コリア インコーポレーティド Semiconductor package and a method of manufacturing the same
US6238949B1 (en) 1999-06-18 2001-05-29 National Semiconductor Corporation Method and apparatus for forming a plastic chip on chip package module
JP4367730B2 (en) 1999-06-25 2009-11-18 株式会社エンプラス Ic socket and the ic socket spring means
US6228687B1 (en) 1999-06-28 2001-05-08 Micron Technology, Inc. Wafer-level package and methods of fabricating
JP2010192928A (en) 1999-08-12 2010-09-02 Fujitsu Semiconductor Ltd Semiconductor device, and method of manufacturing the same
US6168965B1 (en) 1999-08-12 2001-01-02 Tower Semiconductor Ltd. Method for making backside illuminated image sensor
JP4526651B2 (en) * 1999-08-12 2010-08-18 富士通セミコンダクター株式会社 Semiconductor device
CN100381027C (en) 1999-09-02 2008-04-09 伊比登株式会社 Printed wiring board and method of producing same
US6867499B1 (en) 1999-09-30 2005-03-15 Skyworks Solutions, Inc. Semiconductor packaging
JP3513444B2 (en) 1999-10-20 2004-03-31 株式会社新川 Forming method such as a pin-shaped wire
JP2001127246A (en) 1999-10-29 2001-05-11 Fujitsu Ltd Semiconductor device
US6362525B1 (en) 1999-11-09 2002-03-26 Cypress Semiconductor Corp. Circuit structure including a passive element formed within a grid array substrate and method for making the same
JP3619410B2 (en) 1999-11-18 2005-02-09 株式会社ルネサステクノロジ Bump forming method and system
JP3798597B2 (en) 1999-11-30 2006-07-19 富士通株式会社 Semiconductor device
JP3566156B2 (en) 1999-12-02 2004-09-15 株式会社新川 Forming method such as a pin-shaped wire
KR100426494B1 (en) 1999-12-20 2004-04-13 앰코 테크놀로지 코리아 주식회사 Semiconductor package and its manufacturing method
US6790757B1 (en) 1999-12-20 2004-09-14 Agere Systems Inc. Wire bonding method for copper interconnects in semiconductor devices
KR20010061849A (en) 1999-12-29 2001-07-07 박종섭 Wafer level package
JP2001196407A (en) 2000-01-14 2001-07-19 Seiko Instruments Inc Semiconductor device and method of forming the same
US6710454B1 (en) 2000-02-16 2004-03-23 Micron Technology, Inc. Adhesive layer for an electronic apparatus having multiple semiconductor devices
JP2001319992A (en) 2000-02-28 2001-11-16 Shinko Electric Ind Co Ltd Wiring board, semiconductor device, and their manufacturing methods
JP2001339011A (en) 2000-03-24 2001-12-07 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP3980807B2 (en) 2000-03-27 2007-09-26 株式会社東芝 A semiconductor device and a semiconductor module
JP2001274196A (en) 2000-03-28 2001-10-05 Rohm Co Ltd Semiconductor device
US6581276B2 (en) 2000-04-04 2003-06-24 Amerasia International Technology, Inc. Fine-pitch flexible connector, and method for making same
KR100583491B1 (en) 2000-04-07 2006-05-24 앰코 테크놀로지 코리아 주식회사 Semiconductor package and its manufacturing method
US6578754B1 (en) 2000-04-27 2003-06-17 Advanpack Solutions Pte. Ltd. Pillar connections for semiconductor chips and method of manufacture
US6531335B1 (en) 2000-04-28 2003-03-11 Micron Technology, Inc. Interposers including upwardly protruding dams, semiconductor device assemblies including the interposers, and methods
JP2001326236A (en) 2000-05-12 2001-11-22 Nec Kyushu Ltd Manufacturing method of semiconductor device
JP2001326304A (en) 2000-05-15 2001-11-22 Toshiba Corp Semiconductor device and its manufacturing method
US6522018B1 (en) 2000-05-16 2003-02-18 Micron Technology, Inc. Ball grid array chip packages having improved testing and stacking characteristics
US6647310B1 (en) 2000-05-30 2003-11-11 Advanced Micro Devices, Inc. Temperature control of an integrated circuit
US6531784B1 (en) 2000-06-02 2003-03-11 Amkor Technology, Inc. Semiconductor package with spacer strips
US6717245B1 (en) 2000-06-02 2004-04-06 Micron Technology, Inc. Chip scale packages performed by wafer level processing
US6395199B1 (en) 2000-06-07 2002-05-28 Graftech Inc. Process for providing increased conductivity to a material
US7115986B2 (en) 2001-05-02 2006-10-03 Micron Technology, Inc. Flexible ball grid array chip scale packages
US6560117B2 (en) 2000-06-28 2003-05-06 Micron Technology, Inc. Packaged microelectronic die assemblies and methods of manufacture
US6525413B1 (en) 2000-07-12 2003-02-25 Micron Technology, Inc. Die to die connection method and assemblies and packages including dice so connected
US6874910B2 (en) 2001-04-12 2005-04-05 Matsushita Electric Works, Ltd. Light source device using LED, and method of producing same
US6476583B2 (en) 2000-07-21 2002-11-05 Jomahip, Llc Automatic battery charging system for a battery back-up DC power supply
JP2002050871A (en) 2000-08-02 2002-02-15 Casio Comput Co Ltd Build-up circuit board and manufacturing method thereof
US20020020898A1 (en) 2000-08-16 2002-02-21 Vu Quat T. Microelectronic substrates with integrated devices
US6462575B1 (en) 2000-08-28 2002-10-08 Micron Technology, Inc. Method and system for wafer level testing and burning-in semiconductor components
JP2002076250A (en) 2000-08-29 2002-03-15 Nec Corp Semiconductor device
US6614103B1 (en) 2000-09-01 2003-09-02 General Electric Company Plastic packaging of LED arrays
JP3874062B2 (en) 2000-09-05 2007-01-31 セイコーエプソン株式会社 Semiconductor device
US6507104B2 (en) 2000-09-07 2003-01-14 Siliconware Precision Industries Co., Ltd. Semiconductor package with embedded heat-dissipating device
US7750483B1 (en) 2004-11-10 2010-07-06 Bridge Semiconductor Corporation Semiconductor chip assembly with welded metal pillar and enlarged plated contact terminal
US7268421B1 (en) 2004-11-10 2007-09-11 Bridge Semiconductor Corporation Semiconductor chip assembly with welded metal pillar that includes enlarged ball bond
US7009297B1 (en) 2000-10-13 2006-03-07 Bridge Semiconductor Corporation Semiconductor chip assembly with embedded metal particle
US6423570B1 (en) 2000-10-18 2002-07-23 Intel Corporation Method to protect an encapsulated die package during back grinding with a solder metallization layer and devices formed thereby
JP4505983B2 (en) 2000-12-01 2010-07-21 日本電気株式会社 Semiconductor device
JP3798620B2 (en) 2000-12-04 2006-07-19 富士通株式会社 A method of manufacturing a semiconductor device
US6734539B2 (en) 2000-12-27 2004-05-11 Lucent Technologies Inc. Stacked module package
KR100393102B1 (en) 2000-12-29 2003-07-31 앰코 테크놀로지 코리아 주식회사 Stacked semiconductor package
US6388322B1 (en) 2001-01-17 2002-05-14 Aralight, Inc. Article comprising a mechanically compliant bump
US6472743B2 (en) 2001-02-22 2002-10-29 Siliconware Precision Industries, Co., Ltd. Semiconductor package with heat dissipating structure
KR100401020B1 (en) 2001-03-09 2003-10-08 앰코 테크놀로지 코리아 주식회사 Stacking structure of semiconductor chip and semiconductor package using it
JP2002280414A (en) 2001-03-22 2002-09-27 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2002289769A (en) 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Stacked semiconductor device and its manufacturing method
US6825552B2 (en) 2001-05-09 2004-11-30 Tessera, Inc. Connection components with anisotropic conductive material interconnection
US6900528B2 (en) 2001-06-21 2005-05-31 Micron Technology, Inc. Stacked mass storage flash memory package
US6754407B2 (en) 2001-06-26 2004-06-22 Intel Corporation Flip-chip package integrating optical and electrical devices and coupling to a waveguide on a board
US20030006494A1 (en) 2001-07-03 2003-01-09 Lee Sang Ho Thin profile stackable semiconductor package and method for manufacturing
US6486545B1 (en) 2001-07-26 2002-11-26 Amkor Technology, Inc. Pre-drilled ball grid array package
US6451626B1 (en) 2001-07-27 2002-09-17 Charles W.C. Lin Three-dimensional stacked semiconductor package
US6765287B1 (en) 2001-07-27 2004-07-20 Charles W. C. Lin Three-dimensional stacked semiconductor package
JP4023159B2 (en) 2001-07-31 2007-12-19 ソニー株式会社 Manufacturing method of the production method and laminated to a semiconductor device
US6550666B2 (en) 2001-08-21 2003-04-22 Advanpack Solutions Pte Ltd Method for forming a flip chip on leadframe semiconductor package
WO2003019654A1 (en) 2001-08-22 2003-03-06 Tessera, Inc. Stacked chip assembly with stiffening layer
US7176506B2 (en) 2001-08-28 2007-02-13 Tessera, Inc. High frequency chip packages with connecting elements
US6864166B1 (en) 2001-08-29 2005-03-08 Micron Technology, Inc. Method of manufacturing wire bonded microelectronic device assemblies
US6787926B2 (en) 2001-09-05 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd Wire stitch bond on an integrated circuit bond pad and method of making the same
US20030057544A1 (en) 2001-09-13 2003-03-27 Nathan Richard J. Integrated assembly protocol
US6476506B1 (en) 2001-09-28 2002-11-05 Motorola, Inc. Packaged semiconductor with multiple rows of bond pads and method therefor
US6977440B2 (en) 2001-10-09 2005-12-20 Tessera, Inc. Stacked packages
DE10297316T5 (en) 2001-10-09 2004-12-09 Tessera, Inc., San Jose stacked modules
JP2003122611A (en) 2001-10-11 2003-04-25 Oki Electric Ind Co Ltd Data providing method and server device
JP4257771B2 (en) 2001-10-16 2009-04-22 シンジーテック株式会社 Conductive blade
US20050176233A1 (en) 2002-11-15 2005-08-11 Rajeev Joshi Wafer-level chip scale package and method for fabricating and using the same
JP3875077B2 (en) 2001-11-16 2007-01-31 富士通株式会社 Electronic devices and device connection
US20030094666A1 (en) 2001-11-16 2003-05-22 R-Tec Corporation Interposer
JP2003174124A (en) 2001-12-04 2003-06-20 Sainekkusu:Kk Method of forming external electrode of semiconductor device
KR100435813B1 (en) 2001-12-06 2004-06-12 삼성전자주식회사 Multi chip package using metal bar and manufacturing method thereof
JP2003197669A (en) 2001-12-28 2003-07-11 Seiko Epson Corp Bonding method and bonding apparatus
JP3935370B2 (en) 2002-02-19 2007-06-20 セイコーエプソン株式会社 The method of manufacturing a semiconductor device with bumps to a semiconductor device and a method of manufacturing the same, a circuit board and electronic equipment
US6653723B2 (en) 2002-03-09 2003-11-25 Fujitsu Limited System for providing an open-cavity low profile encapsulated semiconductor package
KR100452819B1 (en) 2002-03-18 2004-10-15 삼성전기주식회사 Chip scale package and method of fabricating the same
US6979230B2 (en) 2002-03-20 2005-12-27 Gabe Cherian Light socket
JP2003318327A (en) 2002-04-22 2003-11-07 Mitsui Chemicals Inc Printed wiring board and stacked package
US7323767B2 (en) 2002-04-25 2008-01-29 Micron Technology, Inc. Standoffs for centralizing internals in packaging process
US7633765B1 (en) 2004-03-23 2009-12-15 Amkor Technology, Inc. Semiconductor package including a top-surface metal layer for implementing circuit features
US6930256B1 (en) 2002-05-01 2005-08-16 Amkor Technology, Inc. Integrated circuit substrate having laser-embedded conductive patterns and method therefor
US7078822B2 (en) 2002-06-25 2006-07-18 Intel Corporation Microelectronic device interconnects
JP3507059B2 (en) 2002-06-27 2004-03-15 沖電気工業株式会社 Stacked multi-chip package
JP4601892B2 (en) 2002-07-04 2010-12-22 ラムバス・インコーポレーテッド Bump manufacturing method of a semiconductor device and a semiconductor chip
JP2004047702A (en) 2002-07-11 2004-02-12 Toshiba Corp Semiconductor device laminated module
US6756252B2 (en) 2002-07-17 2004-06-29 Texas Instrument Incorporated Multilayer laser trim interconnect method
US6987032B1 (en) 2002-07-19 2006-01-17 Asat Ltd. Ball grid array package and process for manufacturing same
WO2004017399A1 (en) 2002-08-16 2004-02-26 Tessera, Inc. Microelectronic packages with self-aligning features
US6740546B2 (en) 2002-08-21 2004-05-25 Micron Technology, Inc. Packaged microelectronic devices and methods for assembling microelectronic devices
US6964881B2 (en) 2002-08-27 2005-11-15 Micron Technology, Inc. Multi-chip wafer level system packages and methods of forming same
JP3765778B2 (en) 2002-08-29 2006-04-12 ローム株式会社 Wire bonding capillary and the wire bonding method using the same
US7205670B2 (en) 2002-08-30 2007-04-17 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method therefor
US20040041757A1 (en) 2002-09-04 2004-03-04 Ming-Hsiang Yang Light emitting diode display module with high heat-dispersion and the substrate thereof
US7246431B2 (en) 2002-09-06 2007-07-24 Tessera, Inc. Methods of making microelectronic packages including folded substrates
US7294928B2 (en) 2002-09-06 2007-11-13 Tessera, Inc. Components, methods and assemblies for stacked packages
US7071547B2 (en) 2002-09-11 2006-07-04 Tessera, Inc. Assemblies having stacked semiconductor chips and methods of making same
US7229906B2 (en) 2002-09-19 2007-06-12 Kulicke And Soffa Industries, Inc. Method and apparatus for forming bumps for semiconductor interconnections using a wire bonding machine
KR20050071524A (en) 2002-09-30 2005-07-07 어드밴스드 인터커넥트 테크놀로지스 리미티드 Thermal enhanced package for block mold assembly
US7045884B2 (en) 2002-10-04 2006-05-16 International Rectifier Corporation Semiconductor device package
US7061088B2 (en) 2002-10-08 2006-06-13 Chippac, Inc. Semiconductor stacked multi-package module having inverted second package
US6989122B1 (en) 2002-10-17 2006-01-24 National Semiconductor Corporation Techniques for manufacturing flash-free contacts on a semiconductor package
JP2004172157A (en) 2002-11-15 2004-06-17 Shinko Electric Ind Co Ltd Semiconductor package and package stack semiconductor device
JP2004172477A (en) 2002-11-21 2004-06-17 Kaijo Corp Wire loop form, semiconductor device having the same, wire bonding method, and semiconductor manufacturing apparatus
JP4464041B2 (en) 2002-12-13 2010-05-19 キヤノン株式会社 Columnar structure, the electrode having a columnar structure, and a manufacturing method thereof
JP2004200316A (en) 2002-12-17 2004-07-15 Shinko Electric Ind Co Ltd Semiconductor device
US20050161814A1 (en) 2002-12-27 2005-07-28 Fujitsu Limited Method for forming bumps, semiconductor device and method for manufacturing same, substrate processing apparatus, and semiconductor manufacturing apparatus
KR100621991B1 (en) 2003-01-03 2006-09-13 삼성전자주식회사 Chip scale stack package
JP2004221257A (en) 2003-01-14 2004-08-05 Seiko Epson Corp Wire bonding method and device thereof
US20040222518A1 (en) 2003-02-25 2004-11-11 Tessera, Inc. Ball grid array with bumps
US20040217471A1 (en) 2003-02-27 2004-11-04 Tessera, Inc. Component and assemblies with ends offset downwardly
JP3885747B2 (en) 2003-03-13 2007-02-28 株式会社デンソー Wire bonding method
JP2004343030A (en) 2003-03-31 2004-12-02 North:Kk Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board
JP2004319892A (en) 2003-04-18 2004-11-11 Renesas Technology Corp Manufacturing method of semiconductor device
JP4199588B2 (en) 2003-04-25 2008-12-17 テセラ・インターコネクト・マテリアルズ,インコーポレイテッド Method of manufacturing a wiring circuit board, and a method of manufacturing a semiconductor integrated circuit device using this printed circuit board
JP2004327855A (en) 2003-04-25 2004-11-18 Nec Electronics Corp Semiconductor device and its manufacturing method
DE10320646A1 (en) 2003-05-07 2004-09-16 Infineon Technologies Ag Electronic component, typically integrated circuit, system support and manufacturing method, with support containing component positions in lines and columns, starting with coating auxiliary support with photosensitive layer
JP4145730B2 (en) 2003-06-17 2008-09-03 松下電器産業株式会社 Semiconductor built-in module
US20040262728A1 (en) 2003-06-30 2004-12-30 Sterrett Terry L. Modular device assemblies
KR100604821B1 (en) 2003-06-30 2006-07-26 삼성전자주식회사 Stack type Ball grid array package and method for manufacturing the same
JP2005033141A (en) 2003-07-11 2005-02-03 Sony Corp Semiconductor device, its manufacturing method, false wafer, its manufacturing method, and packaging structure of semiconductor device
US7227095B2 (en) 2003-08-06 2007-06-05 Micron Technology, Inc. Wire bonders and methods of wire-bonding
KR100537892B1 (en) 2003-08-26 2005-12-21 삼성전자주식회사 Chip stack package and manufacturing method thereof
KR100546374B1 (en) 2003-08-28 2006-01-26 삼성전자주식회사 Multi chip package having center pads and method for manufacturing the same
JP2005093551A (en) 2003-09-12 2005-04-07 Genusion:Kk Package structure of semiconductor device, and packaging method
US7372151B1 (en) 2003-09-12 2008-05-13 Asat Ltd. Ball grid array package and process for manufacturing same
JP3999720B2 (en) 2003-09-16 2007-10-31 沖電気工業株式会社 Semiconductor device and manufacturing method thereof
US7061096B2 (en) 2003-09-24 2006-06-13 Silicon Pipe, Inc. Multi-surface IC packaging structures and methods for their manufacture
US7224056B2 (en) 2003-09-26 2007-05-29 Tessera, Inc. Back-face and edge interconnects for lidded package
US7462936B2 (en) 2003-10-06 2008-12-09 Tessera, Inc. Formation of circuitry with modification of feature height
US7495179B2 (en) 2003-10-06 2009-02-24 Tessera, Inc. Components with posts and pads
JP4272968B2 (en) 2003-10-16 2009-06-03 エルピーダメモリ株式会社 Semiconductor device and a semiconductor chip control method
JP4167965B2 (en) 2003-11-07 2008-10-22 テセラ・インターコネクト・マテリアルズ,インコーポレイテッド Method of manufacturing a printed circuit member
KR100564585B1 (en) 2003-11-13 2006-03-28 삼성전자주식회사 Double stacked BGA package and multi-stacked BGA package
KR100621992B1 (en) 2003-11-19 2006-09-13 삼성전자주식회사 structure and method of wafer level stack for devices of different kind and system-in-package using the same
JP2005183923A (en) 2003-11-28 2005-07-07 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US7345361B2 (en) 2003-12-04 2008-03-18 Intel Corporation Stackable integrated circuit packaging
JP2005175019A (en) 2003-12-08 2005-06-30 Sharp Corp Semiconductor device and multilayer semiconductor device
DE10360708B4 (en) 2003-12-19 2008-04-10 Infineon Technologies Ag Semiconductor module with a semiconductor stack, rewiring, and methods of making the same
JP4334996B2 (en) 2003-12-24 2009-09-30 テセラ・インターコネクト・マテリアルズ,インコーポレイテッド Multilayer wiring board substrate, double-sided wiring board and a process for their preparation
US7495644B2 (en) 2003-12-26 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
JP3917133B2 (en) 2003-12-26 2007-05-23 株式会社東芝 Interposer used lsi package and its attached interface module, interface module, the connected monitor circuit, the signal processing lsi
US6917098B1 (en) 2003-12-29 2005-07-12 Texas Instruments Incorporated Three-level leadframe for no-lead packages
US6900530B1 (en) 2003-12-29 2005-05-31 Ramtek Technology, Inc. Stacked IC
US7176043B2 (en) 2003-12-30 2007-02-13 Tessera, Inc. Microelectronic packages and methods therefor
US8207604B2 (en) 2003-12-30 2012-06-26 Tessera, Inc. Microelectronic package comprising offset conductive posts on compliant layer
US7709968B2 (en) 2003-12-30 2010-05-04 Tessera, Inc. Micro pin grid array with pin motion isolation
JP2005203497A (en) 2004-01-14 2005-07-28 Toshiba Corp Semiconductor device and method for manufacturing same
US20050173807A1 (en) 2004-02-05 2005-08-11 Jianbai Zhu High density vertically stacked semiconductor device
US8399972B2 (en) 2004-03-04 2013-03-19 Skyworks Solutions, Inc. Overmolded semiconductor package with a wirebond cage for EMI shielding
US7198987B1 (en) 2004-03-04 2007-04-03 Skyworks Solutions, Inc. Overmolded semiconductor package with an integrated EMI and RFI shield
US7095105B2 (en) 2004-03-23 2006-08-22 Texas Instruments Incorporated Vertically stacked semiconductor device
JP4484035B2 (en) 2004-04-06 2010-06-16 セイコーエプソン株式会社 A method of manufacturing a semiconductor device
US8092734B2 (en) 2004-05-13 2012-01-10 Aptina Imaging Corporation Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers
US6962864B1 (en) 2004-05-26 2005-11-08 National Chung Cheng University Wire-bonding method for chips with copper interconnects by introducing a thin layer
US7233057B2 (en) 2004-05-28 2007-06-19 Nokia Corporation Integrated circuit package with optimized mold shape
US7453157B2 (en) 2004-06-25 2008-11-18 Tessera, Inc. Microelectronic packages and methods therefor
JP3956965B2 (en) 2004-09-07 2007-08-08 日立エーアイシー株式会社 Chip-type light emitting device and the wiring board therefor
US7290448B2 (en) 2004-09-10 2007-11-06 Yamaha Corporation Physical quantity sensor, lead frame, and manufacturing method therefor
CN1755929B (en) 2004-09-28 2010-08-18 飞思卡尔半导体(中国)有限公司 Method for forming semiconductor package and its structure
JP4385329B2 (en) 2004-10-08 2009-12-16 Okiセミコンダクタ株式会社 A method of manufacturing a semiconductor device
US7595548B2 (en) 2004-10-08 2009-09-29 Yamaha Corporation Physical quantity sensor and manufacturing method therefor
US20060087013A1 (en) 2004-10-21 2006-04-27 Etron Technology, Inc. Stacked multiple integrated circuit die package assembly
US8646675B2 (en) 2004-11-02 2014-02-11 Hid Global Gmbh Laying apparatus, contact-making apparatus, movement system, laying and contact-making unit, production system, method for production and a transponder unit
JP5592055B2 (en) 2004-11-03 2014-09-17 テッセラ,インコーポレイテッド Improvement of the laminated packaging
KR100674926B1 (en) 2004-12-08 2007-01-26 삼성전자주식회사 Memory card and method of fabricating the same
US7301770B2 (en) 2004-12-10 2007-11-27 International Business Machines Corporation Cooling apparatus, cooled electronic module, and methods of fabrication thereof employing thermally conductive, wire-bonded pin fins
JP4504798B2 (en) 2004-12-16 2010-07-14 パナソニック株式会社 Multi-stage configuration semiconductor module
KR100843137B1 (en) 2004-12-27 2008-07-02 삼성전자주식회사 Semiconductor device package
JP2006186086A (en) 2004-12-27 2006-07-13 Itoo:Kk Method for soldering printed circuit board and guide plate for preventing bridge
DE102005006333B4 (en) 2005-02-10 2007-10-18 Infineon Technologies Ag of the same semiconductor device having a plurality of bonding pads and bonded contact elements of different metal composition and methods for preparing
DE102005006995B4 (en) 2005-02-15 2008-01-24 Infineon Technologies Ag of the same semiconductor device with plastic housing and external terminals and methods for preparing
KR100867038B1 (en) 2005-03-02 2008-11-04 삼성전기주식회사 Printed circuit board with embedded capacitors, and manufacturing process thereof
KR100630741B1 (en) 2005-03-04 2006-10-02 삼성전자주식회사 Stack type semiconductor package having a multiple molding process and manufacturing method thereof
US7939934B2 (en) 2005-03-16 2011-05-10 Tessera, Inc. Microelectronic packages and methods therefor
US20060216868A1 (en) 2005-03-25 2006-09-28 Advanced Semiconductor Engineering Inc. Package structure and fabrication thereof
US7582963B2 (en) 2005-03-29 2009-09-01 Texas Instruments Incorporated Vertically integrated system-in-a-package
US7371676B2 (en) 2005-04-08 2008-05-13 Micron Technology, Inc. Method for fabricating semiconductor components with through wire interconnects
JP2006324553A (en) 2005-05-20 2006-11-30 Renesas Technology Corp Semiconductor device and method of manufacturing same
US7216794B2 (en) 2005-06-09 2007-05-15 Texas Instruments Incorporated Bond capillary design for ribbon wire bonding
JP4322844B2 (en) 2005-06-10 2009-09-02 シャープ株式会社 The semiconductor device and the stacked semiconductor device
JP2009500821A (en) 2005-07-01 2009-01-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic elements
US7476608B2 (en) 2005-07-14 2009-01-13 Hewlett-Packard Development Company, L.P. Electrically connecting substrate with electrical device
US7355289B2 (en) 2005-07-29 2008-04-08 Freescale Semiconductor, Inc. Packaged integrated circuit with enhanced thermal dissipation
JP5522561B2 (en) 2005-08-31 2014-06-18 マイクロン テクノロジー, インク. Microelectronic device packages, stacked microelectronic device packages, and methods of manufacturing a microelectronic device
US7675152B2 (en) 2005-09-01 2010-03-09 Texas Instruments Incorporated Package-on-package semiconductor assembly
US20070080360A1 (en) 2005-10-06 2007-04-12 Url Mirsky Microelectronic interconnect substrate and packaging techniques
KR101241650B1 (en) 2005-10-19 2013-03-08 엘지이노텍 주식회사 Package of light emitting diode
US7504716B2 (en) 2005-10-26 2009-03-17 Texas Instruments Incorporated Structure and method of molded QFN device suitable for miniaturization, multiple rows and stacking
US8810031B2 (en) 2005-10-26 2014-08-19 Industrial Technology Research Institute Wafer-to-wafer stack with supporting pedestal
JP2007123595A (en) 2005-10-28 2007-05-17 Nec Corp Semiconductor device and its mounting structure
CN101356633B (en) 2005-11-01 2011-03-23 Nxp股份有限公司 Methods of packaging a semiconductor die and package formed by the methods
JP4530975B2 (en) 2005-11-14 2010-08-25 株式会社新川 Wire bonding method
JP2007142042A (en) 2005-11-16 2007-06-07 Sharp Corp Semiconductor package, manufacturing method thereof, semiconductor module, and electronic equipment
US7344917B2 (en) 2005-11-30 2008-03-18 Freescale Semiconductor, Inc. Method for packaging a semiconductor device
US7307348B2 (en) 2005-12-07 2007-12-11 Micron Technology, Inc. Semiconductor components having through wire interconnects (TWI)
US8058101B2 (en) 2005-12-23 2011-11-15 Tessera, Inc. Microelectronic packages and methods therefor
US7378726B2 (en) 2005-12-28 2008-05-27 Intel Corporation Stacked packages with interconnecting pins
JP4530984B2 (en) 2005-12-28 2010-08-25 株式会社新川 Wire bonding apparatus, a bonding control program and bonding method
JP2007194436A (en) 2006-01-19 2007-08-02 Elpida Memory Inc Semiconductor package and manufacturing method thereof, substrate with conductive post, and laminated semiconductor device and manufacturing method thereof
US20070190747A1 (en) 2006-01-23 2007-08-16 Tessera Technologies Hungary Kft. Wafer level packaging to lidded chips
JP2007201254A (en) 2006-01-27 2007-08-09 Ibiden Co Ltd Built-in semiconductor-element including board, and built-in semiconductor-element including multilayer circuit board
JP2007208159A (en) 2006-02-06 2007-08-16 Hitachi Ltd Semiconductor device
JP2007234845A (en) 2006-03-01 2007-09-13 Nec Corp Semiconductor device
US7759782B2 (en) 2006-04-07 2010-07-20 Tessera, Inc. Substrate for a microelectronic package and method of fabricating thereof
US7390700B2 (en) 2006-04-07 2008-06-24 Texas Instruments Incorporated Packaged system of semiconductor chips having a semiconductor interposer
JP5598787B2 (en) 2006-04-17 2014-10-01 マイクロンメモリジャパン株式会社 Method for manufacturing a stacked semiconductor device
US7659612B2 (en) 2006-04-24 2010-02-09 Micron Technology, Inc. Semiconductor components having encapsulated through wire interconnects (TWI)
US7242081B1 (en) 2006-04-24 2007-07-10 Advanced Semiconductor Engineering Inc. Stacked package structure
US7910385B2 (en) 2006-05-12 2011-03-22 Micron Technology, Inc. Method of fabricating microelectronic devices
DE102006022360B4 (en) 2006-05-12 2009-07-09 Infineon Technologies Ag shielding
US7780064B2 (en) 2006-06-02 2010-08-24 Asm Technology Singapore Pte Ltd Wire bonding method for forming low-loop profiles
JP4961848B2 (en) 2006-06-12 2012-06-27 日本電気株式会社 Wiring board having a metal post, a method of manufacturing a semiconductor device and a semiconductor device module
US20070290325A1 (en) 2006-06-16 2007-12-20 Lite-On Semiconductor Corporation Surface mounting structure and packaging method thereof
US7967062B2 (en) 2006-06-16 2011-06-28 International Business Machines Corporation Thermally conductive composite interface, cooled electronic assemblies employing the same, and methods of fabrication thereof
KR101043484B1 (en) 2006-06-29 2011-06-23 인텔 코포레이션 Apparatus, system, and method for wireless connection in integrated circuit packages
KR100792352B1 (en) 2006-07-06 2008-01-08 삼성전기주식회사 Bottom substrate of pop and manufacturing method thereof
KR100800478B1 (en) 2006-07-18 2008-02-04 삼성전자주식회사 Stack type semiconductor package and method of fabricating the same
US20080023805A1 (en) 2006-07-26 2008-01-31 Texas Instruments Incorporated Array-Processed Stacked Semiconductor Packages
JP5132101B2 (en) 2006-07-27 2013-01-30 新光電気工業株式会社 A single package for use in a stack package structure and a manufacturing method for their preparation
US8048479B2 (en) 2006-08-01 2011-11-01 Qimonda Ag Method for placing material onto a target board by means of a transfer board
JP2008039502A (en) 2006-08-03 2008-02-21 Alps Electric Co Ltd Contact and its manufacturing method
US7486525B2 (en) 2006-08-04 2009-02-03 International Business Machines Corporation Temporary chip attach carrier
KR100809696B1 (en) 2006-08-08 2008-03-06 삼성전자주식회사 A Multi chip package stacked a plurality of semiconductor chips having different size and method of manufacturing the same
US20080042265A1 (en) 2006-08-15 2008-02-21 Merilo Leo A Chip scale module package in bga semiconductor package
US7425758B2 (en) 2006-08-28 2008-09-16 Micron Technology, Inc. Metal core foldover package structures
KR20080020069A (en) 2006-08-30 2008-03-05 삼성전자주식회사 Semiconductor package and method for fabricating the same
KR100891516B1 (en) 2006-08-31 2009-04-06 주식회사 하이닉스반도체 Stackable fbga type semiconductor package and stack package using the same
US7683460B2 (en) 2006-09-22 2010-03-23 Infineon Technologies Ag Module with a shielding and/or heat dissipating element
KR100770934B1 (en) 2006-09-26 2007-10-26 삼성전자주식회사 Semiconductor package and semiconductor system in package
US7901989B2 (en) 2006-10-10 2011-03-08 Tessera, Inc. Reconstituted wafer level stacking
KR100817073B1 (en) 2006-11-03 2008-03-26 삼성전자주식회사 Semiconductor chip stack package with reinforce member for preventing package warpage connected to pcb
US8174119B2 (en) 2006-11-10 2012-05-08 Stats Chippac, Ltd. Semiconductor package with embedded die
US8193034B2 (en) 2006-11-10 2012-06-05 Stats Chippac, Ltd. Semiconductor device and method of forming vertical interconnect structure using stud bumps
JP4274290B2 (en) 2006-11-28 2009-06-03 国立大学法人九州工業大学 The method of manufacturing a semiconductor device having a double-sided electrode structure
US7659617B2 (en) 2006-11-30 2010-02-09 Tessera, Inc. Substrate for a flexible microelectronic assembly and a method of fabricating thereof
US7537962B2 (en) 2006-12-22 2009-05-26 Stats Chippac Ltd. Method of fabricating a shielded stacked integrated circuit package system
JP2008166439A (en) 2006-12-27 2008-07-17 Spansion Llc Semiconductor device and manufacturing method thereof
US8598717B2 (en) 2006-12-27 2013-12-03 Spansion Llc Semiconductor device and method for manufacturing the same
KR100757345B1 (en) 2006-12-29 2007-09-10 삼성전자주식회사 Flip chip package and method of manufacturing the same
US20090008796A1 (en) 2006-12-29 2009-01-08 United Test And Assembly Center Ltd. Copper on organic solderability preservative (osp) interconnect
US20080156518A1 (en) 2007-01-03 2008-07-03 Tessera, Inc. Alignment and cutting of microelectronic substrates
JP5347222B2 (en) 2007-01-10 2013-11-20 富士通株式会社 A method of manufacturing a semiconductor device
US7719122B2 (en) 2007-01-11 2010-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. System-in-package packaging for minimizing bond wire contamination and yield loss
KR100827667B1 (en) 2007-01-16 2008-05-07 삼성전자주식회사 Semiconductor package having semiconductor chip in substrate and method of fabricating the same
CN101617400A (en) 2007-01-31 2009-12-30 富士通微电子株式会社 Semiconductor device and method for manufacturing the same
JP4823089B2 (en) 2007-01-31 2011-11-24 株式会社東芝 Method for manufacturing a stacked semiconductor device
US8685792B2 (en) 2007-03-03 2014-04-01 Stats Chippac Ltd. Integrated circuit package system with interposer
CN101675516B (en) 2007-03-05 2012-06-20 数字光学欧洲有限公司 Chips having rear contacts connected by through vias to front contacts
US20080217708A1 (en) 2007-03-09 2008-09-11 Skyworks Solutions, Inc. Integrated passive cap in a system-in-package
JP5010316B2 (en) 2007-03-16 2012-08-29 ルネサスエレクトロニクス株式会社 Wiring board having a metal post, the semiconductor device
US7517733B2 (en) 2007-03-22 2009-04-14 Stats Chippac, Ltd. Leadframe design for QFN package with top terminal leads
US8183684B2 (en) 2007-03-23 2012-05-22 Semiconductor Components Industries, Llc Semiconductor device and method of manufacturing the same
US8198716B2 (en) 2007-03-26 2012-06-12 Intel Corporation Die backside wire bond technology for single or stacked die package
WO2008120755A1 (en) 2007-03-30 2008-10-09 Nec Corporation Circuit board incorporating functional element, method for manufacturing the circuit board, and electronic device
JP4926787B2 (en) 2007-03-30 2012-05-09 アオイ電子株式会社 A method of manufacturing a semiconductor device
US7589394B2 (en) 2007-04-10 2009-09-15 Ibiden Co., Ltd. Interposer
JP5003260B2 (en) 2007-04-13 2012-08-15 日本電気株式会社 Semiconductor device and manufacturing method thereof
US7994622B2 (en) 2007-04-16 2011-08-09 Tessera, Inc. Microelectronic packages having cavities for receiving microelectric elements
KR20080094251A (en) 2007-04-19 2008-10-23 삼성전자주식회사 Wafer level package and method for the manufacturing same
JP5601751B2 (en) 2007-04-26 2014-10-08 スパンション エルエルシー Semiconductor device
US20080280393A1 (en) 2007-05-09 2008-11-13 Taiwan Semiconductor Manufacturing Co., Ltd. Methods for forming package structures
US20080284045A1 (en) 2007-05-18 2008-11-20 Texas Instruments Incorporated Method for Fabricating Array-Molded Package-On-Package
US7872335B2 (en) 2007-06-08 2011-01-18 Broadcom Corporation Lead frame-BGA package with enhanced thermal performance and I/O counts
JP2008306128A (en) 2007-06-11 2008-12-18 Shinko Electric Ind Co Ltd Semiconductor device and its production process
KR100865125B1 (en) 2007-06-12 2008-10-24 삼성전기주식회사 Semiconductor and method for manufacturing thereof
US7576415B2 (en) 2007-06-15 2009-08-18 Advanced Semiconductor Engineering, Inc. EMI shielded semiconductor package
US7944034B2 (en) 2007-06-22 2011-05-17 Texas Instruments Incorporated Array molded package-on-package having redistribution lines
JP5179787B2 (en) 2007-06-22 2013-04-10 ラピスセミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
US7911805B2 (en) 2007-06-29 2011-03-22 Tessera, Inc. Multilayer wiring element having pin interface
KR20090007120A (en) 2007-07-13 2009-01-16 삼성전자주식회사 An wafer level stacked package having a via contact in encapsulation portion and manufacturing method thereof
US7781877B2 (en) 2007-08-07 2010-08-24 Micron Technology, Inc. Packaged integrated circuit devices with through-body conductive vias, and methods of making same
JP2009044110A (en) 2007-08-13 2009-02-26 Elpida Memory Inc Semiconductor device and its manufacturing method
KR101329355B1 (en) 2007-08-31 2013-11-20 삼성전자주식회사 stack-type semicondoctor package, method of forming the same and electronic system including the same
KR101365621B1 (en) 2007-09-04 2014-02-24 서울반도체 주식회사 Light emitting diode package having heat dissipating slugs
JP2009064966A (en) 2007-09-06 2009-03-26 Shinko Electric Ind Co Ltd Multilayer wiring board and manufacturing method thereof, and semiconductor device
US9330945B2 (en) 2007-09-18 2016-05-03 Stats Chippac Ltd. Integrated circuit package system with multi-chip module
US8039960B2 (en) 2007-09-21 2011-10-18 Stats Chippac, Ltd. Solder bump with inner core pillar in semiconductor package
EP2637202A3 (en) 2007-09-28 2014-03-12 Tessera, Inc. Flip chip interconnection with etched posts on a microelectronic element joined to etched posts on a substrate by a fusible metal and corresponding manufacturing method
KR100902128B1 (en) 2007-09-28 2009-06-09 삼성전기주식회사 Heat radiating printed circuit board and semiconductor chip package
JP2009088254A (en) 2007-09-28 2009-04-23 Toshiba Corp Electronic component package, and manufacturing method for electronic component package
KR20090033605A (en) 2007-10-01 2009-04-06 삼성전자주식회사 Stack-type semicondoctor package, method of forming the same and electronic system including the same
US7777351B1 (en) 2007-10-01 2010-08-17 Amkor Technology, Inc. Thin stacked interposer package
US20090091009A1 (en) 2007-10-03 2009-04-09 Corisis David J Stackable integrated circuit package
US8008183B2 (en) 2007-10-04 2011-08-30 Texas Instruments Incorporated Dual capillary IC wirebonding
US7834464B2 (en) 2007-10-09 2010-11-16 Infineon Technologies Ag Semiconductor chip package, semiconductor chip assembly, and method for fabricating a device
FR2923081B1 (en) 2007-10-26 2009-12-11 3D Plus Method for vertical interconnection of electronic modules 3d by vias.
GB0721957D0 (en) 2007-11-08 2007-12-19 Photonstar Led Ltd Ultra high thermal performance packaging for optoelectronics devices
JP2009123863A (en) 2007-11-14 2009-06-04 Tessera Interconnect Materials Inc Method of forming bump structure and the bump structure
CA2706092C (en) 2007-11-19 2014-08-19 Nexxus Lighting, Inc. Apparatus and methods for thermal management of light emitting diodes
US20090127686A1 (en) 2007-11-21 2009-05-21 Advanced Chip Engineering Technology Inc. Stacking die package structure for semiconductor devices and method of the same
KR100886100B1 (en) 2007-11-29 2009-02-27 앰코 테크놀로지 코리아 주식회사 Semiconductor package and method for manufacturing the same
JP2009135398A (en) 2007-11-29 2009-06-18 Ibiden Co Ltd Combination substrate
US7902644B2 (en) 2007-12-07 2011-03-08 Stats Chippac Ltd. Integrated circuit package system for electromagnetic isolation
US7964956B1 (en) 2007-12-10 2011-06-21 Oracle America, Inc. Circuit packaging and connectivity
US7696631B2 (en) 2007-12-10 2010-04-13 International Business Machines Corporation Wire bonding personalization and discrete component attachment on wirebond pads
US8390117B2 (en) 2007-12-11 2013-03-05 Panasonic Corporation Semiconductor device and method of manufacturing the same
US7706144B2 (en) 2007-12-17 2010-04-27 Lynch Thomas W Heat dissipation system and related method
US8299368B2 (en) 2007-12-25 2012-10-30 Invensas Corporation Interconnection element for electric circuits
US20090170241A1 (en) 2007-12-26 2009-07-02 Stats Chippac, Ltd. Semiconductor Device and Method of Forming the Device Using Sacrificial Carrier
US20090166873A1 (en) 2007-12-27 2009-07-02 Advanced Chip Engineering Technology Inc. Inter-connecting structure for semiconductor device package and method of the same
JP4989614B2 (en) 2007-12-28 2012-08-01 サムソン エルイーディー カンパニーリミテッド. Method for producing a high output led package
CN101971313B (en) 2008-01-30 2013-07-24 库力索法工业公司 Wire loop and method of forming the wire loop
US20090194829A1 (en) 2008-01-31 2009-08-06 Shine Chung MEMS Packaging Including Integrated Circuit Dies
US8120186B2 (en) 2008-02-15 2012-02-21 Qimonda Ag Integrated circuit and method
US8258015B2 (en) 2008-02-22 2012-09-04 Stats Chippac Ltd. Integrated circuit package system with penetrable film adhesive
US8018065B2 (en) 2008-02-28 2011-09-13 Atmel Corporation Wafer-level integrated circuit package with top and bottom side electrical connections
KR101501739B1 (en) 2008-03-21 2015-03-11 삼성전자주식회사 A semiconductor package-producing
US7919871B2 (en) 2008-03-21 2011-04-05 Stats Chippac Ltd. Integrated circuit package system for stackable devices
US8525214B2 (en) 2008-03-25 2013-09-03 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader with thermal via
US20110068478A1 (en) 2009-03-26 2011-03-24 Reza Argenty Pagaila Integrated circuit packaging system with package stacking and method of manufacture thereof
US8072079B2 (en) 2008-03-27 2011-12-06 Stats Chippac, Ltd. Through hole vias at saw streets including protrusions or recesses for interconnection
JP5195903B2 (en) 2008-03-31 2013-05-15 株式会社村田製作所 The method of manufacturing an electronic component module and the electronic component module
JP5043743B2 (en) 2008-04-18 2012-10-10 ラピスセミコンダクタ宮崎株式会社 A method of manufacturing a semiconductor device
US7741156B2 (en) 2008-05-27 2010-06-22 Stats Chippac, Ltd. Semiconductor device and method of forming through vias with reflowed conductive material
KR20090123680A (en) 2008-05-28 2009-12-02 주식회사 하이닉스반도체 Stacked semiconductor package
US8093704B2 (en) 2008-06-03 2012-01-10 Intel Corporation Package on package using a bump-less build up layer (BBUL) package
US8021907B2 (en) 2008-06-09 2011-09-20 Stats Chippac, Ltd. Method and apparatus for thermally enhanced semiconductor package
CN102067310B (en) 2008-06-16 2013-08-21 泰塞拉公司 Stacking of wafer-level chip scale packages having edge contacts and manufacture method thereof
US7932170B1 (en) 2008-06-23 2011-04-26 Amkor Technology, Inc. Flip chip bump structure and fabrication method
DE102008048420A1 (en) 2008-06-27 2010-01-28 Qimonda Ag Chip arrangement and method of manufacturing a chip arrangement
US7969009B2 (en) 2008-06-30 2011-06-28 Qualcomm Incorporated Through silicon via bridge interconnect
US7859033B2 (en) 2008-07-09 2010-12-28 Eastman Kodak Company Wafer level processing for backside illuminated sensors
JP5339800B2 (en) 2008-07-10 2013-11-13 三菱電機株式会社 A method of manufacturing a semiconductor device
US8923004B2 (en) 2008-07-31 2014-12-30 Micron Technology, Inc. Microelectronic packages with small footprints and associated methods of manufacturing
EP2308085A4 (en) 2008-07-31 2013-06-05 Skyworks Solutions Inc Semiconductor package with integrated interference shielding and method of manufacture therof
US8004093B2 (en) 2008-08-01 2011-08-23 Stats Chippac Ltd. Integrated circuit package stacking system
US7800810B2 (en) 2008-08-06 2010-09-21 Spatial Photonics, Inc. Packaging and testing of multiple MEMS devices on a wafer
US20100044860A1 (en) 2008-08-21 2010-02-25 Tessera Interconnect Materials, Inc. Microelectronic substrate or element having conductive pads and metal posts joined thereto using bond layer
KR100997793B1 (en) 2008-09-01 2010-12-02 주식회사 하이닉스반도체 Semiconductor pacakge and method of manufacturing thereof
KR20100033012A (en) 2008-09-19 2010-03-29 김동유 Semiconductor package and stacked semiconductor package having the same
US7842541B1 (en) 2008-09-24 2010-11-30 Amkor Technology, Inc. Ultra thin package and fabrication method
US8237257B2 (en) 2008-09-25 2012-08-07 King Dragon International Inc. Substrate structure with die embedded inside and dual build-up layers over both side surfaces and method of the same
US8063475B2 (en) 2008-09-26 2011-11-22 Stats Chippac Ltd. Semiconductor package system with through silicon via interposer
JPWO2010041630A1 (en) 2008-10-10 2012-03-08 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP5185062B2 (en) 2008-10-21 2013-04-17 パナソニック株式会社 The stacked semiconductor device and electronic equipment
KR101461630B1 (en) 2008-11-06 2014-11-20 삼성전자주식회사 Wafer level chip on chip package, package on package improving solder joint reliability but reducing mounting height and manufacturing method thereof
US20120153444A1 (en) 2009-06-18 2012-06-21 Rohm Co., Ltd Semiconductor device
KR101011863B1 (en) 2008-12-02 2011-01-31 앰코 테크놀로지 코리아 주식회사 Semiconductor package and fabricating?method thereof
KR101015651B1 (en) 2008-12-05 2011-02-22 삼성전기주식회사 Chip embedded printed circuit board and manufacturing method thereof
JP2010135671A (en) 2008-12-08 2010-06-17 Panasonic Corp Semiconductor equipment and method of manufacturing the same
US7642128B1 (en) 2008-12-12 2010-01-05 Stats Chippac, Ltd. Semiconductor device and method of forming a vertical interconnect structure for 3-D FO-WLCSP
US7898083B2 (en) 2008-12-17 2011-03-01 Texas Instruments Incorporated Method for low stress flip-chip assembly of fine-pitch semiconductor devices
US8012797B2 (en) 2009-01-07 2011-09-06 Advanced Semiconductor Engineering, Inc. Method for forming stackable semiconductor device packages including openings with conductive bumps of specified geometries
JP2010177597A (en) 2009-01-30 2010-08-12 Sanyo Electric Co Ltd Semiconductor module and portable device
US20100200981A1 (en) 2009-02-09 2010-08-12 Advanced Semiconductor Engineering, Inc. Semiconductor package and method of manufacturing the same
US9142586B2 (en) 2009-02-24 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Pad design for backside illuminated image sensor
JP2010206007A (en) 2009-03-04 2010-09-16 Nec Corp Semiconductor device and method of manufacturing the same
JPWO2010101163A1 (en) 2009-03-04 2012-09-10 日本電気株式会社 An electronic device using functional element embedded board and it
US8106498B2 (en) 2009-03-05 2012-01-31 Stats Chippac Ltd. Integrated circuit packaging system with a dual board-on-chip structure and method of manufacture thereof
DE102009001461A1 (en) 2009-03-11 2010-09-16 Robert Bosch Gmbh A process for preparing an electronic assembly
US8258010B2 (en) 2009-03-17 2012-09-04 Stats Chippac, Ltd. Making a semiconductor device having conductive through organic vias
US20100244276A1 (en) 2009-03-25 2010-09-30 Lsi Corporation Three-dimensional electronics package
US8194411B2 (en) 2009-03-31 2012-06-05 Hong Kong Applied Science and Technology Research Institute Co. Ltd Electronic package with stacked modules with channels passing through metal layers of the modules
US8053814B2 (en) 2009-04-08 2011-11-08 International Business Machines Corporation On-chip embedded thermal antenna for chip cooling
US8039316B2 (en) 2009-04-14 2011-10-18 Stats Chippac Ltd. Integrated circuit packaging system with stacked integrated circuit and heat spreader with openings and method of manufacture thereof
JP2010251483A (en) 2009-04-14 2010-11-04 Renesas Electronics Corp Semiconductor device and method of manufacturing the same
US20100289142A1 (en) 2009-05-15 2010-11-18 Il Kwon Shim Integrated circuit packaging system with coin bonded interconnects and method of manufacture thereof
US8020290B2 (en) 2009-06-14 2011-09-20 Jayna Sheats Processes for IC fabrication
US20100327419A1 (en) 2009-06-26 2010-12-30 Sriram Muthukumar Stacked-chip packages in package-on-package apparatus, methods of assembling same, and systems containing same
US8115283B1 (en) 2009-07-14 2012-02-14 Amkor Technology, Inc. Reversible top/bottom MEMS package
JP5214554B2 (en) 2009-07-30 2013-06-19 ラピスセミコンダクタ株式会社 The semiconductor chip embedded package and a manufacturing method thereof, and the package-on-package type semiconductor device and a manufacturing method thereof
US8183678B2 (en) 2009-08-04 2012-05-22 Amkor Technology Korea, Inc. Semiconductor device having an interposer
US20110209908A1 (en) 2009-08-06 2011-09-01 Advanced Chip Engineering Technology Inc. Conductor package structure and method of the same
KR101124102B1 (en) 2009-08-24 2012-03-21 삼성전기주식회사 Substrate for light emitting device package and light emitting device package comprising the same
EP2290686A3 (en) 2009-08-28 2011-04-20 STMicroelectronics S.r.l. Method to perform electrical testing and assembly of electronic devices
US7923304B2 (en) 2009-09-10 2011-04-12 Stats Chippac Ltd. Integrated circuit packaging system with conductive pillars and method of manufacture thereof
US8264091B2 (en) 2009-09-21 2012-09-11 Stats Chippac Ltd. Integrated circuit packaging system with encapsulated via and method of manufacture thereof
US8008121B2 (en) 2009-11-04 2011-08-30 Stats Chippac, Ltd. Semiconductor package and method of mounting semiconductor die to opposite sides of TSV substrate
US8390108B2 (en) 2009-12-16 2013-03-05 Stats Chippac Ltd. Integrated circuit packaging system with stacking interconnect and method of manufacture thereof
US8169065B2 (en) 2009-12-22 2012-05-01 Epic Technologies, Inc. Stackable circuit structures and methods of fabrication thereof
JP5550369B2 (en) 2010-02-03 2014-07-16 新日鉄住金マテリアルズ株式会社 Semiconductor copper bonding wire and the junction structure
JP2011166051A (en) 2010-02-15 2011-08-25 Panasonic Corp Semiconductor device and method of manufacturing the same
US7990711B1 (en) 2010-02-24 2011-08-02 International Business Machines Corporation Double-face heat removal of vertically integrated chip-stacks utilizing combined symmetric silicon carrier fluid cavity and micro-channel cold plate
US7928552B1 (en) 2010-03-12 2011-04-19 Stats Chippac Ltd. Integrated circuit packaging system with multi-tier conductive interconnects and method of manufacture thereof
US9496152B2 (en) 2010-03-12 2016-11-15 STATS ChipPAC Pte. Ltd. Carrier system with multi-tier conductive posts and method of manufacture thereof
KR101667656B1 (en) 2010-03-24 2016-10-20 삼성전자주식회사 Method of forming package on package
US8624374B2 (en) 2010-04-02 2014-01-07 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with fan-out and with connecting elements for stacking and manufacturing methods thereof
US8278746B2 (en) 2010-04-02 2012-10-02 Advanced Semiconductor Engineering, Inc. Semiconductor device packages including connecting elements
US8564141B2 (en) 2010-05-06 2013-10-22 SK Hynix Inc. Chip unit and stack package having the same
US8558392B2 (en) 2010-05-14 2013-10-15 Stats Chippac, Ltd. Semiconductor device and method of forming interconnect structure and mounting semiconductor die in recessed encapsulant
US8288854B2 (en) 2010-05-19 2012-10-16 Advanced Semiconductor Engineering, Inc. Semiconductor package and method for making the same
US8217502B2 (en) 2010-06-08 2012-07-10 Stats Chippac Ltd. Integrated circuit packaging system with multipart conductive pillars and method of manufacture thereof
US20120001336A1 (en) 2010-07-02 2012-01-05 Texas Instruments Incorporated Corrosion-resistant copper-to-aluminum bonds
US8330272B2 (en) 2010-07-08 2012-12-11 Tessera, Inc. Microelectronic packages with dual or multiple-etched flip-chip connectors
KR20120007839A (en) 2010-07-15 2012-01-25 삼성전자주식회사 Manufacturing method of stack type package
US8482111B2 (en) 2010-07-19 2013-07-09 Tessera, Inc. Stackable molded microelectronic packages
JP5713598B2 (en) 2010-07-20 2015-05-07 新光電気工業株式会社 Socket and a method of manufacturing the same
US8847376B2 (en) 2010-07-23 2014-09-30 Tessera, Inc. Microelectronic elements with post-assembly planarization
US8791575B2 (en) 2010-07-23 2014-07-29 Tessera, Inc. Microelectronic elements having metallic pads overlying vias
KR101683814B1 (en) 2010-07-26 2016-12-08 삼성전자주식회사 Semiconductor apparatus having through vias
US8580607B2 (en) 2010-07-27 2013-11-12 Tessera, Inc. Microelectronic packages with nanoparticle joining
US8304900B2 (en) 2010-08-11 2012-11-06 Stats Chippac Ltd. Integrated circuit packaging system with stacked lead and method of manufacture thereof
US8076184B1 (en) 2010-08-16 2011-12-13 Stats Chippac, Ltd. Semiconductor device and method of forming wafer-level multi-row etched leadframe with base leads and embedded semiconductor die
US8518746B2 (en) 2010-09-02 2013-08-27 Stats Chippac, Ltd. Semiconductor device and method of forming TSV semiconductor wafer with embedded semiconductor die
US8354297B2 (en) 2010-09-03 2013-01-15 Stats Chippac, Ltd. Semiconductor device and method of forming different height conductive pillars to electrically interconnect stacked laterally offset semiconductor die
US8080445B1 (en) 2010-09-07 2011-12-20 Stats Chippac, Ltd. Semiconductor device and method of forming WLP with semiconductor die embedded within penetrable encapsulant between TSV interposers
US20120063090A1 (en) 2010-09-09 2012-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling mechanism for stacked die package and method of manufacturing the same
US8409922B2 (en) 2010-09-14 2013-04-02 Stats Chippac, Ltd. Semiconductor device and method of forming leadframe interposer over semiconductor die and TSV substrate for vertical electrical interconnect
US8415704B2 (en) 2010-09-22 2013-04-09 Ut-Battelle, Llc Close-packed array of light emitting devices
US8349735B2 (en) 2010-09-22 2013-01-08 Stats Chippac, Ltd. Semiconductor device and method of forming conductive TSV with insulating annular ring
US9224647B2 (en) 2010-09-24 2015-12-29 Stats Chippac, Ltd. Semiconductor device and method of forming TSV interposer with semiconductor die and build-up interconnect structure on opposing surfaces of the interposer
JP5616739B2 (en) 2010-10-01 2014-10-29 新日鉄住金マテリアルズ株式会社 Bonding structure of multilayer copper bonding wire
US20120080787A1 (en) 2010-10-05 2012-04-05 Qualcomm Incorporated Electronic Package and Method of Making an Electronic Package
JP2012104790A (en) 2010-10-12 2012-05-31 Elpida Memory Inc Semiconductor device
CN102024782B (en) 2010-10-12 2012-07-25 北京大学 Three-dimensional vertical interconnecting structure and manufacturing method thereof
US8618646B2 (en) 2010-10-12 2013-12-31 Headway Technologies, Inc. Layered chip package and method of manufacturing same
JP5591653B2 (en) 2010-10-27 2014-09-17 東和精工株式会社 Label peeling machine
US8263435B2 (en) 2010-10-28 2012-09-11 Stats Chippac, Ltd. Semiconductor device and method of stacking semiconductor die in mold laser package interconnected by bumps and conductive vias
US8697492B2 (en) 2010-11-02 2014-04-15 Tessera, Inc. No flow underfill
US8525318B1 (en) 2010-11-10 2013-09-03 Amkor Technology, Inc. Semiconductor device and fabricating method thereof
KR101075241B1 (en) 2010-11-15 2011-11-01 테세라, 인코포레이티드 Microelectronic package with terminals on dielectric mass
WO2012067177A1 (en) 2010-11-17 2012-05-24 株式会社フジクラ Wiring board and method for producing same
KR20120056052A (en) 2010-11-24 2012-06-01 삼성전자주식회사 Semiconductor Package
US8502387B2 (en) 2010-12-09 2013-08-06 Stats Chippac Ltd. Integrated circuit packaging system with vertical interconnection and method of manufacture thereof
US8853558B2 (en) 2010-12-10 2014-10-07 Tessera, Inc. Interconnect structure
US8736065B2 (en) 2010-12-22 2014-05-27 Intel Corporation Multi-chip package having a substrate with a plurality of vertically embedded die and a process of forming the same
US8772817B2 (en) 2010-12-22 2014-07-08 Cree, Inc. Electronic device submounts including substrates with thermally conductive vias
KR101215271B1 (en) 2010-12-29 2012-12-26 앰코 테크놀로지 코리아 주식회사 A method for manufacturing a semiconductor package structure and a semiconductor package structure
US20120184116A1 (en) 2011-01-18 2012-07-19 Tyco Electronics Corporation Interposer
US8766436B2 (en) 2011-03-01 2014-07-01 Lsi Corporation Moisture barrier for a wire bond
US8508045B2 (en) 2011-03-03 2013-08-13 Broadcom Corporation Package 3D interconnection and method of making same
US8841765B2 (en) 2011-04-22 2014-09-23 Tessera, Inc. Multi-chip module with stacked face-down connected dies
US9508622B2 (en) 2011-04-28 2016-11-29 Freescale Semiconductor, Inc. Method for protecting copper wire bonds on aluminum pads of a semiconductor device from corrosion
US8476115B2 (en) 2011-05-03 2013-07-02 Stats Chippac, Ltd. Semiconductor device and method of mounting cover to semiconductor die and interposer with adhesive material
KR101128063B1 (en) 2011-05-03 2012-04-23 테세라, 인코포레이티드 Package-on-package assembly with wire bonds to encapsulation surface
US8669646B2 (en) 2011-05-31 2014-03-11 Broadcom Corporation Apparatus and method for grounding an IC package lid for EMI reduction
US9117811B2 (en) 2011-06-13 2015-08-25 Tessera, Inc. Flip chip assembly and process with sintering material on metal bumps
US9006031B2 (en) 2011-06-23 2015-04-14 Stats Chippac, Ltd. Semiconductor device and method of forming EWLB package with standoff conductive layer over encapsulant bumps
KR20130007049A (en) 2011-06-28 2013-01-18 삼성전자주식회사 Package on package using through silicon via technique
US8476770B2 (en) 2011-07-07 2013-07-02 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and methods for forming through vias
US9449941B2 (en) 2011-07-07 2016-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Connecting function chips to a package to form package-on-package
US8487421B2 (en) 2011-08-01 2013-07-16 Tessera, Inc. Microelectronic package with stacked microelectronic elements and method for manufacture thereof
US8937309B2 (en) 2011-08-08 2015-01-20 Micron Technology, Inc. Semiconductor die assemblies, semiconductor devices including same, and methods of fabrication
US20130037929A1 (en) 2011-08-09 2013-02-14 Kay S. Essig Stackable wafer level packages and related methods
US20130040423A1 (en) * 2011-08-10 2013-02-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of Multi-Chip Wafer Level Packaging
US8988895B2 (en) 2011-08-23 2015-03-24 Tessera, Inc. Interconnection elements with encased interconnects
US20130049218A1 (en) 2011-08-31 2013-02-28 Zhiwei Gong Semiconductor device packaging having pre-encapsulation through via formation
KR101800440B1 (en) 2011-08-31 2017-11-23 삼성전자주식회사 Semiconductor package having plural semiconductor chips and method of forming the same
US8816404B2 (en) 2011-09-16 2014-08-26 Stats Chippac, Ltd. Semiconductor device and method of forming stacked semiconductor die and conductive interconnect structure through an encapsulant
US9177832B2 (en) 2011-09-16 2015-11-03 Stats Chippac, Ltd. Semiconductor device and method of forming a reconfigured stackable wafer level package with vertical interconnect
KR101900423B1 (en) 2011-09-19 2018-09-21 삼성전자주식회사 Semiconductor memory device
JP5947904B2 (en) 2011-10-03 2016-07-06 インヴェンサス・コーポレイション Stub minimized for multi-die wire bond assembly with orthogonal window
US20130087915A1 (en) 2011-10-10 2013-04-11 Conexant Systems, Inc. Copper Stud Bump Wafer Level Package
US9105552B2 (en) 2011-10-31 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package devices and methods of packaging semiconductor dies
US9171790B2 (en) 2012-05-30 2015-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package devices and methods of packaging semiconductor dies
KR101297015B1 (en) 2011-11-03 2013-08-14 주식회사 네패스 Method of manufacturing fan-out semiconductor package using lead frame, semiconductor package thereof, and package on package thereof
US9196588B2 (en) 2011-11-04 2015-11-24 Invensas Corporation EMI shield
US8916781B2 (en) 2011-11-15 2014-12-23 Invensas Corporation Cavities containing multi-wiring structures and devices
US8552556B1 (en) 2011-11-22 2013-10-08 Amkor Technology, Inc. Wafer level fan out package
US8912651B2 (en) 2011-11-30 2014-12-16 Taiwan Semiconductor Manufacturing Company, Ltd. Package-on-package (PoP) structure including stud bulbs and method
KR20130078221A (en) 2011-12-30 2013-07-10 삼성전자주식회사 Semiconductor package having a redistribution structure
US8680684B2 (en) 2012-01-09 2014-03-25 Invensas Corporation Stackable microelectronic package structures
US9258922B2 (en) 2012-01-18 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. PoP structures including through-assembly via modules
KR20130090143A (en) 2012-02-03 2013-08-13 삼성전자주식회사 Package on package type semicoductor packages and method for fabricating the same
US8742576B2 (en) 2012-02-15 2014-06-03 Oracle International Corporation Maintaining alignment in a multi-chip module using a compressible structure
US8946757B2 (en) 2012-02-17 2015-02-03 Invensas Corporation Heat spreading substrate with embedded interconnects
US8372741B1 (en) 2012-02-24 2013-02-12 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9349706B2 (en) 2012-02-24 2016-05-24 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US20130234317A1 (en) 2012-03-09 2013-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging Methods and Packaged Semiconductor Devices
US9082763B2 (en) 2012-03-15 2015-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Joint structure for substrates and methods of forming
US9842798B2 (en) 2012-03-23 2017-12-12 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming a PoP device with embedded vertical interconnect units
KR20130111780A (en) 2012-04-02 2013-10-11 삼성전자주식회사 Silicon devices having an emi shield
US8922005B2 (en) 2012-04-11 2014-12-30 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for package on package devices with reversed stud bump through via interconnections
US8978247B2 (en) 2012-05-22 2015-03-17 Invensas Corporation TSV fabrication using a removable handling structure
US8835228B2 (en) 2012-05-22 2014-09-16 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US20130323409A1 (en) 2012-05-31 2013-12-05 Skyworks Solutions, Inc. Systems and methods for controlling electromagnetic interference for integrated circuit modules
US8948712B2 (en) 2012-05-31 2015-02-03 Skyworks Solutions, Inc. Via density and placement in radio frequency shielding applications
US8981559B2 (en) 2012-06-25 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package devices and methods of packaging semiconductor dies
US8742597B2 (en) 2012-06-29 2014-06-03 Intel Corporation Package substrates with multiple dice
US8653626B2 (en) 2012-07-18 2014-02-18 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures including a capacitor and methods of forming the same
US9502390B2 (en) 2012-08-03 2016-11-22 Invensas Corporation BVA interposer
US8642393B1 (en) 2012-08-08 2014-02-04 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package devices and methods of forming same
US8828860B2 (en) 2012-08-30 2014-09-09 International Business Machines Corporation Double solder bumps on substrates for low temperature flip chip bonding
US9443797B2 (en) 2012-09-14 2016-09-13 STATS ChipPAC Pte. Ltd. Semiconductor device having wire studs as vertical interconnect in FO-WLP
US8963339B2 (en) 2012-10-08 2015-02-24 Qualcomm Incorporated Stacked multi-chip integrated circuit package
US8975726B2 (en) 2012-10-11 2015-03-10 Taiwan Semiconductor Manufacturing Company, Ltd. POP structures and methods of forming the same
KR101419597B1 (en) 2012-11-06 2014-07-14 앰코 테크놀로지 코리아 주식회사 Semiconductor device and manufacturing method thereof
US9418971B2 (en) 2012-11-08 2016-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Package-on-package structure including a thermal isolation material and method of forming the same
US9412661B2 (en) 2012-11-21 2016-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming package-on-package structure
US9401338B2 (en) 2012-11-29 2016-07-26 Freescale Semiconductor, Inc. Electronic devices with embedded die interconnect structures, and methods of manufacture thereof
US8878353B2 (en) 2012-12-20 2014-11-04 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
US20140175657A1 (en) 2012-12-21 2014-06-26 Mihir A. Oka Methods to improve laser mark contrast on die backside film in embedded die packages
US8729714B1 (en) 2012-12-31 2014-05-20 Intel Mobile Communications GmbH Flip-chip wafer level package and methods thereof
US9378982B2 (en) 2013-01-31 2016-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. Die package with openings surrounding end-portions of through package vias (TPVs) and package on package (PoP) using the die package
US8940630B2 (en) 2013-02-01 2015-01-27 Invensas Corporation Method of making wire bond vias and microelectronic package having wire bond vias
US9136254B2 (en) 2013-02-01 2015-09-15 Invensas Corporation Microelectronic package having wire bond vias and stiffening layer
US8907500B2 (en) 2013-02-04 2014-12-09 Invensas Corporation Multi-die wirebond packages with elongated windows
US20140225248A1 (en) 2013-02-13 2014-08-14 Qualcomm Incorporated Power distribution and thermal solution for direct stacked integrated circuits
US9209081B2 (en) 2013-02-21 2015-12-08 Freescale Semiconductor, Inc. Semiconductor grid array package
US20140239490A1 (en) 2013-02-26 2014-08-28 Unimicron Technology Corporation Packaging substrate and fabrication method thereof
US20140239479A1 (en) 2013-02-26 2014-08-28 Paul R Start Microelectronic package including an encapsulated heat spreader
US9461025B2 (en) 2013-03-12 2016-10-04 Taiwan Semiconductor Manfacturing Company, Ltd. Electric magnetic shielding structure in packages
US9299670B2 (en) 2013-03-14 2016-03-29 Freescale Semiconductor, Inc. Stacked microelectronic packages having sidewall conductors and methods for the fabrication thereof
US9788466B2 (en) 2013-04-16 2017-10-10 Skyworks Solutions, Inc. Apparatus and methods related to ground paths implemented with surface mount devices
KR20140126598A (en) 2013-04-23 2014-10-31 삼성전자주식회사 semiconductor package and method for manufacturing of the same
CN104603945B (en) 2013-06-28 2018-04-24 英特尔Ip公司 MEMS on application specific integrated circuit (ASIC) (MEMS)
US9685365B2 (en) 2013-08-08 2017-06-20 Invensas Corporation Method of forming a wire bond having a free end
KR20150025633A (en) 2013-08-29 2015-03-11 삼성전자주식회사 Package-on-package device and method of fabricating the same
US20150076714A1 (en) 2013-09-16 2015-03-19 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US9012263B1 (en) 2013-10-31 2015-04-21 Freescale Semiconductor, Inc. Method for treating a bond pad of a package substrate
US9379078B2 (en) 2013-11-07 2016-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. 3D die stacking structure with fine pitches
KR101631934B1 (en) 2013-11-13 2016-06-21 앰코 테크놀로지 코리아 주식회사 Semiconductor package structure and manufacturing method thereof
US9583456B2 (en) 2013-11-22 2017-02-28 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9379074B2 (en) 2013-11-22 2016-06-28 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US9263394B2 (en) 2013-11-22 2016-02-16 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9653442B2 (en) 2014-01-17 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit package and methods of forming same
US9196586B2 (en) 2014-02-13 2015-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package including an embedded surface mount device and method of forming the same
US9362161B2 (en) 2014-03-20 2016-06-07 Stats Chippac, Ltd. Semiconductor device and method of forming 3D dual side die embedded build-up semiconductor package
US9318452B2 (en) 2014-03-21 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor packages and methods of forming the same
US9437459B2 (en) 2014-05-01 2016-09-06 Freescale Semiconductor, Inc. Aluminum clad copper structure of an electronic component package and a method of making an electronic component package with an aluminum clad copper structure
US20150340305A1 (en) 2014-05-20 2015-11-26 Freescale Semiconductor, Inc. Stacked die package with redistribution layer
US20150380376A1 (en) 2014-06-25 2015-12-31 Varughese Mathew Surface finish for wirebonding
US9735084B2 (en) 2014-12-11 2017-08-15 Invensas Corporation Bond via array for thermal conductivity
KR101640341B1 (en) 2015-02-04 2016-07-15 앰코 테크놀로지 코리아 주식회사 Semiconductor package
US9490222B1 (en) 2015-10-12 2016-11-08 Invensas Corporation Wire bond wires for interference shielding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295729B1 (en) * 1992-10-19 2001-10-02 International Business Machines Corporation Angled flying lead wire bonding process
US20020117330A1 (en) * 1993-11-16 2002-08-29 Formfactor, Inc. Resilient contact structures formed and then attached to a substrate
US6653170B1 (en) * 2001-02-06 2003-11-25 Charles W. C. Lin Semiconductor chip assembly with elongated wire ball bonded to chip and electrolessly plated to support circuit
US20050133916A1 (en) * 2003-12-17 2005-06-23 Stats Chippac, Inc Multiple chip package module having inverted package stacked over die
US20060139893A1 (en) * 2004-05-20 2006-06-29 Atsushi Yoshimura Stacked electronic component and manufacturing method thereof
US20080308305A1 (en) * 2007-06-15 2008-12-18 Ngk Spark Plug Co., Ltd. Wiring substrate with reinforcing member
US20090212418A1 (en) * 2008-02-27 2009-08-27 Texas Instruments Incorporated Thermal interface material design for enhanced thermal performance and improved package structural integrity
US20100314748A1 (en) * 2009-06-15 2010-12-16 Kun Yuan Technology Co., Ltd. Chip packaging method and structure thereof
US20120280386A1 (en) * 2011-05-03 2012-11-08 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US20130082399A1 (en) * 2011-10-04 2013-04-04 Won-keun Kim Semiconductor package and method of manufacturing the same
US20130093087A1 (en) * 2011-10-17 2013-04-18 Invensas Corporation Package-on-package assembly with wire bond vias

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10062661B2 (en) 2011-05-03 2018-08-28 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US9842745B2 (en) 2012-02-17 2017-12-12 Invensas Corporation Heat spreading substrate with embedded interconnects
US9953914B2 (en) 2012-05-22 2018-04-24 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US10008477B2 (en) 2013-09-16 2018-06-26 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US10026717B2 (en) 2013-11-22 2018-07-17 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9852969B2 (en) 2013-11-22 2017-12-26 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US9165904B1 (en) * 2014-06-17 2015-10-20 Freescale Semiconductor, Inc. Insulated wire bonding with EFO before second bond
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US10008469B2 (en) 2015-04-30 2018-06-26 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US9646946B2 (en) 2015-10-07 2017-05-09 Invensas Corporation Fan-out wafer-level packaging using metal foil lamination
US9847238B2 (en) 2015-10-07 2017-12-19 Invensas Corporation Fan-out wafer-level packaging using metal foil lamination
US9812402B2 (en) 2015-10-12 2017-11-07 Invensas Corporation Wire bond wires for interference shielding
US9911718B2 (en) 2015-11-17 2018-03-06 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
US10043779B2 (en) 2015-11-17 2018-08-07 Invensas Corporation Packaged microelectronic device for a package-on-package device
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US10115678B2 (en) 2017-11-06 2018-10-30 Invensas Corporation Wire bond wires for interference shielding

Also Published As

Publication number Publication date Type
US10008477B2 (en) 2018-06-26 grant
WO2015039043A3 (en) 2015-05-07 application
US20170025390A1 (en) 2017-01-26 application
WO2015039043A2 (en) 2015-03-19 application
KR20160057421A (en) 2016-05-23 application

Similar Documents

Publication Publication Date Title
US6701614B2 (en) Method for making a build-up package of a semiconductor
US7138706B2 (en) Semiconductor device and method for manufacturing the same
US6781242B1 (en) Thin ball grid array package
US8404520B1 (en) Package-on-package assembly with wire bond vias
US7315077B2 (en) Molded leadless package having a partially exposed lead frame pad
US6853064B2 (en) Semiconductor component having stacked, encapsulated dice
US7390700B2 (en) Packaged system of semiconductor chips having a semiconductor interposer
US7462936B2 (en) Formation of circuitry with modification of feature height
US6709897B2 (en) Method of forming IC package having upward-facing chip cavity
US20090045497A1 (en) Semiconductor device and method of manufacturing the same
US5594275A (en) J-leaded semiconductor package having a plurality of stacked ball grid array packages
US7723852B1 (en) Stacked semiconductor package and method of making same
US20090146301A1 (en) Semiconductor device and method of manufacturing the same
US7476962B2 (en) Stack semiconductor package formed by multiple molding and method of manufacturing the same
US20070045812A1 (en) Microfeature assemblies including interconnect structures and methods for forming such interconnect structures
KR101011863B1 (en) Semiconductor package and fabricating?method thereof
US20100258933A1 (en) Semiconductor device, method of forming the same, and electronic device
US20080176362A1 (en) Stress free package and laminate-based isolator package
US9136254B2 (en) Microelectronic package having wire bond vias and stiffening layer
US20090102030A1 (en) Integrated circuit package with etched leadframe for package-on-package interconnects
US20130168856A1 (en) Package on Package Devices and Methods of Packaging Semiconductor Dies
US8878353B2 (en) Structure for microelectronic packaging with bond elements to encapsulation surface
US20140036454A1 (en) Bva interposer
US8372741B1 (en) Method for package-on-package assembly with wire bonds to encapsulation surface
US8940630B2 (en) Method of making wire bond vias and microelectronic package having wire bond vias

Legal Events

Date Code Title Description
AS Assignment

Owner name: INVENSAS CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HABA, BELGACEM;CRISP, RICHARD DEWITT;ZOHNI, WAEL;SIGNING DATES FROM 20130923 TO 20130925;REEL/FRAME:031360/0422

AS Assignment

Owner name: ROYAL BANK OF CANADA, AS COLLATERAL AGENT, CANADA

Free format text: SECURITY INTEREST;ASSIGNORS:INVENSAS CORPORATION;TESSERA, INC.;TESSERA ADVANCED TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040797/0001

Effective date: 20161201