PL120368B1 - Method of manufacture of thermal barrier in the form of cermet layer,on a substrate of superalloy on the basis of nickel or cobalteramicheskogo sloja-na posteli v sverkhsplave na bazise nikelja ili kobal'ta - Google Patents

Method of manufacture of thermal barrier in the form of cermet layer,on a substrate of superalloy on the basis of nickel or cobalteramicheskogo sloja-na posteli v sverkhsplave na bazise nikelja ili kobal'ta Download PDF

Info

Publication number
PL120368B1
PL120368B1 PL1976192290A PL19229076A PL120368B1 PL 120368 B1 PL120368 B1 PL 120368B1 PL 1976192290 A PL1976192290 A PL 1976192290A PL 19229076 A PL19229076 A PL 19229076A PL 120368 B1 PL120368 B1 PL 120368B1
Authority
PL
Poland
Prior art keywords
nickel
substrate
cobalt
thermal barrier
superalloy
Prior art date
Application number
PL1976192290A
Other languages
Polish (pl)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of PL120368B1 publication Critical patent/PL120368B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Description

Przedmiotem wynalazku jest sposób wytwarzania bariery termicznej w postaci metalowo- ceramicznej warstwy, na podlozu z nadstopu na bazie niklu lub kobaltu.Plazmowo natryskiwane metalowo-ceramiczne warstwy, z zastosowaniem stabilizowanego dwutlenku cyrkonu, tworzace termiczna bariere ochronna sa znanejako stopy MCrAlY, w których M oznacza zelazo, nikiel, kobalt i mieszaniny niklu i kobaltu, i opisane szczególowo w opisach patentowych Stanów Zjednoczonych nr 3542530, 3 676085, 3754903 i 3 928 026 dotyczacych stopu NiCoCrAlY, i sa szeroko stosowane do zabezpieczania czesci metalowych narazonych na dzialanie wysokiej temperatury.Maja one za zadanie obnizanie temperatury metalowego podloza i zmniejszanie wplywu przejsciowych efektów cieplnych, na konstrukcje. Konstrukcje takie sa powszechnie stosowane w komorach spalania, przewodach przesylowych, przewodach dopalaczy silników turbin gazowych oraz moga byc takze uzyte do zabezpieczenia powierzchni lopatek i platów.Najwazniejsza cecha tych warstwjest ich zdolnosc termicznego izolowania, poniewaz wielkosc obnizania temperatury metalowego podloza i zmniejszania wplywu przejsciowych efektów ciepl¬ nych wiaza sie z niskim przewodnictwem cieplnym skladnika tlenkowego i gruboscia jego warstwy.Pozadane sa nastepujace wlasnosci warstwy izolacyjnej: niskie przewodnictwo cieplne wlasciwa przyczepnosc dla zapewnienia odpornosci na termiczne naprezenie zluszczajace, to znaczy dobre laczenie sie miedzy czasteczkami i podlozem, maksymalna integralnosc metalurgiczna i odpornosc na utleniajacocieplna korozje skladnika metalowego, mozliwie bliskie wielkosci rozszerzalnosci cieplnej miedzy warstwa ceramiczna a stopem podloza, odpowiednia stabilizacja pozadanej, krystalicznej struktury, np. dwutlenek cyrkonu w ukladzie regularnym w celu zmniejszenia do minimum efektów nieliniowej rozszerzalnosci cieplnej, powodowanej przez strukturalna transfor¬ macje, mozliwosc napfaw uszkodzen w czasie wytwarzania i po pracy.Znanych jest kilka metalowo-ceramicznych powlok na bazie dwutlenku cyrkonu stabilizowa¬ nego tlenkiem magnezu. Zazwyczaj podloze stanowi nadstop na bazie niklu lub kobaltu taki jak Hastelloy X zawierajacy wagowo 0,1%C, 0,5%Mn, 0,5%Si, 22%Cr, l,5%Co, 9%Mo, 0,6%W,2 120 368 18,5%Fe oraz reszta Ni, który pokrywa sie warstwa wiazaca ze stopu nikiel-5% glinu lub nikiel- 20% chromu, posrednia warstwa metalowa, warstwa stabilizowanego dwutlenku cyrkonu i zewnetrzna warstwa stabilizowanego dwutlenku cyrkonu. Warstwy takie plazmowo natryskuje sie na podloze. Obecnie uwaza sie, ze mozna to przeprowadzic sprawniej i przy nizszych kosztach przez wprowadzenie metod dajacych w efekcie ciagly wzrost stezenia dwutlenku cyrkonu od 0 na powierzchni granicznej miedzy natryskiwana warstwa a podlozem, do 100% na zewnetrznej powierzchni warstwy natryskiwanej. Na ogól naklada sie powloki o grubosci okolo 380 /um.Stosowane techniki szczególowo omawiaja opisy patentowe Stanów Zjednoczonych nr 3006782, 2937102, 3091 548 i 3 522064.Obecnie, jednym z najchetniej stosowanych skladników ceramicznych jest dwutlenek cyr¬ konu, który mozna stosowac zarówno sam jak i w mieszaninach z takimi substancjami jak tlenek magnezu, tlenek wacjpia, tlenek itru, tlenek lantanu, tlenek cezu, znanymi jako stabilizatory dwutlenkiTcyrkonu w bardziej pozadanym, regularnym ukladzie krystalicznym. Zgodnie z tym, jeden z najlepszych znanych srodków zabezpieczajacych podloza z nadstopów na bazie niklu i kobaltu przed dzialaniem wysokiej temperatury sklada sie z ceramicznej warstwy dwutlenku cyrkonu nalozonej na podloze ze stopu nikiel-chrom lub nikiel-glin, w której stezenie ceramicznego skladnika wzrasta albo w sposób ciagly albo nieliniowo niewielkimi skokami od podloza do warstwy zewnetrznej.Po zastosowaniu tych ukladów i stwierdzeniu ich dobrej pracy, zaobserwowano wystepowanie pewnych wad. Stwierdzono, ze powstaja one na skutek tlenowej degradacji skladników metalo¬ wych, po której nastepuje zluszczanie zewnetrznej warstwy ceramicznej, przy tym, usuwanie tych wad jest utrudnione z powodu odpornosci metalowego skladnika na dzialanie kwasnych roztwo¬ rów usuwajacych warstwe powloki. Stwierdzono, ze odpowiedni dobór metalowej powloki wiaza¬ cej wplywa w znacznym stopniu na poprawe funkcjonowania termicznej bariery, jak równiez w przypadku koniecznosci umozliwia naprawy przedmiotu.Zgodnie z wynalazkiem, sposób wytwarzania bariery termicznej w postaci metalowo- ceramicznej warstwy, na podlozu z nadstopu na bazie niklu lub kobaltu, przez nakladanie na to podloze metalowej powloki wiazacej i nakladaniu z nia lub na nia ceramicznej warstwy na bazie dwutlenku cyrkonu, polega zgodnie z wynalazkiem na tym, ze powloke wiazaca naklada sie ze stopu zawierajacego 15-40% chromu, 10-25% glinu, do 1% itru, przy czym reszte stanowi material wybrany z grupy skladajacej sie z zelaza, kobaltu, niklu oraz mieszaniny niklu i kobaltu co daje nieoczekiwany wzrost wytrzymalosci cieplnej bariery.Korzystnie, naklada sie powloke wiazaca ze stopu zawierajacego 15-40% chromu, 10-25% glinu, 0,01-1% itru, w którym reszte stanowi kobalt.Oczywiste jest, ze aczkolwiek nakladanie warstwy w sposób ciagly jest korzystniejsze, to jednak przy braku odpowiedniej aparatury do ciaglego natryskiwania ze stopniowaniem zwieksza¬ nia zawartosci dwutlenku cyrkonu mozna nalozyc jedna lub wiecej warstw kolejno zwiekszajac w kazdej zawartosc dwutlenku cyrkonu.Dwutlenek cyrkonu w warstwie tworzacej bariere termiczna jest stabilizowany w ukladzie regularnym dodatkiem tlenku wapnia lub tlenku magnezu. Moze takze zawierac inne tlenki takie jak tlenek itru lub tlenek lantanu, które sa znane jako trwale stabilizatory dwutlenku cyrkonu w ukladzie regularnym, lub metastabilizatory takie jak trójtlenek cezu. Mozliwe równiez jest dodawa¬ nie antystabilizatorów takich jak tlenek niklu, tlenek cynku, tlenek kobaltu w domieszkach ze stabilizowanym, regularnym dwutlenkiem cyrkonu aby dopasowac wlasnosci czesci ceramicznych pod wzgledem odpornosci na uderzenie cieplne przez dobór wytrzymalosci na sciskanie i wspól¬ czynników rozszerzalnosci cieplnej odpowiednio do wlasnosci metalicznego podloza. Stosowany termin „dwutlenek cyrkonu** jaki uzyto ponizej oznacza czysty dwutlenek cyrkonu oraz obejmuje materialy ceramiczne oparte na bazie dwutlenku cyrkonu zjedna lub wiecej domieszkami, które podano przykladowo powyzej.Przyklad I. Plyty ze stopu typu Hastelloy X zawierajacego w procentach wagowych 0,1C, 0,5Mn, 0,5Si, 22Cr, 1,5Co, 9Mo, 0,6W, 18,5Feoraz reszta Ni pokryto znana powloka o skladzieNi- Cr oraz Z1O2, zmieniajacym sie stopniowo w sposób ciagly oraz powloka wytworzona sposobem wedlug wynalazku zawierajaca wagowo 67,5% Co, 20% Cr, 12% Al, 0,5% Y i 17% Zr02 stabilizo¬ wanego tlenkiem magnezu, w warstwach o grubosci 0,022-0,035 cm.120368 3 Powloki naklada sie za pomoca pistoletu plazmowego model 1068 zdysza typu 106F45H-1, w plazmotronie model PS-61M o mocy 40 kW, i dwu zasilaczy proszkowych model 1008A. Jeden zasilacz proszkowy zawiera stop powloki wiazacej, drugi zawiera dwutlenek cyrkonu. W obu zasilaczach stosowano nadcisnienie argonu. Przez zmiany predkosci przeplywu w poszczególnych zasilaczach proszkowych otrzymuje sie ciagla zmiane stezenia materialu ceramicznego w powloce termicznej bariery. Granulacja proszku nie jest parametrem krytycznym i w stosowanej aparaturze uzywano sproszkowanego stopu powloki wiazacej o granulacji 0,03-0,05 mm, uznanej za najlep¬ sza. Uzycie zbyt drobnego granulatu powodowalo zatykanie dyszy pistoletu do napylania na skutek zbyt szybkiego topnienia proszku.Próbke z powloka o znanym skladzie poddano 100-godzinnej i 200-godzinnej statycznej próbie utleniania w temperaturze 1253K. Metalograficzne badanie struktury powloki po próbie wykazalo, ze niklowo-chromowy skladnik po 100 godzinach ulegl znacznemu utlenieniu. Inna próbke wykonana w ten sam sposób poddano testowi utleniania w temperaturze 1368K a nastepnie zahartowano w wodzie. Metalograficzne badanie struktury powloki po takiej próbie wykazalo prawie calkowite utlenienie niklu z peknieciami biegnacymi pionowo przez powloke w kierunku metalowego podloza.Natomiast metalograficzne badanie próbek z powloka sposobem wedlug wynalazku wykazalo znacznie mniejsze utlenienie zwiazanej powloki, co wskazuje na przedluzenie jej trwalosci. Prowa¬ dzono równiez badania próbek w zlozu fluidalnym, polegajace na poddaniu ich dzialaniu tempera¬ tury 1253K przez 2 minuty, a nastepnie chlodzeniu przez 2 minuty w temperaturze pokojowej.Badanie przerwano po 100 cyklach i stwierdzono zadawalajaca przyczepnosc powloki do stopu podloza, a metalograficzne badanie skladników stopu wykazalo tylko czesciowe ich utlenienie.Natomiast próbki ze stopu niklowo-chromowego ulegly w tych warunkach calkowitemu utlenieniu.Przyklad II. Wewnetrzne powierzchnie kilku normalnej wielkosci komór spalania silnika gazowej turbiny ze stopu Hastelloy X o skladziejak wyzej, pokryto stopniowanym w sposób ciagly stopem MgO(ZrO;rkobalt) chrom(glin)itr o wyzej podanym skladzie i poddano próbom silniko¬ wym. Po 150-cio godzinnej próbie wytrzymalosciowej badany stop byl znacznie lepszy pod wzgledem odpornosci krawedzi na kruszenie niz konwencjonalne powloki z 17% MgO/Zr02 Ni-20% Cr, którym pokryto inna komore spalania w takiej samej próbie.Zastrzezenia patentowe 1. Sposób wytwarzania bariery termicznej w postaci metalowo-ceramicznej warstwy na pod¬ lozu z nadstopu na bazie niklu lub kobaltu, przez nakladanie na to podloze metalowej powloki wiazacej i nakladanie z nia lub na nia ceramicznej warstwy na bazie dwutlenku cyrkonu, znamienny tym, ze powloke wiazaca naklada sie ze stopu zawierajacego 15-40% chromu, 10-25% glinu, do 1% itru, przy czym reszte stanowi material wybrany z grupy skladajacej sie z zelaza, kobaltu, niklu oraz mieszaniny niklu i kobaltu. 2. Sposób wedlug zastrz. 1, znamienny tym, ze naklada sie powloke wiazaca ze stopu zawiera¬ jacego korzystnie 15-40% chromu, 10-25% glinu, 0,01-1% itru, w którym reszte stanowi kobalt. PLThe subject of the invention is a method of producing a thermal barrier in the form of a metal-ceramic layer on a nickel-based or cobalt-based superalloy. Plasma sprayed metal-ceramic layers with the use of stabilized zirconium dioxide, forming a thermal protective barrier are known as MCrAlY alloys, where M stands for iron, nickel, cobalt, and mixtures of nickel and cobalt, and described in detail in U.S. Patent Nos. 3,542,530, 3,676,085, 3,754,903 and 3,928,026 relating to NiCoCrAlY alloy, and are widely used to protect metal parts exposed to high temperature. the task of lowering the temperature of the metal substrate and reducing the impact of transient thermal effects on structures. Such structures are commonly used in combustion chambers, transmission lines, afterburner lines of gas turbine engines, and can also be used to protect the surface of blades and lamellae. The most important feature of these layers is their thermal insulating ability, since the magnitude of lowering the temperature of the metal substrate and reducing the effects of transient thermal effects These properties are related to the low thermal conductivity of the oxide component and the thickness of its layer. to oxidative heat corrosion of the metal component, possibly close to the thermal expansion between the ceramic layer and the base alloy, adequate stabilization of the desired, crystalline structure, e.g. zirconium dioxide in In order to minimize the effects of non-linear thermal expansion caused by structural transformations, the possibility of damage occurring during manufacture and after operation. Several metal-ceramic coatings based on zirconium dioxide stabilized with magnesium oxide are known. Typically the substrate is a nickel or cobalt based superalloy such as Hastelloy X containing 0.1% by weight C, 0.5% Mn, 0.5% Si, 22% Cr, 1.5% Co, 9% Mo, 0.6 % W, 2 120 368 18.5% Fe and the remainder of Ni, which is covered with a nickel-5% aluminum or nickel-20% chromium bonding layer, an intermediate metal layer, a stabilized zirconium dioxide layer and an outer layer of stabilized zirconium dioxide. Such layers are plasma sprayed onto the substrate. It is now believed that this can be done more efficiently and at lower cost by introducing methods that result in a continuous increase in the concentration of zirconium dioxide from 0 at the interface between the sprayed layer and the substrate, to 100% on the outer surface of the sprayed layer. In general, coatings of approximately 380 µm are applied. The techniques used are detailed in U.S. Patent Nos. 3,006,782, 2,937,102, 3,091,548, and 3,522,064. Currently, one of the most readily used ceramic ingredients is zirconium dioxide, which can be used both by itself. and in mixtures with substances such as magnesium oxide, vanadium oxide, yttrium oxide, lanthanum oxide, cesium oxide, known as Tzirconium dioxide stabilizers in a more desirable, cubic crystal configuration. Accordingly, one of the best known protective agents for nickel-based cobalt-based superalloys against heat consists of a ceramic zirconium dioxide layer applied to a nickel-chromium or nickel-aluminum alloy substrate in which the concentration of the ceramic component increases or increases continuously or non-linearly with small jumps from the substrate to the outer layer. After these systems have been used and found to be working well, some defects have been observed. It has been found that they arise as a result of the oxygen degradation of the metal components followed by the peeling of the outer ceramic layer, while the removal of these defects is made difficult due to the resistance of the metal component to the action of acidic solutions that remove the coating layers. It has been found that the appropriate selection of the metal bonding coating significantly improves the functioning of the thermal barrier and, if necessary, enables the repair of the object. According to the invention, a method of producing a thermal barrier in the form of a metal-ceramic layer on a superalloy based on nickel or cobalt by applying a bonding metal coating to the substrate and applying a zirconium dioxide-based ceramic layer thereon or thereon, according to the invention, that the bonding coat is deposited from an alloy containing 15-40% chromium, 10-25 % aluminum, up to 1% yttrium, the remainder being a material selected from the group consisting of iron, cobalt, nickel and a mixture of nickel and cobalt, resulting in an unexpected increase in the thermal resistance of the barrier. Preferably, a bonding coating of an alloy containing 15-40% is applied. chromium, 10-25% aluminum, 0.01-1% yttrium with the remainder cobalt. It is obvious that although the layering is agly is more advantageous, but in the absence of adequate equipment for continuous spraying with a gradual increase in the zirconium dioxide content, one or more layers can be applied successively increasing each zirconium dioxide content. The zirconium dioxide in the layer forming the thermal barrier is stabilized in the system by the regular addition of calcium oxide or magnesium oxide. It may also contain other oxides such as yttrium oxide or lanthanum oxide, which are known to permanently stabilize zirconia in the cubic, or metastabilizers such as cesium trioxide. It is also possible to add anti-stabilizers such as nickel oxide, zinc oxide, cobalt oxide in admixtures with stabilized cubic zirconia in order to adjust the properties of the ceramic parts with respect to thermal shock resistance by selecting the compressive strength and thermal expansion coefficients according to the properties. metallic substrate. The term "zirconium dioxide ** as used below" means pure zirconium dioxide and includes ceramics based on zirconium dioxide with one or more of the admixtures given for example above. Example I. Plates of Hastelloy X alloy containing 0.1C by weight percent, 0.5Mn, 0.5Si, 22Cr, 1.5Co, 9Mo, 0.6W, 18.5Fe and the rest of Ni were covered with a known coating with the composition Ni-Cr and Z1O2, changing gradually and continuously, and the coating produced by the method according to the invention containing 67 , 5% Co, 20% Cr, 12% Al, 0.5% Y and 17% ZrO2 stabilized with magnesium oxide, in layers 0.022-0.035 cm thick 120368 3 Coatings are applied with a model 1068 plasma gun with a nozzle type 106F45H-1, in the model PS-61M plasmatron with a power of 40 kW, and two model 1008A powder feeders. One powder feeder contains the bond coating alloy, the other contains zirconium dioxide. Both feeders used argon overpressure. By changing the flow rate in the individual powder feeders, a continuous change in the concentration of the ceramic material in the coating of the thermal barrier is obtained. The granulation of the powder is not a critical parameter and the apparatus used used a powdered binder alloy with a granulation of 0.03-0.05 mm, considered the best. Using too fine granules caused clogging of the spray gun nozzle due to too rapid melting of the powder. A coating sample of known composition was subjected to a 100-hour and 200-hour static oxidation test at 1253K. Metallographic examination of the coating structure after the test showed that the nickel-chromium component was significantly oxidized after 100 hours. Another sample made in the same way was subjected to the oxidation test at the temperature of 1368K and then quenched in water. The metallographic examination of the coating structure after such a test showed almost complete oxidation of the nickel with cracks running vertically through the coating towards the metal substrate, while the metallographic examination of the coating samples according to the method according to the invention showed a much lower oxidation of the bonded coating, which indicates an extension of its life. The samples were also tested in a fluidized bed by subjecting them to the temperature of 1253K for 2 minutes and then cooling them for 2 minutes at room temperature. The test was stopped after 100 cycles and a satisfactory adhesion of the coating to the base alloy was found, and the metallographic test The alloy components were only partially oxidized, while the samples from the nickel-chromium alloy were completely oxidized under these conditions. Example II. The inner surfaces of several normal-sized combustion chambers of a Hastelloy X gas turbine engine, having the above grade, were covered with a continuously graded MgO (ZrO; rcobalt) chromium (aluminum) yttrium alloy of the above composition and subjected to engine testing. After a 150-hour endurance test, the tested alloy was much better in terms of edge resistance to crushing than conventional coatings with 17% MgO / Zr02 Ni-20% Cr, which covered another combustion chamber in the same test. Patent claims 1. Method for producing the barrier thermal in the form of a metal-ceramic layer on a nickel or cobalt-based superalloy substrate by applying a bonding metal coating to the substrate and applying a zirconium dioxide-based ceramic layer thereon or over it, characterized in that the bonding coat overlaps with an alloy containing 15-40% chromium, 10-25% aluminum, up to 1% yttrium, the rest being a material selected from the group consisting of iron, cobalt, nickel and mixtures of nickel and cobalt. 2. The method according to claim The method of claim 1, wherein the bond coating is made of an alloy containing preferably 15-40% chromium, 10-25% aluminum, 0.01-1% yttrium, the balance being cobalt. PL

Claims (2)

Zastrzezenia patentowe 1. Sposób wytwarzania bariery termicznej w postaci metalowo-ceramicznej warstwy na pod¬ lozu z nadstopu na bazie niklu lub kobaltu, przez nakladanie na to podloze metalowej powloki wiazacej i nakladanie z nia lub na nia ceramicznej warstwy na bazie dwutlenku cyrkonu, znamienny tym, ze powloke wiazaca naklada sie ze stopu zawierajacego 15-40% chromu, 10-25% glinu, do 1% itru, przy czym reszte stanowi material wybrany z grupy skladajacej sie z zelaza, kobaltu, niklu oraz mieszaniny niklu i kobaltu.Claims 1. A method of producing a thermal barrier in the form of a metal-ceramic layer on a nickel-based or cobalt-based superalloy substrate by applying a bonding metal coating to the substrate and applying a ceramic layer based on zirconium dioxide to the substrate or thereto, characterized by that the bonding coating is composed of an alloy containing 15-40% chromium, 10-25% aluminum, up to 1% yttrium, the remainder being a material selected from the group consisting of iron, cobalt, nickel and a mixture of nickel and cobalt. 2. Sposób wedlug zastrz. 1, znamienny tym, ze naklada sie powloke wiazaca ze stopu zawiera¬ jacego korzystnie 15-40% chromu, 10-25% glinu, 0,01-1% itru, w którym reszte stanowi kobalt. PL2. The method according to claim The method of claim 1, wherein the bond coating is made of an alloy containing preferably 15-40% chromium, 10-25% aluminum, 0.01-1% yttrium, the balance being cobalt. PL
PL1976192290A 1975-09-11 1976-09-09 Method of manufacture of thermal barrier in the form of cermet layer,on a substrate of superalloy on the basis of nickel or cobalteramicheskogo sloja-na posteli v sverkhsplave na bazise nikelja ili kobal'ta PL120368B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61243975A 1975-09-11 1975-09-11

Publications (1)

Publication Number Publication Date
PL120368B1 true PL120368B1 (en) 1982-02-27

Family

ID=24453160

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1976192290A PL120368B1 (en) 1975-09-11 1976-09-09 Method of manufacture of thermal barrier in the form of cermet layer,on a substrate of superalloy on the basis of nickel or cobalteramicheskogo sloja-na posteli v sverkhsplave na bazise nikelja ili kobal'ta

Country Status (18)

Country Link
JP (1) JPS5917189B2 (en)
AU (1) AU504802B2 (en)
BE (1) BE845193A (en)
BR (1) BR7605892A (en)
CA (1) CA1068178A (en)
CH (1) CH609731A5 (en)
DE (1) DE2640829C2 (en)
DK (1) DK151901C (en)
FR (1) FR2323656A1 (en)
GB (1) GB1519370A (en)
IL (1) IL50375A (en)
IN (1) IN145818B (en)
IT (1) IT1064979B (en)
NO (1) NO148114C (en)
PL (1) PL120368B1 (en)
SE (1) SE440238B (en)
SU (1) SU1505441A3 (en)
YU (1) YU42647B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508493B1 (en) * 1981-06-30 1989-04-21 United Technologies Corp PROCESS FOR APPLYING A THERMAL BARRIER COATING IN CONSTRAIN TOLERANT MATERIAL ON A METAL SUBSTRATE
GB2101910B (en) * 1981-07-14 1984-09-19 Westinghouse Electric Corp Improvements in or relating to thermally protected alloys
JPS60149828A (en) * 1984-01-13 1985-08-07 Hitachi Ltd Combustion device
DE3446479A1 (en) * 1984-12-20 1986-07-03 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau METAL FASTENER
IL84067A (en) * 1986-10-30 1992-03-29 United Technologies Corp Thermal barrier coating system
US5098797B1 (en) * 1990-04-30 1997-07-01 Gen Electric Steel articles having protective duplex coatings and method of production
US5105625A (en) * 1990-11-23 1992-04-21 General Motors Corporation Mounting for a ceramic scroll in a gas turbine machine
US5180285A (en) * 1991-01-07 1993-01-19 Westinghouse Electric Corp. Corrosion resistant magnesium titanate coatings for gas turbines
CA2091472A1 (en) * 1992-04-17 1993-10-18 William R. Young Whisker-anchored thermal barrier coating
AU1875595A (en) * 1994-02-16 1995-09-04 Sohl, Charles E. Coating scheme to contain molten material during gas turbine engine fires
GB9617267D0 (en) * 1996-08-16 1996-09-25 Rolls Royce Plc A metallic article having a thermal barrier coating and a method of application thereof
JP4520626B2 (en) * 2000-11-27 2010-08-11 池袋琺瑯工業株式会社 Glass lining construction method
JP2003147464A (en) 2001-11-02 2003-05-21 Tocalo Co Ltd Member with high-temperature strength
DE102009029152A1 (en) 2009-09-03 2011-03-17 Evonik Degussa Gmbh Flexible coating composites with predominantly mineral composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE206570C1 (en) * 1956-03-09 1966-08-02
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
GB1214743A (en) * 1968-01-24 1970-12-02 Imp Metal Ind Kynoch Ltd Improvements in or relating to oxidation-resistant coatings
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US3758233A (en) * 1972-01-17 1973-09-11 Gen Motors Corp Vibration damping coatings
US3837894A (en) * 1972-05-22 1974-09-24 Union Carbide Corp Process for producing a corrosion resistant duplex coating

Also Published As

Publication number Publication date
DE2640829A1 (en) 1977-03-17
DK151901B (en) 1988-01-11
YU42647B (en) 1988-10-31
JPS5233842A (en) 1977-03-15
DE2640829C2 (en) 1986-07-31
DK370176A (en) 1977-03-12
CA1068178A (en) 1979-12-18
DK151901C (en) 1988-06-06
IL50375A0 (en) 1976-10-31
JPS5917189B2 (en) 1984-04-19
SU1505441A3 (en) 1989-08-30
AU1693276A (en) 1978-02-23
NO148114C (en) 1983-08-10
SE7609304L (en) 1977-03-12
CH609731A5 (en) 1979-03-15
BE845193A (en) 1976-12-01
BR7605892A (en) 1977-08-16
SE440238B (en) 1985-07-22
FR2323656A1 (en) 1977-04-08
NO148114B (en) 1983-05-02
IL50375A (en) 1979-05-31
IN145818B (en) 1978-12-30
AU504802B2 (en) 1979-11-01
YU220076A (en) 1982-08-31
NO763047L (en) 1977-03-14
IT1064979B (en) 1985-02-25
FR2323656B1 (en) 1983-01-14
GB1519370A (en) 1978-07-26

Similar Documents

Publication Publication Date Title
KR100227237B1 (en) Coating composition having good corrosion and oxidation resistance
CA1194345A (en) Superalloy coating composition with high temperature oxidation resistance
US4248940A (en) Thermal barrier coating for nickel and cobalt base super alloys
CA1169267A (en) Superalloy coating composition with oxidation and/or sulfidation resistance
Wortman et al. Thermal barrier coatings for gas turbine use
US4328285A (en) Method of coating a superalloy substrate, coating compositions, and composites obtained therefrom
EP0909831B1 (en) Process for depositing a bond coat for a thermal barrier coating system
US4419416A (en) Overlay coatings for superalloys
USRE32121E (en) Overlay coatings for superalloys
EP1550644B1 (en) Ceramic compositions useful in thermal barrier coatings having reduced thermal conductivity
US6165628A (en) Protective coatings for metal-based substrates and related processes
EP1598439A2 (en) HVOF bi-layer coating with controlled porosity for use in thermal barrier coatings
PL120368B1 (en) Method of manufacture of thermal barrier in the form of cermet layer,on a substrate of superalloy on the basis of nickel or cobalteramicheskogo sloja-na posteli v sverkhsplave na bazise nikelja ili kobal'ta
US6924045B2 (en) Bond or overlay MCrAIY-coating
US5712050A (en) Superalloy component with dispersion-containing protective coating
EP1627862A1 (en) Ceramic compositions for thermal barrier coatings with improved mechanical properties
Hsu et al. A study of NiCo0. 6Fe0. 2CrxSiAlTiy high-entropy alloys for applications as a high-temperature protective coating and a bond coat in thermal barrier coating systems
JPH0447018B2 (en)
USRE33876E (en) Thermal barrier coating for nickel and cobalt base super alloys
Shankar et al. Vacuum plasma sprayed metallic coatings
EP0061322A2 (en) Alloy coated metal structure having excellent resistance to high-temperature corrosion and thermal shock
Wu et al. Effects of bond coat pre-aluminizing treatment on the properties of ZrO2-8wt.% Y2O3/Co 29Cr 6Al 1Y thermal barrier coatings
Sathishkumar et al. Hot corrosion behaviour of continuous and pulsed current gas tungsten arc welded Hastelloy X in different molten salts environment
US6485792B1 (en) Endurance of NiA1 coatings by controlling thermal spray processing variables
Basha et al. Studies on thermally grown oxide as an interface between plasma-sprayed coatings and a nickel-based superalloy substrate