JPS5917189B2 - Thermally protected superalloy structure - Google Patents

Thermally protected superalloy structure

Info

Publication number
JPS5917189B2
JPS5917189B2 JP51107675A JP10767576A JPS5917189B2 JP S5917189 B2 JPS5917189 B2 JP S5917189B2 JP 51107675 A JP51107675 A JP 51107675A JP 10767576 A JP10767576 A JP 10767576A JP S5917189 B2 JPS5917189 B2 JP S5917189B2
Authority
JP
Japan
Prior art keywords
nickel
zirconia
coating
cobalt
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51107675A
Other languages
Japanese (ja)
Other versions
JPS5233842A (en
Inventor
ジヨージ・ウイリアム・ゴワード
デルトン・アンドリユース・グレイ
リチヤード・キヤロル・クルテナツト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JPS5233842A publication Critical patent/JPS5233842A/en
Publication of JPS5917189B2 publication Critical patent/JPS5917189B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Description

【発明の詳細な説明】 本発明は熱的に保護された超合金構造体に係る。[Detailed description of the invention] The present invention relates to thermally protected superalloy structures.

安定化された酸化ジールコニウムを使用するプラズマ
スプレーされた金属/セラミック熱障壁コーティングは
、高温度条件に曝される金属要素を保護し、一般的には
素地金属の淵度及び熱的遷移の影響を低減するために広
く使用されている。かかるシステムは、ガスタービンエ
ンジンに於ける燃焼室、中間ダクト及びアフターバーナ
ライナーに於て通常使用されているが、これは又種々の
段階に於るベーンプラットフォーム及びエアーフォイル
を保護するのにも使用されて良いものである。 かかる
コーティングの最も重要な特徴は、その熱的絶縁特性で
ある。何故ならば、素地金属の温度及び過渡的な熱応力
を低減する大きさは、酸化物成分の熱伝導率が小さいこ
と及びコーティングの厚さに関係しているからである。
一般に実際の熱障壁コーティングに必要とされる特性は
以下の如きものである。(a)熱伝導率が小さいこと。
Plasma-sprayed metal/ceramic thermal barrier coatings using stabilized zirconium oxide protect metal elements exposed to high temperature conditions, and generally overcome the effects of substrate metal depth and thermal transitions. Widely used to reduce Such systems are commonly used in combustion chambers, intermediate ducts and afterburner liners in gas turbine engines, but they are also used to protect vane platforms and airfoils at various stages. It is good to be treated. The most important feature of such coatings is their thermally insulating properties. This is because the magnitude of the reduction in base metal temperature and transient thermal stress is related to the low thermal conductivity of the oxide component and the thickness of the coating.
Generally, the properties required for practical thermal barrier coatings are as follows. (a) Low thermal conductivity.

(b)熱応力による割れに抗すべく充分な粘着性を 有
すること、即ち良好な−粒子間及び基質に対す る接着
力を有すること。
(b) have sufficient tack to resist cracking due to thermal stress, i.e. have good interparticle and substrate adhesion;

(c)金属構成成分が冶金的に最大限に一様であり、
且酸化/高洞腐蝕抵抗を有すること。
(c) the metal constituents are maximally metallurgically uniform;
and have oxidation/high cavity corrosion resistance.

(d)セラミックと基質合金との間の熱膨張率ができる
だけ近いこと。
(d) The coefficient of thermal expansion between the ceramic and the matrix alloy is as close as possible.

(e)構造的変態により惹起される非線型的熱膨張の影
響を最小限にすべく、所要の結晶構造(立方晶系ジルコ
ニア)が充0に安定化されていること。
(e) The required crystal structure (cubic zirconia) is fully stabilized to minimize the effects of nonlinear thermal expansion caused by structural transformation.

(f)製造中及び販売後修理が可能であること。(f) Repairs are possible during manufacturing and after sale.

当技術分野に於ては現在マグネシアにて安定化されたジ
ルコニアに基く幾つかのセラミツク一金属系が採用され
ている。一般的には素地金属はHastellOyX,
TD−Nickel,或はHaynessl88の如き
ニツケル或はコバルト基超合金であり、これがニツケル
一5(f)アルミニウム或はニツケル一20%クロム合
金のボンド層と、安定化されたジルコニアセラミツクの
中間金属層と、安定化されたジルコニアの最上層とより
被覆される。かかる層は素地金属上にプラズマスプレー
され、当業者には名目上連続的な勾配処理プロセスによ
り性能が改善され且被覆コストが低減され得ることが判
つており、このプロ゜セスによりジルコニアの濃度は、
ボンド層と素地金属との界面に於るO%より外面に於る
ほぼ100%まで連続的に増大する。一般にかかるコー
テイングは約380μの厚さにまで付着される。かかる
種々の技術の詳細は、米国特許第 3,006.782号、第2,937,102号、第3
,091,548号及び第3,522,064号に開示
されている。
Several ceramic monometallic systems based on magnesia stabilized zirconia are currently employed in the art. Generally, the base metal is HastellOyX,
A nickel- or cobalt-based superalloy such as TD-Nickel, or Hayness 188, with a bond layer of Nickel-5(f) aluminum or Nickel-20% chromium alloy and an intermediate metal layer of stabilized zirconia ceramic. and a top layer of stabilized zirconia. Such a layer is plasma sprayed onto the base metal, and those skilled in the art have recognized that performance can be improved and coating costs reduced by a nominally continuous gradient treatment process, which reduces the concentration of zirconia. ,
It increases continuously from O% at the interface between the bond layer and the base metal to almost 100% at the outer surface. Typically such coatings are deposited to a thickness of about 380 microns. Details of various such techniques can be found in U.S. Pat.
, 091,548 and 3,522,064.

現在好ましいセラミツク成分のうちの一つはジルコニア
であり、これは単独で或は酸化マグネシウム、酸化カル
シウム、酸化イツトリウム、La2O3,cl2O3の
如き材料と混合されて使用されて良く、これらの材料は
より望ましい立方晶形にてジルコニアを安定化するもの
として知られている。
One of the currently preferred ceramic components is zirconia, which may be used alone or mixed with materials such as magnesium oxide, calcium oxide, yttrium oxide, La2O3, cl2O3, and these materials are more desirable. It is known to stabilize zirconia in the cubic crystal form.

従つてニツケル及びコバルト基超合金を高温環境より保
護するものとして当業者に現在知3られている最良手段
のうちの一つは、ジルコニアを基礎としたセラミツクコ
ーテイングよりなるものである。このコーテイングはニ
ツケルークロム或はニツケルーアルミニウム合金による
ベースコーテイングに接着されるものであり、このコー
テ 4′インクに於てはセラミツクの濃度は基質より上
層コーテイングまで徐々に或は不連続的に増大している
。かかる進歩した系は良好な機能を果すことが知フられ
ているが、破損が生ずる場合、その破損は金属成分が酸
化劣化し、次いでセラミツクの上層が剥脱することによ
つて発生することが分つた。
Accordingly, one of the best means currently known to those skilled in the art for protecting nickel and cobalt-based superalloys from high temperature environments consists of a zirconia-based ceramic coating. This coating is adhered to a base coating of Nickel-chrome or Nickel-aluminum alloy, and in this coat 4' ink the concentration of ceramic increases gradually or discontinuously from the substrate to the upper coating. are doing. Although such advanced systems are known to perform well, it has been found that when failure occurs, it occurs due to oxidative degradation of the metal components and subsequent spalling of the ceramic top layer. Ivy.

更に破損が生じたときには、金属成分が入手可能な酸除
去液に対して抵抗を有しているので、その破損した物品
を修繕するのが困難であつた。杢発明によれば、ボンド
被覆金属を適宜に選択することにより、熱障壁の性能及
び物品の修繕可能性に関し大巾な改善が得られることが
分つた。従つて杢発明の一つの目的は、ニツケル及びコ
バルト基超合金のための改良されたセラミツク/金属熱
障壁コーテイングを提供することである。
Furthermore, when damage occurred, it was difficult to repair the damaged article because the metal components were resistant to available acid removal solutions. In accordance with the present invention, it has been found that by appropriate selection of the bond coat metal, significant improvements in thermal barrier performance and repairability of the article can be obtained. Accordingly, one object of the present invention is to provide improved ceramic/metal thermal barrier coatings for nickel and cobalt-based superalloys.

本発明のこの目的及び他の目的は以下の説明より容易に
明らかとなろう。杢発明によれば、ジルコニア基セラミ
ツクに対するボンド被覆及び勾配化金属として、10〜
25%クロム、10〜18%アルミニウム、1%以下の
イツトリウム及び残部としてのコバルト、鉄、ニツケル
及びニツケルーコバルトよりなる群より選択された材料
よりなる合金を使用することにより、障壁の熱的抵抗が
意外にも改善されることが判つた。
This and other objects of the invention will become readily apparent from the following description. According to the heather invention, as a bond coating and grading metal for zirconia-based ceramic,
The thermal resistance of the barrier is improved by using an alloy consisting of 25% chromium, 10-18% aluminum, less than 1% yttrium and the balance a material selected from the group consisting of cobalt, iron, nickel and nickel-cobalt. was found to be surprisingly improved.

かかる材料はMCrAlY合金として知られており、米
国特許第3,542,530号、第3,676,085
号、第3,754,903号及びNiCOCrAlY合
金として1974年5月13日付にて同時出願された米
国特許出願第469,186号(米国特許第3,928
、026号)に詳細に開示されている。ボンド被覆及び
ジルコニアの濃度は、素地材料とボンド被覆との間の界
面に於る0%セラミツクから露呈面に於る100%セラ
ミツクまで連続的に濃度が変化しているのが好ましいが
、もし連続的に濃度を変化せしめる装置が入手できない
ならば、ジルコニアの濃度が不連続的に増大している一
つ或はそれ以上の層が使用されてよいことを理解された
い。このコーテイングに使用されるジルコニアは当技術
分野に於て周知である如く、ある量の酸化カルシウム或
は酸化マグネシウムを使用することにより安定化されて
立方晶形とされているのが好ましい。
Such materials are known as MCrAlY alloys and are described in U.S. Pat. Nos. 3,542,530 and 3,676,085.
No. 3,754,903 and U.S. Patent Application No. 469,186, co-filed May 13, 1974 (U.S. Pat.
, No. 026). The concentration of the bond coating and zirconia preferably varies continuously from 0% ceramic at the interface between the base material and the bond coating to 100% ceramic at the exposed surface; It should be understood that if a device to vary the concentration drastically is not available, one or more layers of discontinuously increasing concentrations of zirconia may be used. The zirconia used in this coating is preferably stabilized into a cubic crystalline form by the use of an amount of calcium or magnesium oxide, as is well known in the art.

更にジルコニアは、ジルコニアに対して永久的な立方晶
スタビライザーであることが知られているY2O3及び
La2O3の如き他の酸化物或はCl2O3の如きメタ
スタビライザーを含んでいても良い。金属基質の性質に
対応する圧縮強さ及び熱膨張係数を選択することにより
、セラミツク部の性質を熱衝撃抵抗に対して適当なもの
とすべく、立方晶に安定化されたジルコニアと混合して
酸化ニツケル、酸化亜鉛及び酸化コバルトの如き非スタ
ビライザーを追加してもよい。これらの特定技術はそれ
自身は杢発明の一部をなしてはおらず、又今後使用する
「ジルコニア」と言う言葉にはジルコニア基セラミツク
材料が含まれ、この材料は純ジルコニア或は上述の例の
うちの一つ或はそれ以上の添加物と混合されたジルコニ
アのいづれであつてもよい。本発明の熱障壁コーテイン
グは、市販の装置を使用して当技術分野に於て周知の技
術により付着されてよい。
Additionally, the zirconia may contain other oxides such as Y2O3 and La2O3, or metastabilizers such as Cl2O3, which are known to be permanent cubic stabilizers for zirconia. By choosing the compressive strength and coefficient of thermal expansion corresponding to the properties of the metal matrix, the properties of the ceramic part can be made suitable for thermal shock resistance by mixing with cubic stabilized zirconia. Non-stabilizers such as nickel oxide, zinc oxide and cobalt oxide may be added. These specific techniques do not themselves form part of the heather invention, and the term "zirconia" as used hereafter includes zirconia-based ceramic materials, which may be pure zirconia or the examples mentioned above. It can be any of zirconia mixed with one or more additives. The thermal barrier coatings of the present invention may be applied by techniques well known in the art using commercially available equipment.

以下の例に於てはノズル(AlO6F45H−1)、4
0キロワツト電源装置(PlasmadynemOde
lPS−61M)及び二杢の粉末フイーダ(Plasm
adynemOdellOO8A)を使用してミニガン
(PlasmadynemOdellO68)より付着
された。
In the following example, the nozzle (AlO6F45H-1), 4
0 kilowatt power supply
lPS-61M) and Nimoku's powder feeder (Plasm
It was attached using a minigun (PlasmadynemOdellO68) using a plasmadynemOdellOO8A).

一つの粉末フイーダはボンド被覆合金を含んでおり、も
う一つの粉末フイーダはジルコニアを含んでいたが、両
方ともアルゴンにて加圧された。個個の粉末フイーダの
流量を変化することにより、連続的に濃度が変化した熱
障壁コーテイングが得られた。材料の粉末粒子寸法の選
択は重要ではなく、使用された装置についてはボンド被
覆の合金の粒子寸法は0.03〜0.05m1&の範囲
であるのが好ましいと言うことが判つた。この材料の粒
子寸法はさほど重要ではないが、より小さな粒子寸法で
は融けるのが早すぎてスプレーガンのノズルを閉塞する
傾向があるので、使用される装置に固有なものである。
例1Haste110yXの板材が連続的に濃度変化す
るニツケルクロム及びMgOにて安定化されたジルコニ
アにて被覆され、約980℃にて100時間及び200
時間の静的酸化試験をされた。
One powder feeder contained bond coated alloy and the other powder feeder contained zirconia, both pressurized with argon. By varying the flow rates of the individual powder feeders, thermal barrier coatings with continuously varying concentrations were obtained. The choice of powder particle size of the material is not critical and it has been found that for the equipment used it is preferred that the particle size of the bond coated alloy is in the range 0.03 to 0.05 m1&. The particle size of this material is not critical, but is specific to the equipment used, as smaller particle sizes tend to melt too quickly and block the nozzle of the spray gun.
Example 1 A Haste 110yX plate was coated with zirconia stabilized with continuously varying concentrations of nickel chromium and MgO for 100 hours and 200 hours at approximately 980°C.
A static oxidation test was performed for an hour.

この試験後のコーテイング組織に関する金属組織学的試
験により、ニツケルクロム成分は100時間後にはかな
り酸化されていたことが判つた。他のサンプルが109
5℃にて1時間酸化試験され、次いで水焼入れされた。
かかる処理の後のコーテイング組織に関する金属組織学
的試験により、劣化したニツケルは殆んど完全に酸化さ
れており、割れが被覆を貫通して素地金属の方向に垂直
に走つて′いることが判つた。
Metallographic examination of the coating structure after this test revealed that the nickel chromium component had been significantly oxidized after 100 hours. Other samples are 109
It was oxidized for 1 hour at 5°C and then water quenched.
Metallographic examination of the structure of the coating after such treatment shows that the degraded nickel is almost completely oxidized, with cracks running through the coating and perpendicular to the direction of the base metal. Ivy.

17%のMgOにて安定化されれたジルコニアを含む6
7.5%コバルト、20%クロム、12%アルミニウム
、0.5(fl)イツトリウムにて被覆され、コーテイ
ングの厚さの変化が0.0−22〜0.035cmであ
るHastellOyXの板材についても同様の試験が
行なわれた。
6 containing zirconia stabilized with 17% MgO
The same goes for Hastell Oy test was conducted.

上述の例に対応する試験の後かかるサンプルを金属組織
学的に試験した結果、ボンド被覆は殆んど酸化しておら
ず、従つて期待されるコーテイングの作動寿命はより長
くなることが判つた。種々のサンプルについて流動層試
験も行なわれ、この試験に於ては資料は2分間980℃
と言う淵度とされ、室渦にて2分間冷却された。コバル
ト、クロム、アルミニウム、イツトリウムを含むサンプ
ルを使用して試験は100サイクル続けられたが、基質
合,金に対するコーテイングの接着性は充分であり、又
金属組織学的試験によれば成分は部分的に酸化している
のみであつた。しかしニツケルクロムのサンプルは完全
に酸化していた。例2 JT8D−17ガスタービンエンジンから実寸大のHa
stellOyX製バーナ筒が幾つか取出され、その内
周面上に連続的に濃度変化する上述のMgO/ZrO2
−コバルト/クロム/アルミニウム/イツトリウム合金
にて被覆され、実験的にエンジン試験が行なわれた。
Metallographic examination of such samples after tests corresponding to the examples described above showed that the bond coating was less oxidized and therefore the expected working life of the coating was longer. . Fluidized bed tests were also conducted on various samples, in which the material was heated to 980°C for 2 minutes.
It was cooled for 2 minutes in a chamber vortex. Testing was continued for 100 cycles using samples containing cobalt, chromium, aluminum, and yttrium, and adhesion of the coating to the substrate alloy, gold, was satisfactory, and metallographic tests showed that the components were partially It was only oxidized to However, the nickel chrome sample was completely oxidized. Example 2 Actual size Ha from JT8D-17 gas turbine engine
Several stellOyX burner cylinders are taken out, and the above-mentioned MgO/ZrO2 concentration changes continuously on the inner peripheral surface.
- coated with cobalt/chromium/aluminum/yttrium alloy and experimentally tested on engines.

Claims (1)

【特許請求の範囲】 1 ニッケル基或いはコバルト基超合金よりなる群より
選択された材料の基質と、前記基質上の金属ボンド被覆
と、前記金属ボンド被覆上のジルコニア基セラミック熱
障壁コーティングとを含む熱的に保護された超合金構造
体にして、前記金属ボンド被覆は、実質的に、15〜4
0%のクロムと、10〜25%のアルミニウムと、1%
以下のイットリウムと、鉄、コバルト、ニッケル及びニ
ッケルとコバルトの混合物よりなる群より選択された材
料の残部とよりなる合金であることを特徴とする超合金
構造体。 2 前記セラミック熱障壁コーティングの材料はセラミ
ック材料の濃度が基質との境界面より仕上げ面まで連続
的に増大する態様にて前記金属ボンド被覆の合金と混合
されていることを特徴とする特許請求の範囲第1項記載
の超合金構造体。
Claims: 1. A substrate of a material selected from the group consisting of nickel-based or cobalt-based superalloys, a metal bond coating on the substrate, and a zirconia-based ceramic thermal barrier coating on the metal bond coating. For thermally protected superalloy structures, the metal bond coating is substantially 15 to 4
0% chromium, 10-25% aluminum, 1%
A superalloy structure characterized in that it is an alloy consisting of yttrium and the remainder of a material selected from the group consisting of iron, cobalt, nickel and a mixture of nickel and cobalt. 2. The material of the ceramic thermal barrier coating is mixed with the alloy of the metal bond coating in such a manner that the concentration of ceramic material increases continuously from the interface with the substrate to the finished surface. A superalloy structure according to scope 1.
JP51107675A 1975-09-11 1976-09-08 Thermally protected superalloy structure Expired JPS5917189B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61243975A 1975-09-11 1975-09-11

Publications (2)

Publication Number Publication Date
JPS5233842A JPS5233842A (en) 1977-03-15
JPS5917189B2 true JPS5917189B2 (en) 1984-04-19

Family

ID=24453160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51107675A Expired JPS5917189B2 (en) 1975-09-11 1976-09-08 Thermally protected superalloy structure

Country Status (18)

Country Link
JP (1) JPS5917189B2 (en)
AU (1) AU504802B2 (en)
BE (1) BE845193A (en)
BR (1) BR7605892A (en)
CA (1) CA1068178A (en)
CH (1) CH609731A5 (en)
DE (1) DE2640829C2 (en)
DK (1) DK151901C (en)
FR (1) FR2323656A1 (en)
GB (1) GB1519370A (en)
IL (1) IL50375A (en)
IN (1) IN145818B (en)
IT (1) IT1064979B (en)
NO (1) NO148114C (en)
PL (1) PL120368B1 (en)
SE (1) SE440238B (en)
SU (1) SU1505441A3 (en)
YU (1) YU42647B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508493B1 (en) * 1981-06-30 1989-04-21 United Technologies Corp PROCESS FOR APPLYING A THERMAL BARRIER COATING IN CONSTRAIN TOLERANT MATERIAL ON A METAL SUBSTRATE
GB2101910B (en) * 1981-07-14 1984-09-19 Westinghouse Electric Corp Improvements in or relating to thermally protected alloys
JPS60149828A (en) * 1984-01-13 1985-08-07 Hitachi Ltd Combustion device
DE3446479A1 (en) * 1984-12-20 1986-07-03 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau METAL FASTENER
IL84067A (en) * 1986-10-30 1992-03-29 United Technologies Corp Thermal barrier coating system
US5098797B1 (en) * 1990-04-30 1997-07-01 Gen Electric Steel articles having protective duplex coatings and method of production
US5105625A (en) * 1990-11-23 1992-04-21 General Motors Corporation Mounting for a ceramic scroll in a gas turbine machine
US5180285A (en) * 1991-01-07 1993-01-19 Westinghouse Electric Corp. Corrosion resistant magnesium titanate coatings for gas turbines
CA2091472A1 (en) * 1992-04-17 1993-10-18 William R. Young Whisker-anchored thermal barrier coating
AU1875595A (en) * 1994-02-16 1995-09-04 Sohl, Charles E. Coating scheme to contain molten material during gas turbine engine fires
GB9617267D0 (en) * 1996-08-16 1996-09-25 Rolls Royce Plc A metallic article having a thermal barrier coating and a method of application thereof
JP4520626B2 (en) * 2000-11-27 2010-08-11 池袋琺瑯工業株式会社 Glass lining construction method
JP2003147464A (en) 2001-11-02 2003-05-21 Tocalo Co Ltd Member with high-temperature strength
DE102009029152A1 (en) 2009-09-03 2011-03-17 Evonik Degussa Gmbh Flexible coating composites with predominantly mineral composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE206570C1 (en) * 1956-03-09 1966-08-02
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
GB1214743A (en) * 1968-01-24 1970-12-02 Imp Metal Ind Kynoch Ltd Improvements in or relating to oxidation-resistant coatings
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US3758233A (en) * 1972-01-17 1973-09-11 Gen Motors Corp Vibration damping coatings
US3837894A (en) * 1972-05-22 1974-09-24 Union Carbide Corp Process for producing a corrosion resistant duplex coating

Also Published As

Publication number Publication date
PL120368B1 (en) 1982-02-27
DE2640829A1 (en) 1977-03-17
DK151901B (en) 1988-01-11
YU42647B (en) 1988-10-31
JPS5233842A (en) 1977-03-15
DE2640829C2 (en) 1986-07-31
DK370176A (en) 1977-03-12
CA1068178A (en) 1979-12-18
DK151901C (en) 1988-06-06
IL50375A0 (en) 1976-10-31
SU1505441A3 (en) 1989-08-30
AU1693276A (en) 1978-02-23
NO148114C (en) 1983-08-10
SE7609304L (en) 1977-03-12
CH609731A5 (en) 1979-03-15
BE845193A (en) 1976-12-01
BR7605892A (en) 1977-08-16
SE440238B (en) 1985-07-22
FR2323656A1 (en) 1977-04-08
NO148114B (en) 1983-05-02
IL50375A (en) 1979-05-31
IN145818B (en) 1978-12-30
AU504802B2 (en) 1979-11-01
YU220076A (en) 1982-08-31
NO763047L (en) 1977-03-14
IT1064979B (en) 1985-02-25
FR2323656B1 (en) 1983-01-14
GB1519370A (en) 1978-07-26

Similar Documents

Publication Publication Date Title
US4248940A (en) Thermal barrier coating for nickel and cobalt base super alloys
EP0937787B1 (en) Method of applying an overcoat to a thermal barrier coating and coated article
KR100227237B1 (en) Coating composition having good corrosion and oxidation resistance
US4419416A (en) Overlay coatings for superalloys
Wortman et al. Thermal barrier coatings for gas turbine use
US4861618A (en) Thermal barrier coating system
USRE32121E (en) Overlay coatings for superalloys
CA1194345A (en) Superalloy coating composition with high temperature oxidation resistance
US6291084B1 (en) Nickel aluminide coating and coating systems formed therewith
US6165628A (en) Protective coatings for metal-based substrates and related processes
JP3961606B2 (en) Thermal barrier coating comprising improved undercoat and member coated with said thermal barrier coating
JPS5917189B2 (en) Thermally protected superalloy structure
JPS6339663B2 (en)
FR2486966A1 (en) METHOD FOR PROTECTING SURFACES OF SUPERALLIAGES AGAINST OXIDATION
JPS6136061B2 (en)
JPS6196064A (en) Production of turbine blade
JP2000096216A (en) Formation of heat insulating coating series
USRE33876E (en) Thermal barrier coating for nickel and cobalt base super alloys
JPS5989745A (en) Metal coating composition for high temperature
JP2826824B2 (en) Thermal insulation coating method and gas turbine combustor
EP1122329A1 (en) A method of providing a protective coating on a metal substrate, and related articles
Yoshiba Effect of hot corrosion on the mechanical performances of superalloys and coating systems
US6485792B1 (en) Endurance of NiA1 coatings by controlling thermal spray processing variables
JP2934599B2 (en) High temperature corrosion resistant composite surface treatment method
Smialek Improved oxidation life of segmented plasma sprayed 8YSZ thermal barrier coatings