NO148114B - THERMALLALLY PROTECTED CONSTRUCTION OF A SUPER alloy. - Google Patents

THERMALLALLY PROTECTED CONSTRUCTION OF A SUPER alloy. Download PDF

Info

Publication number
NO148114B
NO148114B NO763047A NO763047A NO148114B NO 148114 B NO148114 B NO 148114B NO 763047 A NO763047 A NO 763047A NO 763047 A NO763047 A NO 763047A NO 148114 B NO148114 B NO 148114B
Authority
NO
Norway
Prior art keywords
coating
nickel
alloy
cobalt
ceramic
Prior art date
Application number
NO763047A
Other languages
Norwegian (no)
Other versions
NO763047L (en
NO148114C (en
Inventor
George William Goward
Delton Andrews Grey
Richard Carroll Krutenat
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of NO763047L publication Critical patent/NO763047L/no
Publication of NO148114B publication Critical patent/NO148114B/en
Publication of NO148114C publication Critical patent/NO148114C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

1 1

Den foreliggende oppfinnelse vedrører en termisk beskyttet konstruksjon av en superlegering, hvor konstruksjonen omfatter et underlag av et materiale i form av en nikkel- eller koboltsuperlegering, et metallbindingsbelegg på underlaget samt et zirkoniumoksydbasert, keramisk termisk barrierebelegg på bindingsbelegget. The present invention relates to a thermally protected construction of a superalloy, where the construction comprises a substrate of a material in the form of a nickel or cobalt superalloy, a metal bonding coating on the substrate and a zirconium oxide-based, ceramic thermal barrier coating on the bonding coating.

Plasmasprøytede, metalliske og keramisk termiske barrierebelegg hvor det anvendes stabilisert zirkoniumoksyd er i utstrakt bruk for beskyttelse av metallkomponenter som er utsatt for be-tingelser med høy temperatur, og generelt for senking både av grunnmetallets temperatur og virkningene av termiske transienter. Slike systemer er vanlig brukt i forbrenningskamre, overgangs-kanaler og etterbrennerforinger i gassturbinmotorer og kan også anvendes for beskyttelse av skovlplattformer og aerofoiler på ulike trinn. Plasma-sprayed, metallic and ceramic thermal barrier coatings using stabilized zirconia are in widespread use for the protection of metal components exposed to high-temperature conditions, and generally for lowering both the temperature of the base metal and the effects of thermal transients. Such systems are commonly used in combustion chambers, transition channels and afterburner liners in gas turbine engines and can also be used to protect blade platforms and aerofoils at various stages.

Det viktigste trekk ved disse belegg er deres termiske isolasjonsegenskaper, idet størrelsen av nedsettelsen av grunn-metalltemperaturen og transient termisk spenning er knyttet til lav varmeledningsevne hos oksydkomponenten og beleggenes tykk-else. Generelt er de ønskete egenskaper hos et praktisk, termisk barrierebelegg følgende: The most important feature of these coatings is their thermal insulation properties, as the magnitude of the reduction in the base metal temperature and transient thermal stress is linked to the low thermal conductivity of the oxide component and the thickness of the coatings. In general, the desired properties of a practical, thermal barrier coating are the following:

a) lav varmeledningsevne, a) low thermal conductivity,

b) tilstrekkelig heft til å motstå avskalling som følge b) sufficient firmness to resist subsequent spalling

av termisk spenning, dvs. at det er nødvendig med god binding of thermal stress, i.e. that a good bond is required

mellom partiklene og med underlaget, between the particles and with the substrate,

c) maksimal metallurgisk helhet og oksydasjons-varmkorro-sjonsbestandighet hos den metalliske bestanddel, d) mest mulig overensstemmende varmeutvidelse mellom det keramiske materiale og den underliggende legering, e) tilfredsstillende stabilisering av den ønskete (kubisk zirkoniumoksyd) krystallstruktur for å minimisere virkninger av ulinear termisk utvidelse bevirket av strukturell omvandling, samt c) maximum metallurgical integrity and oxidation-hot corrosion resistance of the metallic component, d) most consistent thermal expansion between the ceramic material and the underlying alloy, e) satisfactory stabilization of the desired (cubic zirconia) crystal structure to minimize effects of non-linear thermal expansion brought about by structural transformation, as well as

f) reparerbarhet under fremstilling og etter bruk. f) repairability during manufacture and after use.

Ifølge den aktuelle tilstand av kjent teknikk anvendes According to the current state of the art is used

det atskillige keramisk-metalliske systemer basert på magnesium-oksydstabilisert zirkoniumoksyd. Vanligvis er grunnmetallet en nikkel- eller koboltsuperlegering, såsom "Hastelloy X", en legering som foruten nikkel inneholder 22% krom, 0,1% karbon, 0,5% magnesium, 0,5% silisium, 1,5% kobolt, 9% molybden, 0,6% wolfram og 18,5% jern, TD-nickel, en legering som foruten nikkel inneholder 2,2% thorium, eller "Haynes 188", en legering som foruten kobolt inneholder 22% nikkel, 22% krom, 14,5% wolfram, 0,1% karbon og 0,0075% lantan, som er belagt med et bindingslag av en nikkellegering med 5% aluminium eller 20% krom, et mellomlig-gende, metallisk, stabilisert, keramisk zirkoniumoksydlag og et dekklag av stabilisert zirkoniumoksyd. Disse lag er plasma-sprøytet på grunnmetallet, og man har nå forstått at bedre egenskaper og lavere påføringsomkostninger kan oppnås ved fremgangs-måter med nominell kontinuerlig gradering, hvorved konsentrasjonen av zirkoniumoksyd økes kontinuerlig fra 0, ved grense-flaten mellom bindingslaget og grunnmetallet, til stort sett 100% ved ytterflaten. Generelt påføres disse belegg til en tyk-kelse på ca. 380 nm. there are several ceramic-metallic systems based on magnesium oxide-stabilized zirconium oxide. Usually the base metal is a nickel or cobalt superalloy, such as "Hastelloy X", an alloy which, in addition to nickel, contains 22% chromium, 0.1% carbon, 0.5% magnesium, 0.5% silicon, 1.5% cobalt, 9 % molybdenum, 0.6% tungsten and 18.5% iron, TD-nickel, an alloy containing, in addition to nickel, 2.2% thorium, or "Haynes 188", an alloy containing, in addition to cobalt, 22% nickel, 22% chromium , 14.5% tungsten, 0.1% carbon and 0.0075% lanthanum, which is coated with a bonding layer of a nickel alloy with 5% aluminum or 20% chromium, an intermediate, metallic, stabilized, ceramic zirconia layer and a cover layer of stabilized zirconium oxide. These layers are plasma sprayed onto the base metal, and it has now been understood that better properties and lower application costs can be achieved by methods with nominal continuous grading, whereby the concentration of zirconium oxide is continuously increased from 0, at the interface between the bonding layer and the base metal, to mostly 100% at the outer surface. In general, these coatings are applied to a thickness of approx. 380 nm.

Detaljerte diskusjoner som er representative for disse ulike teknikker kan finnes i US-patentskrift 3.006.782 vedrørende oksydbelagte gjenstander med metallunderbelegg, hvor først på-føres et metallbindingsbelegg og deretter påføres et keramisk belegg, US-patentskrift 2.937.102 vedrørende kontroll av zir-koniumoksydstabilisering, US-patentskrifter 3.091.548 og 3.522. 064 vedrørende stabilisert zirkoniumoksyd inneholdende nioboksyd og kalsiumoksyd. Detailed discussions representative of these various techniques can be found in US Patent 3,006,782 relating to oxide-coated articles with metal undercoats, where a metal bonding coating is first applied and then a ceramic coating is applied, US Patent 2,937,102 relating to control of zirconium oxide stabilization , US Patents 3,091,548 and 3,522. 064 concerning stabilized zirconium oxide containing niobium oxide and calcium oxide.

For tiden er en av de foretrukne keramiske komponenter zirkoniumoksyd, som kan anvendes enten alene eller blandet med et materiale såsom magnesiumoksyd, kalsiumoksyd, yttriumoksyd, ha^ O^ eller Ce^ O^, som er kjent for å stabilisere zirkoniumoksyd i den mer ønskelige kubiske form. Følgelig er en av de beste, kjente måter til å beskytte nikkel- og koboltsuperlegeringer mot høytemperaturbetingelser påføring av et zirkoniumoksydbasert keramisk belegg som er bundet til grunnbelegget med en nikkelkrom- eller nikkelaluminiumlegering hvor konsentrasjonen av keramisk materiale økes enten gradvis eller i sprang fra underlaget til det ytre belegg. Currently, one of the preferred ceramic components is zirconia, which can be used either alone or mixed with a material such as magnesium oxide, calcium oxide, yttrium oxide, Ha^O^ or Ce^O^, which is known to stabilize zirconia in the more desirable cubic shape. Accordingly, one of the best known ways to protect nickel and cobalt superalloys from high temperature conditions is the application of a zirconium oxide based ceramic coating bonded to the base coating with a nickel chromium or nickel aluminum alloy where the concentration of ceramic material is increased either gradually or in steps from the substrate to the outer coating.

Selv om disse avanserte systemer har vist seg å funksjonere godt, er det iakttatt at feil, når de virkelig opptråtte, skyl-tes oksyderende nedbrytning av den metalliske bestanddel, etterfulgt av avskalling av de ytre keramiske lag. Dessuten har det når feil har opptrått vært vanskelig å reparere gjenstandene som følge av den metalliske bestanddels bestandighet overfor tilgjengelige syrestrippingsoppløsninger. Ifølge den foreliggende oppfinnelse har det vist seg at hensiktsmessig valg av bindings-beleggmetallet frembringer vesentlige forbedringer av egenskapene til den termiske barriere og mulighetene for å reparere gjen-standen . Although these advanced systems have been shown to function well, it has been observed that failures, when they do occur, are due to oxidative breakdown of the metallic component, followed by peeling of the outer ceramic layers. Moreover, when faults have occurred, it has been difficult to repair the objects due to the resistance of the metallic component to available acid stripping solutions. According to the present invention, it has been shown that appropriate selection of the bonding coating metal produces significant improvements in the properties of the thermal barrier and the possibilities for repairing the object.

Formålet med den foreliggende oppfinnelse er å frembringe en konstruksjon med metallbindingsbelegg som gjør det mulig å eliminere eller nedsette de ovennevnte problemer. The purpose of the present invention is to produce a construction with a metal bond coating which makes it possible to eliminate or reduce the above-mentioned problems.

Detbe er ifølge oppfinnelsen oppnådd ved at bindingsbelegget er en legering av et materiale som inneholder 15-40% krom, 10-25% aluminium, 0,01-1% yttrium og resten jern, kobolt, nikkel eller en blanding av nikkel og kobolt. According to the invention, this is achieved by the bonding coating being an alloy of a material containing 15-40% chromium, 10-25% aluminium, 0.01-1% yttrium and the rest iron, cobalt, nickel or a mixture of nickel and cobalt.

Det har ifølge oppfinnelsen vist seg at bruken av denne legering som bindingsbelegg og metall i et zirkoniumoksydbasert keramisk materiale frembringer en uventet forbedring av barrie-rens termiske bestandighet. Disse legeringer er kjent som MCrAlY-legeringer og er beskrevet i detalj i US-patentskrifter 3.542.530, 3.676.085, 3.754.903 samt i US-patentskrift 3.928.026. Ifølge oppfinnelsen er det keramiske barrieremateriale fortrinnsvis blandet med legeringen i bindingsbelegget slik at keramisk materiale øker kontinuerlig fra 0% keramisk materiale ved grense-flaten mellom underlaget og bindingsbelegget til 100% keramisk materiale ved den eksponerte overflate. Selv om den kontinuerlige økning av konsentrasjonen er klart foretrukket, kan det også anvendes ett eller flere lag med sprangvis økende konsentrasjoner av zirkoniumoksyd dersom utstyr for kontinuerlig gradering ikke er tilgjengelig. According to the invention, it has been shown that the use of this alloy as a bonding coating and metal in a zirconium oxide-based ceramic material produces an unexpected improvement in the thermal resistance of the barrier. These alloys are known as MCrAlY alloys and are described in detail in US Patents 3,542,530, 3,676,085, 3,754,903 as well as in US Patent 3,928,026. According to the invention, the ceramic barrier material is preferably mixed with the alloy in the bonding coating so that ceramic material increases continuously from 0% ceramic material at the interface between the substrate and the bonding coating to 100% ceramic material at the exposed surface. Although the continuous increase in concentration is clearly preferred, one or more layers with incrementally increasing concentrations of zirconium oxide can also be used if equipment for continuous grading is not available.

Zirkoniumoksydet som anvendes i dette belegg er fortrinnsvis stabilisert i den kubiske form ved anvendelse av kalsiumoksyd eller magnesiumoksyd, slik som kjent på området. I tillegg kan zirkoniumoksydet også inneholde andre oksyder, såsom ^ 2^ 3 0<3 L^O^f som også er kjent for å være permanente kubiske stabilisa-torer for zirkoniumoksyd, eller metastabilisatorer såsom Cq^ O^. Det er også mulig å tilsette antistabilisatorer, såsom nikkel-oksyd, sinkoksyd og koboltoksyd i blanding med det kubisk stabili-serte zirkoniumoksyd for å tilpasse egenskapene av de keramiske andeler i forhold til termisk sjokkbestandighet ved å velge kom-presjonsstyrker og varmeutvidelseskoeffisienter som svarer til egenskapene til det metalliske underlag. Disse spesifikke teknikker utgjør ikke i seg selv noen del av den foreliggende oppfinnelse, og det skal forstås at bruken av begrepet "zirkoniumoksyd", slik det anvendes her, omfatter zirkoniumoksydbaserte keramiske materialer som enten kan være rent zirkoniumoksyd eller zirkoniumoksyd blandet med ett eller flere tilsetningsstoffer som de ovenfor angitte er eksempler på. The zirconium oxide used in this coating is preferably stabilized in the cubic form by using calcium oxide or magnesium oxide, as is known in the field. In addition, the zirconium oxide can also contain other oxides, such as ^ 2^ 3 0<3 L^O^f which are also known to be permanent cubic stabilizers for zirconium oxide, or metastabilizers such as Cq^ O^. It is also possible to add anti-stabilisers, such as nickel oxide, zinc oxide and cobalt oxide in admixture with the cubically stabilized zirconium oxide in order to adapt the properties of the ceramic parts in relation to thermal shock resistance by choosing compression strengths and thermal expansion coefficients that correspond to the properties to the metallic substrate. These specific techniques do not in themselves form any part of the present invention, and it should be understood that the use of the term "zirconia" as used herein includes zirconia-based ceramic materials which may be either pure zirconia or zirconia mixed with one or more additives of which the above are examples.

De termiske barrierebelegg kan påføres ved teknikker som er kjent på området under anvendelse av handelsvanlig utstyr. Når det gjelder de etterfølgende eksempler ble beleggene påført ved hjelp av en minipistol "Plasmadyne" modell 1068 under anvendelse av en dyse 106 F45H-1, en "Plasmadyne" modell PS-61M på 40 kilowatt som kraftkilde samt to "Plasmadyne" modell 1008A pulvermatere. Den ene pulvermater inneholdt bindingsbelegglege-ringen, mens den annen pulvermater inneholdt zirkoniumoksydet, mens begge matere ble satt under trykk med argon. Ved å variere strømningshastighetene til hver pulvermater ble det oppnådd kontinuerlig gradering av det termiske barrierebelegg. Valget av pulverstørrelsen i materialene er ikke kritisk, og med det an-vendte utstyr viste det seg at partikkelstørrelsen i metall-bindingsbelegglegeringen fortrinnsvis var i området 0,03-0,05 mm. Dette var ikke kritisk, men bare særegent for utstyret som ble anvendt idet mindre partikkelstørrelser hadde tendens til å smelte for hurtig og tilstoppe sprøytepistolens dyse. The thermal barrier coatings can be applied by techniques known in the field using commercially available equipment. For the following examples, the coatings were applied by means of a "Plasmadyne" model 1068 mini gun using a 106 F45H-1 nozzle, a "Plasmadyne" model PS-61M of 40 kilowatts as a power source and two "Plasmadyne" model 1008A powder feeders . One powder feeder contained the bonding coating alloy, while the other powder feeder contained the zirconium oxide, while both feeders were pressurized with argon. By varying the flow rates of each powder feeder, continuous grading of the thermal barrier coating was achieved. The choice of the powder size in the materials is not critical, and with the equipment used it turned out that the particle size in the metal bond coating alloy was preferably in the range 0.03-0.05 mm. This was not critical, but merely peculiar to the equipment used, as smaller particle sizes tended to melt too quickly and clog the nozzle of the spray gun.

E ksempel 1 Example 1

Plater av den ovennevnte legering "Hastelloy X" ble belagt med kontinuerlig gradert zirkoniumoksyd som var stabilisert med nikkelkrom og MgO, og ble underkastet 100 og 200 timers statiske oksydasjonsforsøk ved ca. 980°C. Metallografisk undersøkelse av beleggstrukturene etter prøven antydet at nikkelkromkornponen-ten var stort sett oksydert etter 100 timer. En annen prøve ble underkastet et oksydasjonsforsøk i 1 time ved 1095°C etterfulgt av vannavkjøling. Metallografisk undersøkelse av beleggstruk-turen etter disse behandlinger viste forvitret nikkel nesten fullstendig oksydert med sprekker løpende vertikalt mot grunnmetallet gjennom belegget. Tilsvarende forsøk ble også utført med plater av "Hastelloy X" belagt med zirkoniumoksyd stabilisert med 67,5% kobolt, 20% krom, 12% aluminium, 0,5% yttrium samt 17% MgO, med beleggtykkelser varierende mellom 0,022 og 0,035 cm. Metallografisk undersøkelse av disse prøver etter at tilsvarende forsøk som de ovenfor anførte var avsluttet, indikerte vesentlig mindre oksydasjon av bindingsbelegget, noe som nødven-digvis fører til en ventet lenger beleggslevetid. Undersøkelse av fluidiserte sjikt av de forskjellige prøver ble også utført, hvor prøvestykkene ble eksponert i to minutter ved 980°C etterfulgt av to minutters kjøling til romtemperatur. Ved anvendelse av kobolt-, krom-, aluminium- og yttriumholdige prøver ble under-søkelsene avbrutt etter 100 cykler med tilfredsstillende heft mellom belegget og den underliggende legering, og ved metallo-graf isk undersøkelse viste komponentene bare delvis oksydasjon. Nikkelkromprøvene var imidlertid fullstendig oksydert. Sheets of the above-mentioned alloy "Hastelloy X" were coated with continuously graded zirconium oxide stabilized with nickel chromium and MgO, and were subjected to 100 and 200 hour static oxidation tests at approx. 980°C. Metallographic examination of the coating structures after the test suggested that the nickel chromium grain ponten was largely oxidized after 100 hours. Another sample was subjected to an oxidation test for 1 hour at 1095°C followed by water cooling. Metallographic examination of the coating structure after these treatments showed weathered nickel almost completely oxidized with cracks running vertically towards the base metal through the coating. Similar tests were also carried out with plates of "Hastelloy X" coated with zirconium oxide stabilized with 67.5% cobalt, 20% chromium, 12% aluminium, 0.5% yttrium and 17% MgO, with coating thicknesses varying between 0.022 and 0.035 cm. Metallographic examination of these samples after similar tests as those listed above had been completed, indicated significantly less oxidation of the bonding coating, which necessarily leads to an expected longer coating life. Examination of fluidized layers of the various samples was also carried out, where the samples were exposed for two minutes at 980°C followed by two minutes of cooling to room temperature. When using samples containing cobalt, chromium, aluminum and yttrium, the tests were discontinued after 100 cycles with satisfactory adhesion between the coating and the underlying alloy, and metallographic examination of the components showed only partial oxidation. However, the nickel-chromium samples were completely oxidized.

Eksempel 2 Example 2

De indre flater av atskillige brennerbeholdere i full måle-stokk av ovennevnte legering "Hastelloy X" for en gassturbinmotor (JT8D 17) ble belagt med den ovenfor anførte kontinuerlig gra-derte MgO/ZrC^-kobolt/krom/aluminium/yttriumlegering og underkastet eksperimentell motorprøving. I en 150 timers holdbarhets-prøve var denne legering vesentlig bedre når det gjelder kant-avskalling enn det konvensjonelle belegg av 17% MgO/ZrC^ Ni-20% Cr på en annen brenner i samme prøve. The inner surfaces of several full-scale burner containers of the above alloy "Hastelloy X" for a gas turbine engine (JT8D 17) were coated with the above continuously graded MgO/ZrC^ cobalt/chromium/aluminum/yttrium alloy and subjected to experimental engine testing. In a 150 hour durability test, this alloy was significantly better in terms of edge spalling than the conventional coating of 17% MgO/ZrC^ Ni-20% Cr on another burner in the same test.

Selv om det ifølge oppfinnelsen foretrekkes å anvende den ovenfor angitte kobolt-, krom-, aluminium- og yttriumlegering og ZrC>2 stabilisert med 17% MgO, kan det anvendes andre sammen-setninger av fagfolk på området. Den spesifikke kobolt-, krom-, aluminium- og yttriumlegering som er anvendt i eksemplene er representative for den store klasse av materialer som består av 15-40% krom, 10-25% aluminium og mindre enn 1% yttrium legert med jern, kobolt, nikkel eller nikkel-kobolt. Denne generelle klasse av materialer er f.eks. beskrevet i de ovenfor anførte US-patentskrifter. Although according to the invention it is preferred to use the above-mentioned cobalt, chromium, aluminum and yttrium alloy and ZrC>2 stabilized with 17% MgO, other compositions can be used by experts in the field. The specific cobalt, chromium, aluminum and yttrium alloy used in the examples are representative of the large class of materials consisting of 15-40% chromium, 10-25% aluminum and less than 1% yttrium alloyed with iron, cobalt , nickel or nickel-cobalt. This general class of materials is e.g. described in the above cited US patents.

Claims (2)

1. Termisk beskyttet konstruksjon av en'superlegering, hvor konstruksjonen omfatter et underlag av et materiale i form av en nikkel- eller koboltsuperlegering, et metallbindingsbelegg på underlaget samt et zirkoniumoksydbasert, keramisk termisk barrierebelegg på bindingsbelegget, karakterisert ved at bindingsbelegget er en legering av et materiale som inneholder 15-40% krom, 10-25% aluminium, 0,01-1% yttrium og resten jern, kobolt, nikkel eller en blanding av nikkel og kobolt.1. Thermally protected construction of a superalloy, where the construction comprises a substrate of a material in the form of a nickel or cobalt superalloy, a metal bonding coating on the substrate and a zirconium oxide-based, ceramic thermal barrier coating on the bonding coating, characterized in that the bonding coating is an alloy of a material containing 15-40% chromium, 10-25% aluminum, 0.01-1% yttrium and the rest iron, cobalt, nickel or a mixture of nickel and cobalt. 2. Konstruksjon i samsvar med krav 1, karakterisert ved at det keramisk termiske barrieremateriale er blandet med legeringen i bindingsbelegget slik at konsentrasjonen av det keramiske materiale øker kontinuerlig fra underlaget til den ferdige overflate.2. Construction in accordance with claim 1, characterized in that the ceramic thermal barrier material is mixed with the alloy in the bonding coating so that the concentration of the ceramic material increases continuously from the substrate to the finished surface.
NO763047A 1975-09-11 1976-09-06 THERMALLALLY PROTECTED CONSTRUCTION OF A SUPER alloy NO148114C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61243975A 1975-09-11 1975-09-11

Publications (3)

Publication Number Publication Date
NO763047L NO763047L (en) 1977-03-14
NO148114B true NO148114B (en) 1983-05-02
NO148114C NO148114C (en) 1983-08-10

Family

ID=24453160

Family Applications (1)

Application Number Title Priority Date Filing Date
NO763047A NO148114C (en) 1975-09-11 1976-09-06 THERMALLALLY PROTECTED CONSTRUCTION OF A SUPER alloy

Country Status (18)

Country Link
JP (1) JPS5917189B2 (en)
AU (1) AU504802B2 (en)
BE (1) BE845193A (en)
BR (1) BR7605892A (en)
CA (1) CA1068178A (en)
CH (1) CH609731A5 (en)
DE (1) DE2640829C2 (en)
DK (1) DK151901C (en)
FR (1) FR2323656A1 (en)
GB (1) GB1519370A (en)
IL (1) IL50375A (en)
IN (1) IN145818B (en)
IT (1) IT1064979B (en)
NO (1) NO148114C (en)
PL (1) PL120368B1 (en)
SE (1) SE440238B (en)
SU (1) SU1505441A3 (en)
YU (1) YU42647B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2100621B (en) * 1981-06-30 1984-07-18 United Technologies Corp Strain tolerant thermal barrier coatings
GB2101910B (en) * 1981-07-14 1984-09-19 Westinghouse Electric Corp Improvements in or relating to thermally protected alloys
JPS60149828A (en) * 1984-01-13 1985-08-07 Hitachi Ltd Combustion device
DE3446479A1 (en) * 1984-12-20 1986-07-03 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau METAL FASTENER
IL84067A (en) * 1986-10-30 1992-03-29 United Technologies Corp Thermal barrier coating system
US5098797B1 (en) * 1990-04-30 1997-07-01 Gen Electric Steel articles having protective duplex coatings and method of production
US5105625A (en) * 1990-11-23 1992-04-21 General Motors Corporation Mounting for a ceramic scroll in a gas turbine machine
US5180285A (en) * 1991-01-07 1993-01-19 Westinghouse Electric Corp. Corrosion resistant magnesium titanate coatings for gas turbines
CA2091472A1 (en) * 1992-04-17 1993-10-18 William R. Young Whisker-anchored thermal barrier coating
WO1995022635A1 (en) * 1994-02-16 1995-08-24 Sohl, Charles, E. Coating scheme to contain molten material during gas turbine engine fires
GB9617267D0 (en) * 1996-08-16 1996-09-25 Rolls Royce Plc A metallic article having a thermal barrier coating and a method of application thereof
JP4520626B2 (en) 2000-11-27 2010-08-11 池袋琺瑯工業株式会社 Glass lining construction method
JP2003147464A (en) 2001-11-02 2003-05-21 Tocalo Co Ltd Member with high-temperature strength
DE102009029152A1 (en) 2009-09-03 2011-03-17 Evonik Degussa Gmbh Flexible coating composites with predominantly mineral composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE206570C1 (en) * 1956-03-09 1966-08-02
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
GB1214743A (en) * 1968-01-24 1970-12-02 Imp Metal Ind Kynoch Ltd Improvements in or relating to oxidation-resistant coatings
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US3758233A (en) * 1972-01-17 1973-09-11 Gen Motors Corp Vibration damping coatings
US3837894A (en) * 1972-05-22 1974-09-24 Union Carbide Corp Process for producing a corrosion resistant duplex coating

Also Published As

Publication number Publication date
SU1505441A3 (en) 1989-08-30
IL50375A0 (en) 1976-10-31
AU1693276A (en) 1978-02-23
YU220076A (en) 1982-08-31
DK370176A (en) 1977-03-12
GB1519370A (en) 1978-07-26
YU42647B (en) 1988-10-31
SE7609304L (en) 1977-03-12
AU504802B2 (en) 1979-11-01
FR2323656B1 (en) 1983-01-14
DK151901C (en) 1988-06-06
DE2640829C2 (en) 1986-07-31
CH609731A5 (en) 1979-03-15
IT1064979B (en) 1985-02-25
BR7605892A (en) 1977-08-16
JPS5233842A (en) 1977-03-15
NO763047L (en) 1977-03-14
SE440238B (en) 1985-07-22
BE845193A (en) 1976-12-01
PL120368B1 (en) 1982-02-27
NO148114C (en) 1983-08-10
CA1068178A (en) 1979-12-18
DK151901B (en) 1988-01-11
JPS5917189B2 (en) 1984-04-19
FR2323656A1 (en) 1977-04-08
IN145818B (en) 1978-12-30
IL50375A (en) 1979-05-31
DE2640829A1 (en) 1977-03-17

Similar Documents

Publication Publication Date Title
US4248940A (en) Thermal barrier coating for nickel and cobalt base super alloys
CA1194345A (en) Superalloy coating composition with high temperature oxidation resistance
US4339509A (en) Superalloy coating composition with oxidation and/or sulfidation resistance
CA1117828A (en) Process for producing elevated temperature corrosion resistant metal articles
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
US4419416A (en) Overlay coatings for superalloys
EP1995350B1 (en) High temperature component with thermal barrier coating
US4585481A (en) Overlays coating for superalloys
USRE32121E (en) Overlay coatings for superalloys
US5498484A (en) Thermal barrier coating system with hardenable bond coat
US5316866A (en) Strengthened protective coatings for superalloys
JP3862774B2 (en) Method of coating thermal insulation coating on superalloy article and thermal insulation coating
US4861618A (en) Thermal barrier coating system
US3754903A (en) High temperature oxidation resistant coating alloy
JPH10507230A (en) Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same
US4615864A (en) Superalloy coating composition with oxidation and/or sulfidation resistance
USRE31339E (en) Process for producing elevated temperature corrosion resistant metal articles
US3849865A (en) Method of protecting the surface of a substrate
NO148114B (en) THERMALLALLY PROTECTED CONSTRUCTION OF A SUPER alloy.
US6921586B2 (en) Ni-Base superalloy having a coating system containing a diffusion barrier layer
JPH0344484A (en) Aluminum treated coating for superalloy
US4546052A (en) High-temperature protective layer
JP2003138368A (en) Thermal barrier coating
USRE33876E (en) Thermal barrier coating for nickel and cobalt base super alloys
JPS5989745A (en) Metal coating composition for high temperature