DK151901B - THERMALLY PROTECTED CONSTRUCTION OF A SUPER alloy - Google Patents

THERMALLY PROTECTED CONSTRUCTION OF A SUPER alloy Download PDF

Info

Publication number
DK151901B
DK151901B DK370176AA DK370176A DK151901B DK 151901 B DK151901 B DK 151901B DK 370176A A DK370176A A DK 370176AA DK 370176 A DK370176 A DK 370176A DK 151901 B DK151901 B DK 151901B
Authority
DK
Denmark
Prior art keywords
coating
nickel
cobalt
alloy
zirconia
Prior art date
Application number
DK370176AA
Other languages
Danish (da)
Other versions
DK370176A (en
DK151901C (en
Inventor
George William Goward
Delton Andrews Grey
Richard Carroll Krutenat
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of DK370176A publication Critical patent/DK370176A/en
Publication of DK151901B publication Critical patent/DK151901B/en
Application granted granted Critical
Publication of DK151901C publication Critical patent/DK151901C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Description

DK 151901BDK 151901B

iin

Den foreliggende opfindelse vedrører en termisk beskyttet konstruktion af en superlegering, hvor konstruktionen omfatter et underlag af et materiale i form af en nikkel- eller koboltsuperlegering, en me-5 talbindende belægning på underlaget samt en zirkoni-umbaseret, keramisk termisk spærrebelægning på den metalbindende belægning.The present invention relates to a thermally protected structure of a superalloy, the structure comprising a substrate of a material in the form of a nickel or cobalt superalloy, a metal-bonding coating on the substrate, and a zirconium-based ceramic thermal barrier coating on the metal-binding coating. .

Plasma-påsprøjtede, metalliske og keramisk termiske 10 spærrebelægninger, hvori der anvendes stabiliseret zirkoniumoxyd, anvendes i vid udstrækning til beskyttelse af metalkomponenter, som er udsat for høje temperaturer, og generelt til sænkning af både grundmetallets temperatur og virkningerne af termiske tran-15 sienter. Sådanne systemer bruges sædvanligvis i forbrændingskamre, overgangskanaler og efterbrænderfo-ringer i gasturbinemotorer og aerofoiler på forskellige trin.Plasma-sprayed, metallic and ceramic thermal barrier coatings utilizing stabilized zirconia are widely used to protect high temperature metal components and generally to lower both the base metal temperature and the effects of thermal transients. Such systems are usually used in combustion chambers, transition ducts and afterburner linings in gas turbine engines and aerofoils at various stages.

20 Det vigtigste træk ved disse belægninger er deres termiske isoleringsegenskaber, idet graden af nedsættelse af grundmetaltemperatur og transient termisk spænding er knyttet til lav varmeledningsevne hos oxydkomponenten og belægningernes tykkelse. Generelt 25 er de ønskede egenskaber hos en praktisk, termisk spærrebelægning følgende: a) lav varmeledningsevne, 30 b) tilstrækkelig vedhæftning til at modstå afskal ning som følge af termisk spænding, d.v.s. at det er nødvendigt med en god binding mellem partiklerne og med underlaget,The most important feature of these coatings is their thermal insulation properties, with the degree of reduction of base metal temperature and transient thermal voltage being associated with low thermal conductivity of the oxide component and the thickness of the coatings. In general, the desired properties of a practical thermal barrier coating are the following: a) low thermal conductivity, 30 b) sufficient adhesion to withstand peeling due to thermal stress, i.e. that a good bond between the particles and with the substrate is needed,

DK 151901 BDK 151901 B

2 c) maximal metallurgisk helhed og oxydations-var-mekorrosionsbestandighed hos den metalliske bestanddel , 5 d) mest mulig overensstemmelse i varmeudvidelse mellem det keramiske materiale og den underliggende legering, e) tilfredsstillende stabilisering af den ønskede 10 (kubisk zirkoniumoxyd) krystalstruktur for at minimere virkningerne af ulineær termisk udvidelse forårsaget af strukturel forvandling, og f) reparerbarhed under fremstilling og efter brug.2 c) maximum metallurgical integrity and oxidation-heat corrosion resistance of the metallic component, 5 d) most possible heat expansion between the ceramic material and the underlying alloy, e) satisfactory stabilization of the desired 10 (cubic zirconia) crystal structure to minimize the effects of nonlinear thermal expansion caused by structural transformation, and f) repairability during manufacture and after use.

1515

Ifølge den aktuelle kendte teknik anvendes adskillige keramisk-metalliske systemer baseret på magnesium-oxydstabiliseret zirkoniumoxyd. Sædvanligvis er grundmetallet en nikkel- eller koboltsuperlegering, 20 såsom "Hastelloy X", en legering, som foruden nikkel indeholder 22 % krom, 0,1 % karbon, 0,5 % magnesium, 0,5 % silicium, 1,5 % kobolt, 9 % molybdæn, 0,6 % wolfram og 18,5 % jern, TD-nikkel, en legering som foruden nikkel indeholder 2,2 % thorium, eller "Hay-25 nes 188", en legering, som udover kobolt indeholder 22 % krom, 14,5 % wolfram, 0,1 % karbon og 0,0075 % lantan, som er belagt med et bindelag af en nikkellegering med 5 % aluminium eller 20 % krom, et mellemliggende, metallisk, stabiliseret, keramisk zirkoni-30 umoxydlag og et dæklag af stabiliseret zirkoniumoxyd.According to the prior art, several ceramic-metallic systems based on magnesium oxide stabilized zirconia are used. Usually, the base metal is a nickel or cobalt superalloy, such as "Hastelloy X", an alloy containing, in addition to nickel, 22% chromium, 0.1% carbon, 0.5% magnesium, 0.5% silicon, 1.5% cobalt , 9% molybdenum, 0.6% tungsten and 18.5% iron, TD nickel, an alloy containing, in addition to nickel, 2.2% thorium, or "Hay-25 nes 188", an alloy containing cobalt in addition to 22 % chromium, 14.5% tungsten, 0.1% carbon, and 0.0075% lanthanum coated with a 5% aluminum or 20% chrome nickel alloy binder layer, an intermediate metallic, stabilized, ceramic zirconia 30 an oxide layer and a layer of stabilized zirconia.

Disse lag er plasmasprøjtet på grundmetallet, og man har nu forstået, at bedre egenskaber og lavere omkostninger kan opnås ved fremgangsmåder med nominel kontinuerlig graduering, hvorved koncentrationen af 3These layers are plasma sprayed on the base metal and it is now understood that better properties and lower costs can be achieved by nominal continuous modulation methods, whereby the concentration of 3

DK 151901BDK 151901B

zirkoniumoxyd øges kontinuerligt fra 0 ved grænsefladen mellem bindelaget og grundmetallet, til stort set 100 % ved yderfladen. Generelt påføres disse belægninger til en tykkelse på ca. 380 pm.zirconium oxide is continuously increased from 0 at the interface between the bonding layer and the base metal, to about 100% at the outer surface. Generally, these coatings are applied to a thickness of approx. 380 pm.

55

Detaljerede diskussioner, som er repræsentative for disse forskellige teknikker, kan findes i US patentskrift nr. 3.006.782 vedrørende oxydbelagte genstande med metalunderlag, hvor der først påføres en metal-10 bindende belægning og derefter en keramisk belægning, US patentskrift nr. 2.937.102 vedrørende styring af zirkoniumoxydstabilisering, US patentskrifterne 3.091. 548 og 3.522.064 vedrørende stabiliseret zirkoniumoxyd indeholdende nioboxyd og kalciumoxyd.Detailed discussions representative of these various techniques can be found in U.S. Patent No. 3,006,782 to oxide-coated metal substrate articles, first applying a metal-binding coating and then a ceramic coating, U.S. Patent No. 2,937,102 regarding control of zirconia, US Patent 3,091. 548 and 3,522,064 regarding stabilized zirconia containing nioboxide and calcium oxide.

1515

For tiden er en af de foretrukne keramiske komponenter zirkoniumoxyd, som kan anvendes enten alene eller blandet med et materiale, såsom magnesiumoxyd, kalciumoxyd, yttriumoxyd, La203 eller Ce203, som er kendt 20 for at stabilisere zirkoniumoxyd i den mere ønskelige kubiske form. Følgelig er en af de bedste, kendte måder at beskytte nikkel- og koboltsuperlegeringer mod høje temperaturer påføring af en zirkoniumoxydbaseret keramisk belægning, som er bundet til grundbelægnin-25 gen med en nikkelkrom- eller nikkelaluminiumlegering, hvor koncentrationen af keramisk materiale øges enten gradvist eller i spring fra underlaget til den ydre belægning.Currently, one of the preferred ceramic components is zirconia, which can be used either alone or in admixture with a material such as magnesium oxide, calcium oxide, yttrium oxide, La 2 O 3 or Ce 2 O 3, which is known to stabilize zirconia in the more desirable cubic form. Accordingly, one of the best known ways to protect nickel and cobalt superalloys from high temperatures is the application of a zirconia-based ceramic coating bonded to the base coating with a nickel chrome or nickel aluminum alloy, where the concentration of ceramic material is increased gradually or jump from the substrate to the outer coating.

30 Selv om disse avancerede systemer har vist sig at fungere godt, er det iagttaget, at fejl, når de virkelig optræder, skyldtes oxyderende nedbrydning af den metalliske bestanddel, efterfulgt af afskalning af de ydre keramiske lag. Når der er opstået fejl,Although these advanced systems have proven to work well, errors when they occur are actually due to oxidative degradation of the metallic component, followed by peeling of the outer ceramic layers. When errors occur,

DK 151901 BDK 151901 B

4 har det desuden været vanskeligt at reparere genstandene som følge af den metalliske bestanddels modstandsdygtighed overfor de tilgængelige syreopløsninger. Ifølge den foreliggende opfindelse har det vist 5 sig, at et hensigtsmæssigt valg af bindebelægningsmetallet frembringer væsentlige forbedringer af den j termiske spærrebelægnings egenskaber og mulighederne for at reparere genstanden.4, it has also been difficult to repair the articles due to the resistance of the metallic component to the available acid solutions. In accordance with the present invention, it has been found that an appropriate choice of the binder coating metal provides significant improvements in the properties of the thermal barrier coating and the ability to repair the article.

10 Formålet med opfindelsen er at frembringe en konstruktion med en metalbindende belægning, som gør det muligt at eliminere eller nedsætte de ovennævnte problemer.The object of the invention is to provide a structure with a metal-binding coating which allows to eliminate or reduce the aforementioned problems.

15 Dette er ifølge opfindelsen opnået ved at den metalbindende belægning er en legering af et materiale, som indeholder 15-40 % krom, 10-25 % aluminium, 0,01-1 % yttrium og resten jern, kobolt, nikkel eller en blanding af nikkel og kobolt.This is achieved according to the invention in that the metal-binding coating is an alloy of a material containing 15-40% chromium, 10-25% aluminum, 0.01-1% yttrium and the remainder iron, cobalt, nickel or a mixture of nickel and cobalt.

2020

Det har ifølge opfindelsen vist sig, at anvendelsen af denne legering som bindebelægning og metal i et zirkoniumoxydbaseret keramisk materiale frembringer en uventet forbedring af spærrebelægningens termiske 25 modstandsdygtighed. Disse legeringer er kendt som MCrAly-legeringer og er beskrevet i detaljer i US patentskrifterne nr. 3.542.530, 3.676.085, 3.754.903 samt i US patentskrift nr. 3.928.026. Ifølge opfindelsen er det keramiske spærremateriale fortrinsvis 30 blandet med legeringen i bindebelægningen, således at keramisk materiale øges kontinuerligt fra 0 % keramisk materiale ved grænsefladen mellem underlaget og bindebelægningen til 100 % keramisk materiale ved den eksponerede overflade. Selv om kontinuerlig forøgelse 5It has been found, according to the invention, that the use of this alloy as a binder coating and metal in a zirconia-based ceramic material provides an unexpected improvement in the thermal resistance of the barrier coating. These alloys are known as MCrAly alloys and are described in detail in U.S. Patent Nos. 3,542,530, 3,676,085, 3,774,903, and in U.S. Patent No. 3,928,026. According to the invention, the ceramic barrier material is preferably mixed with the alloy in the binder coating so that ceramic material is continuously increased from 0% ceramic material at the interface between the substrate and the binder coating to 100% ceramic material at the exposed surface. Although continuous increase 5

DK 151901BDK 151901B

af koncentrationen klart er at foretrække, kan der også anvendes et eller flere lag med springvis øgede koncentrationer af zirkoniumoxyd, dersom udstyr til kontinuerlig graduering ikke er tilgængeligt.of the concentration is clearly preferred, one or more layers of gradually increasing concentrations of zirconia may also be used if continuous modulation equipment is not available.

55

Det zirkoniumoxyd, der anvendes i denne belægning, er fortrinsvis stabiliseret i den kubiske form ved hjælp af kalciumoxyd eller magnesiumoxyd, sådan som det er kendt på området. Zirkoniumoxydet kan desuden også 10 indeholde andre oxyder, såsom Y203 og La203, som også er kendt for at være permanente kubiske stabilisatorer for zirkoniumoxyd, eller metastabilisatorer såsom Ce203. Det er også muligt at tilsætte antistabilisa-torer, såsom nikkeloxyd, zinkoxyd og koboltoxyd i 15 blanding med det kubisk stabiliserede zirkoniumoxyd for at tilpasse de keramiske bestanddeles termiske chokbestandighedsegenskaber ved at vælge kompressionsstyrker og varmekoefficienter, som svarer til det metalliske underlags egenskaber. Disse specifikke 20 teknikker udgør ikke i sig selv nogen del af den foreliggende opfindelse, og det skal forstås, at brugen af begrebet "zirkoniumoxyd", således som det her er anvendt, omfatter zirkoniumoxydbaserede keramiske materialer, som enten kan være rent zirkoniumoxyd eller 25 zirkoniumoxyd blandet med et eller flere tilsætningsstoffer, som de ovenfor nævnte er eksempler på.The zirconia used in this coating is preferably stabilized in the cubic form by means of calcium oxide or magnesium oxide, as is known in the art. In addition, the zirconia may also contain other oxides, such as Y 2 O 3 and La 2 O 3, which are also known to be permanent cubic stabilizers for zirconia, or metastabilizers such as Ce 2 O 3. It is also possible to add anti-stabilizers such as nickel oxide, zinc oxide and cobalt oxide in admixture with the cubically stabilized zirconia to adjust the thermal shock resistance properties of the ceramic constituents by selecting compressive strengths and heat coefficients corresponding to the metallic substrate property. These specific techniques do not in themselves form part of the present invention, and it should be understood that the use of the term "zirconia" as used herein encompasses zirconia based ceramic materials which may be either pure zirconia or zirconia. mixed with one or more additives, of which the above are examples.

Den termiske spærrebelægning kan påføres ved hjælp af teknikker, som er kendt på området under anvendelse 30 af udstyr, som kan fås i handelen. I de efterfølgende eksempler blev belægningerne påført ved hjælp af en minipistol "Plasmadyne" model 1068 under anvendelse af en dyse 106 F45H-1, en "Plasmadyne" model PS-61M på 40 kilowatt som kraftkilde samt to "Plasmadyne"The thermal barrier coating can be applied by techniques known in the art using commercially available equipment. In the following examples, the coatings were applied using a "Plasmadyne" model gun 1068 using a nozzle 106 F45H-1, a 40 kilowatt "Plasmadyne" model PS-61M as a power source, and two "Plasmadyne"

DK 151901BDK 151901B

e model 1008A pulvertilførselsapparater. Det ene pulvertilførselsapparat indeholdt bindebelægningslegeringen, mens det andet pulvertilførselsapparat indeholdt zirkoniumoxydet, idet begge apparater blev sat 5 under tryk ved hjælp af argon. Ved at variere strømningshastigheden til hvert pulvertilførselsapparat blev der opnået en kontinuerlig graduering af den termiske spærrebelægning. Valget af pulverstørrelsen i materialet er ikke kritisk, og med det anvendte ud-10 styr viste det sig, at partikkelstørrelsen i den metalbindende belægning fortrinsvis var i området 0,03-0,05 mm. Dette var ikke kritisk, men bare særegent for det udstyr, der blev anvendt, idet mindre partik-kelstørrelser havde en tendens til at smelte for hur-15 tigt og tilstoppe sprøjtepistolens dyse.e model 1008A powder supply devices. One powder supply apparatus contained the binder coating alloy, while the other powder supply apparatus contained the zirconia, both devices being pressurized by argon. By varying the flow rate of each powder supply device, a continuous modulation of the thermal barrier coating was achieved. The choice of the powder size in the material is not critical and with the equipment used it was found that the particle size of the metal-binding coating was preferably in the range of 0.03-0.05 mm. This was not critical, but just peculiar to the equipment used, as smaller particle sizes tended to melt too fast and clog the spray gun nozzle.

EKSEMPEL 1EXAMPLE 1

Plader af den ovennævnte legering "Hastelloy X" blev 20 belagt med kontinuerligt gradueret zirkoniumoxyd, som var stabiliseret med nikkelkrom og MgO, og blev underkastet 100 og 200 timers statiske oxydationsforsøg ved ca. 980°C. Metallografiske undersøgelser af belægningsstrukturerne efter prøven antyder, at nikkel-25 krom-bestanddelen stort set var oxyderet efter 100 timer. En anden prøveplade blev underkastet et oxydationsforsøg i 1 time ved 1095°C efterfulgt af vandafkøling. Metallografiske undersøgelser af belægningsstrukturen efter disse behandlinger viste forvitret 30 nikkel, der var næsten fuldstændigt oxyderet med sprækker, der forløb vertikalt mod grundmetallet gennem belægningen. Tilsvarende forsøg blev også udført med plader af "Hastelloy X" belagt med zirkoniumoxyd stabiliseret med 67,5 % kobolt, 20 % krom, 12 % alu- 7Plates of the above alloy "Hastelloy X" were coated with continuously graduated zirconia, which was stabilized with nickel chromium and MgO, and subjected to 100 and 200 hours of static oxidation experiments at ca. 980 ° C. Metallographic studies of the post-sample coating structures suggest that the nickel-chromium component was largely oxidized after 100 hours. Another sample plate was subjected to an oxidation test for 1 hour at 1095 ° C followed by water cooling. Metallographic studies of the coating structure after these treatments showed weathered 30 nickel, which was almost completely oxidized with cracks extending vertically toward the base metal through the coating. Similar experiments were also performed with plates of "Hastelloy X" coated with zirconia stabilized with 67.5% cobalt, 20% chromium, 12% aluminum.

DK 151901BDK 151901B

minium, 0,5 % yttrium samt 17 % MgO, med belægningstykkelser varierende mellem 0,022 og 0,035 cm. Metal-lografisk undersøgelse af disse prøver efter afslutningen af forsøg svarende til de ovennævnte viste væ-5 sentlig mindre oxydation af bindebelægningen, hvilket nødvendigvis medfører en forventet længere belægningslevetid. Der blev også udført en undersøgelse af fluidiserede lag af de forskellige prøver, hvor prøvestykkerne blev eksponeret i to minutter ved 980°C 10 efterfulgt af to minutters køling til stuetemperatur.minium, 0.5% yttrium and 17% MgO, with coating thicknesses varying between 0.022 and 0.035 cm. Metallographic examination of these samples after completion of experiments similar to the above showed significantly less oxidation of the binder coating, which necessarily results in an expected longer coating life. A study of fluidized layers of the various samples was also performed, with the specimens exposed for two minutes at 980 ° C, followed by two minutes of cooling to room temperature.

Ved anvendelse af kobolt-, krom-, aluminium- og yt-triumholdige prøver blev undersøgelserne afbrudt efter 100 cykler med tilfredstillende vedhæftning mellem belægningen og den underliggende legering, og ved 15 metallografisk undersøgelse viste komponenterne kun delvis oxydation. Nikkelkromprøverne var imidlertid fuldstændigt oxyderede.Using cobalt, chromium, aluminum and yttrium-containing samples, the studies were discontinued after 100 cycles of satisfactory adhesion between the coating and the underlying alloy, and in 15 metallographic examination the components showed only partial oxidation. However, the nickel chrome samples were completely oxidized.

EKSEMPEL 2 20EXAMPLE 2 20

De indvendige overflader af et antal forbrændingskamre i naturlig størrelse af ovennævnte legering "Ha-stelloy X" til en gasturbinemotor (JT8D 17) blev belagt med den ovenfor anførte kontinuerligt graduerede 25 MgO/Zr02-kobolt/krom/aluminium/yttriumlegering og un derkastet eksperimentel motorprøvning. I en 150 timers holdbarhedsprøve var denne legering væsentligt bedre med hensyn til kantafskalning end den konventionelle belægning af 17 % Mg0/Zr02 Ni-20 % Cr på en 30 indre overflade i et andet forbrændingskammer i samme prøve.The inner surfaces of a number of natural-size combustion chambers of the above alloy "Ha-Stelloy X" for a gas turbine engine (JT8D 17) were coated with the above-mentioned continuously graduated 25 MgO / ZrO 2 cobalt / chromium / aluminum / yttrium alloy and subjected to experimental engine testing. In a 150 hour durability test, this alloy was substantially better in edge peeling than the conventional coating of 17% Mg0 / Zr02 Ni-20% Cr on an inner surface of another combustion chamber in the same sample.

Selv om det ifølge opfindelsen foretrækkes at anvende den ovenfor angivne kobolt-, krom-, aluminium- og yt- 8Although it is preferred according to the invention to use the above-mentioned cobalt, chromium, aluminum and surface

DK 151901BDK 151901B

triumlegering og Zr02 stabiliseret med 17 % MgO, kan der af fagfolk på området anvendes andre sammensætninger. Den specifikke kobolt-, krom-, aluminium- og yttriumlegering, som er anvendt i eksemplerne, er re-5 præsentative for den store klasse af materialer, som består af 15-40 % krom, 10-25 % aluminium og mindre end 1 % yttrium legeret med jern, kobolt, nikkel eller nikkel-kobolt. Denne generelle klasse af materialer er f.eks. beskrevet i de ovenfor anførte US pa-10 tentskrifter.trialloy and ZrO 2 stabilized with 17% MgO, other compositions may be used by those skilled in the art. The specific cobalt, chromium, aluminum and yttrium alloy used in the Examples is representative of the large class of materials consisting of 15-40% chromium, 10-25% aluminum and less than 1% yttrium alloyed with iron, cobalt, nickel or nickel-cobalt. This general class of materials is e.g. disclosed in the above U.S. Patent Specifications.

Claims (2)

1. Termisk beskyttet konstruktion af en superlegering, hvor konstruktionen omfatter et underlag af et 5 materiale i form af en nikkel- eller koboltsuperlege-ring, en metalbindende belægning på underlaget samt en zirkoniumbaseret, keramisk termisk spærrebelægning på den metalbindende belægning, kendetegnet ved, at den metalbindende belægning er en legering af 10 et materiale, som indeholder 15-40 % krom, 10-25 % aluminium, 0,01-1 % yttrium og resten jern, kobolt, nikkel eller en blanding af nikkel og kobolt.A thermally protected structure of a superalloy, the structure comprising a substrate of a material in the form of a nickel or cobalt superalloy, a metal-binding coating on the substrate, and a zirconium-based ceramic thermal barrier coating on the metal-binding coating, characterized in that the metal-binding coating is an alloy of 10 a material containing 15-40% chromium, 10-25% aluminum, 0.01-1% yttrium and the remainder iron, cobalt, nickel or a mixture of nickel and cobalt. 2. Konstruktion ifølge krav 1, kendetegnet 15 ved, at materialet i den keramiske termiske spærrebelægning er blandet med legeringen i den metalbindende belægning på en sådan måde, at koncentrationen af keramisk materiale øges kontinuerligt fra underlaget til den færdige overflade.Construction according to claim 1, characterized in that the material in the ceramic thermal barrier coating is mixed with the alloy in the metal-binding coating in such a way that the concentration of ceramic material is continuously increased from the substrate to the finished surface.
DK370176A 1975-09-11 1976-08-17 THERMALLY PROTECTED CONSTRUCTION OF A SUPER alloy DK151901C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61243975A 1975-09-11 1975-09-11
US61243975 1975-09-11

Publications (3)

Publication Number Publication Date
DK370176A DK370176A (en) 1977-03-12
DK151901B true DK151901B (en) 1988-01-11
DK151901C DK151901C (en) 1988-06-06

Family

ID=24453160

Family Applications (1)

Application Number Title Priority Date Filing Date
DK370176A DK151901C (en) 1975-09-11 1976-08-17 THERMALLY PROTECTED CONSTRUCTION OF A SUPER alloy

Country Status (18)

Country Link
JP (1) JPS5917189B2 (en)
AU (1) AU504802B2 (en)
BE (1) BE845193A (en)
BR (1) BR7605892A (en)
CA (1) CA1068178A (en)
CH (1) CH609731A5 (en)
DE (1) DE2640829C2 (en)
DK (1) DK151901C (en)
FR (1) FR2323656A1 (en)
GB (1) GB1519370A (en)
IL (1) IL50375A (en)
IN (1) IN145818B (en)
IT (1) IT1064979B (en)
NO (1) NO148114C (en)
PL (1) PL120368B1 (en)
SE (1) SE440238B (en)
SU (1) SU1505441A3 (en)
YU (1) YU42647B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508493B1 (en) * 1981-06-30 1989-04-21 United Technologies Corp PROCESS FOR APPLYING A THERMAL BARRIER COATING IN CONSTRAIN TOLERANT MATERIAL ON A METAL SUBSTRATE
GB2101910B (en) * 1981-07-14 1984-09-19 Westinghouse Electric Corp Improvements in or relating to thermally protected alloys
JPS60149828A (en) * 1984-01-13 1985-08-07 Hitachi Ltd Combustion device
DE3446479A1 (en) * 1984-12-20 1986-07-03 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau METAL FASTENER
IL84067A (en) * 1986-10-30 1992-03-29 United Technologies Corp Thermal barrier coating system
US5098797B1 (en) * 1990-04-30 1997-07-01 Gen Electric Steel articles having protective duplex coatings and method of production
US5105625A (en) * 1990-11-23 1992-04-21 General Motors Corporation Mounting for a ceramic scroll in a gas turbine machine
US5180285A (en) * 1991-01-07 1993-01-19 Westinghouse Electric Corp. Corrosion resistant magnesium titanate coatings for gas turbines
CA2091472A1 (en) * 1992-04-17 1993-10-18 William R. Young Whisker-anchored thermal barrier coating
AU1875595A (en) * 1994-02-16 1995-09-04 Sohl, Charles E. Coating scheme to contain molten material during gas turbine engine fires
GB9617267D0 (en) * 1996-08-16 1996-09-25 Rolls Royce Plc A metallic article having a thermal barrier coating and a method of application thereof
JP4520626B2 (en) * 2000-11-27 2010-08-11 池袋琺瑯工業株式会社 Glass lining construction method
JP2003147464A (en) 2001-11-02 2003-05-21 Tocalo Co Ltd Member with high-temperature strength
DE102009029152A1 (en) * 2009-09-03 2011-03-17 Evonik Degussa Gmbh Flexible coating composites with predominantly mineral composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006782A (en) * 1956-03-09 1961-10-31 Norton Co Oxide coated articles with metal undercoating
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1214743A (en) * 1968-01-24 1970-12-02 Imp Metal Ind Kynoch Ltd Improvements in or relating to oxidation-resistant coatings
US3758233A (en) * 1972-01-17 1973-09-11 Gen Motors Corp Vibration damping coatings
US3837894A (en) * 1972-05-22 1974-09-24 Union Carbide Corp Process for producing a corrosion resistant duplex coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006782A (en) * 1956-03-09 1961-10-31 Norton Co Oxide coated articles with metal undercoating
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys

Also Published As

Publication number Publication date
IL50375A (en) 1979-05-31
DK370176A (en) 1977-03-12
YU220076A (en) 1982-08-31
DE2640829C2 (en) 1986-07-31
NO763047L (en) 1977-03-14
DK151901C (en) 1988-06-06
GB1519370A (en) 1978-07-26
PL120368B1 (en) 1982-02-27
DE2640829A1 (en) 1977-03-17
AU504802B2 (en) 1979-11-01
NO148114C (en) 1983-08-10
BR7605892A (en) 1977-08-16
CA1068178A (en) 1979-12-18
AU1693276A (en) 1978-02-23
SE440238B (en) 1985-07-22
IT1064979B (en) 1985-02-25
SU1505441A3 (en) 1989-08-30
SE7609304L (en) 1977-03-12
FR2323656B1 (en) 1983-01-14
IL50375A0 (en) 1976-10-31
YU42647B (en) 1988-10-31
NO148114B (en) 1983-05-02
FR2323656A1 (en) 1977-04-08
JPS5917189B2 (en) 1984-04-19
JPS5233842A (en) 1977-03-15
IN145818B (en) 1978-12-30
BE845193A (en) 1976-12-01
CH609731A5 (en) 1979-03-15

Similar Documents

Publication Publication Date Title
US4248940A (en) Thermal barrier coating for nickel and cobalt base super alloys
US4861618A (en) Thermal barrier coating system
Keyvani et al. Microstructural stability of zirconia–alumina composite coatings during hot corrosion test at 1050° C
EP1995350B1 (en) High temperature component with thermal barrier coating
US6964791B2 (en) High-temperature articles and method for making
CA1194345A (en) Superalloy coating composition with high temperature oxidation resistance
DK151901B (en) THERMALLY PROTECTED CONSTRUCTION OF A SUPER alloy
JPH10507230A (en) Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same
US6921586B2 (en) Ni-Base superalloy having a coating system containing a diffusion barrier layer
JPS5837145A (en) Coating composition
MXPA06014620A (en) Platinum modified nicocraly bondcoat for thermal barrier coating .
MXPA06014883A (en) High strength ni-pt-al-hf bondcoat .
JPS6136061B2 (en)
US5712050A (en) Superalloy component with dispersion-containing protective coating
Sun et al. Thermal shock resistance of thermal barrier coatings for nickel-based superalloy by supersonic plasma spraying
JP2003138368A (en) Thermal barrier coating
JP2008169481A (en) Metal alloy composition and article comprising the same
JP2001295021A (en) Method for depositing protective film on metallic substrate and article obtained thereby
JPS5989745A (en) Metal coating composition for high temperature
USRE33876E (en) Thermal barrier coating for nickel and cobalt base super alloys
CA1330638C (en) Thermal barrier coating system
CN110396623B (en) High-temperature protective coating material suitable for single crystal nickel-based high-temperature alloy blade
JPH06306640A (en) High temperature exposure material
JPH02503576A (en) Coated near-α titanium product
GB2285632A (en) Thermal barrier coating system for superalloy components

Legal Events

Date Code Title Description
PUP Patent expired