NO863017L - ALUMINUM ALLOY. - Google Patents

ALUMINUM ALLOY.

Info

Publication number
NO863017L
NO863017L NO863017A NO863017A NO863017L NO 863017 L NO863017 L NO 863017L NO 863017 A NO863017 A NO 863017A NO 863017 A NO863017 A NO 863017A NO 863017 L NO863017 L NO 863017L
Authority
NO
Norway
Prior art keywords
aluminum
alloy
weight
manganese
magnesium
Prior art date
Application number
NO863017A
Other languages
Norwegian (no)
Other versions
NO863017D0 (en
Inventor
Paul William Jeffrey
Wojciech Halliop
Frank Neale Smith
Original Assignee
Alcan Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Int Ltd filed Critical Alcan Int Ltd
Publication of NO863017D0 publication Critical patent/NO863017D0/en
Publication of NO863017L publication Critical patent/NO863017L/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

Denne oppfinnelse vedrører anoder for elektrokjemiske celler og mer spesielt til en aluminium legering anode som har høy energi og høyt elektrokjemisk potensial i cellene under anvendelse av sterke alkaliske oppløsninger. This invention relates to anodes for electrochemical cells and more particularly to an aluminum alloy anode which has high energy and high electrochemical potential in the cells using strong alkaline solutions.

Grunnkravet til en tilfredstillende anode for elektrokjemiske celler, så som aluminium-luft celler, er enden til å The basic requirement for a satisfactory anode for electrochemical cells, such as aluminium-air cells, is the end to

generere en høy celle spenning mens det oppstår parasittisk korrosjon. Høy spenning er essentielt da det muliggjør ned-settelse av antall celler som er nødvendig for å konstruere et batteri med en gitt spenning. Lav parasittiske korrosjon eller med andre ord høy effektivitet fører til høyere ener-gitetthet, dvs. lavere anode kostnader og viktigere til generate a high cell voltage while parasitic corrosion occurs. High voltage is essential as it enables the reduction of the number of cells necessary to construct a battery with a given voltage. Low parasitic corrosion or in other words high efficiency leads to higher energy density, i.e. lower anode costs and more importantly to

minimering av hydrogengassdannelsen. Hvis denne hydrogen-gass ikke luftes ut og fortynnes tilstrekkelig er det mulig eksplosjons fare. Videre medfører utluftningsoperasjonen selv mulig problemer med avseiling av batteriene for å for-hindre spill. minimization of hydrogen gas formation. If this hydrogen gas is not vented out and diluted sufficiently, there is a possible danger of explosion. Furthermore, the venting operation itself causes possible problems with unsealing the batteries to prevent leaks.

Mye tidligere forskning har basert på tilsetningen av stannat til alkaliske elektrolytter for å kontrollere den parasittiske korrosjon på aluminiumanodene. En foretrukket elektorlytt som har vært anvendt består av 4 molar natrium hydroksyd, 1 molar oppløst aluminium og 0,06 molar natrium stannat (korrosjons hemmer). Likevel foreligger en rekke ulemper ved anvendelsen av en slik elektrolytt nemlig de følgende: 1. Tinn har en tendens til elektorlytten å belegge seg på anoden og derved danne en dendritisk struktur som tilslutt kortslutter cellen. 2. Når tinnetfletterer, avtar dens konsentrasjon i oppløs-ningen med det resultat at den hemmende innflytelse av tin-net tiltagende går tapt; 3. I nærvær av stannat nedsettes veksten av aluminium hydroksyd krystaller og dette resulterer i reduksjon av effektiviteten i enhver regenerativ krystalliserings enhet. Much previous research has relied on the addition of stannate to alkaline electrolytes to control the parasitic corrosion of the aluminum anodes. A preferred electrolyte that has been used consists of 4 molar sodium hydroxide, 1 molar dissolved aluminum and 0.06 molar sodium stannate (corrosion inhibitor). Nevertheless, there are a number of disadvantages with the use of such an electrolyte, namely the following: 1. Tin has a tendency for the electrolyte to deposit on the anode and thereby form a dendritic structure which eventually short-circuits the cell. 2. When the tin braids, its concentration in the solution decreases with the result that the inhibiting influence of the tin mesh is increasingly lost; 3. In the presence of stannate, the growth of aluminum hydroxide crystals is reduced and this results in the reduction of the efficiency of any regenerative crystallization unit.

Mange studier har også vært utført på sammensetningen av anoden. F. eks. beskriver Pryor, et al i US-patent nr. 3.189.486 en anode bestående i det vesentlige av aluminium og tinn, fortrinnsvist med indium. Den fordelaktive effekt av gallium, indium og fosfor på en elektrokjemisk aktivitet er beskrevet i Despic, et al i US-patent nr. 4.288.500. Når tilsatt itl superrent aluminium hever disse elementer i anodiske potensialer. Many studies have also been carried out on the composition of the anode. For example Pryor, et al in US Patent No. 3,189,486 describes an anode consisting essentially of aluminum and tin, preferably with indium. The beneficial effect of gallium, indium and phosphorus on an electrochemical activity is described in Despic, et al in US Patent No. 4,288,500. When added itl superpure aluminium, these elements raise anodic potentials.

Moden, et al i US-patent nr. 4.107.406 beskriver en anode fremstilt av superrent aluminium som inneholder små mengder med magnesium og gallium. Moden, et al in US Patent No. 4,107,406 describes an anode made of superpure aluminum containing small amounts of magnesium and gallium.

Dog utviser ingen av disse ovenfor nevnte legeringer aks-eptabel virkning når anvendt med en sterk alkalisk elektrolytt uten korrosjonshemmer. However, none of these above-mentioned alloys exhibit acceptable performance when used with a strong alkaline electrolyte without a corrosion inhibitor.

I henhold til foreliggende oppfinnelse oppnås en spesiell According to the present invention, a special

fordelaktig balanse med potensial og korrosjonshemming i en alkalisk elektrolytt når anoden fremstilles av en aluminium basert legering med spesielle små tilsetninger av indium og minst enten mangan eller magnesium. Spesielt består legeringen i henhold til oppfinnelsen hovedsaklig av 0,01 til 0,20 vekt-% indium, minst enten 0,01 til 0,25 vekt-% mangan eller 0,01 til 1,5 vekt-% magnesium og resten aluminium, dvs. en aluminium med minst 99,95 % og fortrinnsvist minst 99,99% renhet. En anode fremstilt av legeringen i henhold til foreliggende oppfinnelse har spesielt fordelaktig for anvendelse med en sterk alkalisk elektrolytt, og frembringer en utmerket balanse med potensial og korrosjons resist-ent uten at det er nødvendig å tilsette natrium stannat. advantageous balance with potential and corrosion inhibition in an alkaline electrolyte when the anode is made of an aluminum-based alloy with special small additions of indium and at least either manganese or magnesium. In particular, the alloy according to the invention mainly consists of 0.01 to 0.20 wt% indium, at least either 0.01 to 0.25 wt% manganese or 0.01 to 1.5 wt% magnesium and the rest aluminum, i.e. an aluminum with at least 99.95% and preferably at least 99.99% purity. An anode made from the alloy of the present invention is particularly advantageous for use with a strong alkaline electrolyte, producing an excellent balance of potential and corrosion resistance without the need to add sodium stannate.

Det har vært funnet at nærværet av mangan i legeringen er viktig for å minimere korrosjon under oppladningsbetingel-ser, mens nærværet av magnesium er fordelaktig for å minimere korrosjon under ikke-1adningsbetingelser. I henhold til dette er nærværet av både mangan og magnesium foretrukket . It has been found that the presence of manganese in the alloy is important in minimizing corrosion under charging conditions, while the presence of magnesium is beneficial in minimizing corrosion under non-charging conditions. Accordingly, the presence of both manganese and magnesium is preferred.

Legeringen kan også også tolerere nærværet av jern i mengder opptil ca. 0,03 vekt-% uten at dette fører til sterkt forhøyet korrosjon. Andre komponenter som kan foreligge i legeringen omfatter silikon, tinn, titan og gallium. The alloy can also tolerate the presence of iron in amounts up to approx. 0.03% by weight without this leading to greatly increased corrosion. Other components that may be present in the alloy include silicon, tin, titanium and gallium.

En foretrukket legering inneholder 0,05 itl 1,0 vekt-% magnesium, 0,02 til 0,15 vekt-% indium, 0,02 til 0,2 vekt-%-mangan og resten er superren aluminium. Denne legering kan også inneholde andre mindre komponenter så som opptil 0,005 vekt-% silikon, opptil 0,005 vekt-% tinn, opptil 0,005 vekt-% titan og 0,005 vekt-% gallium. Disse komponenter samt jern kan enten allerede foreligge i det superrene grunnaluminiumet eller innføres som urenheter med de legerende tilsetninger. A preferred alloy contains 0.05 to 1.0 wt% magnesium, 0.02 to 0.15 wt% indium, 0.02 to 0.2 wt% manganese and the balance is super pure aluminum. This alloy may also contain other minor components such as up to 0.005 wt% silicon, up to 0.005 wt% tin, up to 0.005 wt% titanium and 0.005 wt% gallium. These components and iron can either already be present in the super-pure basic aluminum or introduced as impurities with the alloying additions.

Legeringssammensetningen kan bearbeides ved en rekke kon-vensjonelle støpemetoder, hvilke omfatter permanente labor-atorie støpeformer, tovalse eller to belte støpere og de vanlige direkte avkjølingsmetoder. Et viktig trekk ved oppfinnelsen er å sikre at et minimumsnivå av de legerende be-standdeler er i oppløsning til i det minste en vesentlig grad. I henhold til dette kan fremgangsmåtene omfatte en varmebehandling av oppløsningen enten på barren eller det mellomliggende tykkelses trinnet. Dette kan oppnås ved varmebehandling i 8 timer ved 600°C påfulgt av en vann-avkjøling. Flaten kan enten bearbeides varmt eller kaldt, men det må utvises forsiktighet ved varmbearbeiding eller mellomliggende varmebehandling grunnet muligheten for ut-felling av legerende elementer ved forlenget utsettelse for temperaturer under oppløsningstemperaturen. Nærværet av ut-feldte legerende elementer i mikrostrukturen kan nedsette effektiviteten til anoden. The alloy composition can be processed by a number of conventional casting methods, which include permanent laboratory molds, two-roll or two-belt casters and the usual direct cooling methods. An important feature of the invention is to ensure that a minimum level of the alloying constituents is in solution to at least a significant extent. According to this, the methods can include a heat treatment of the solution either on the ingot or the intermediate thickness step. This can be achieved by heat treatment for 8 hours at 600°C followed by a water cooling. The surface can either be processed hot or cold, but care must be taken during hot processing or intermediate heat treatment due to the possibility of precipitation of alloying elements during prolonged exposure to temperatures below the solution temperature. The presence of precipitated alloying elements in the microstructure can reduce the efficiency of the anode.

Visse foretrukne utførelsesformer av oppfinnelsen skal nå illustreres ved de følgende eksempler. Certain preferred embodiments of the invention will now be illustrated by the following examples.

EKSEMPEL 1EXAMPLE 1

En rekke legeringer ble fremstilt utgående fra superrent aluminium (minst 99,990% renhet) og forskjellige legerende elementer ble tilsatt som antydet i tabell 1. Legeringene 1 til 8 ble støpt til barrer med tykkelse på 19 mm og barrene ble skrapt for å fjerne omtrent 0,15 mm fra hver hoved- ' flate. Disse artikler ble utsatt for oppløsnings varmebehandling i 8 timer ved 600°C og påfølgende en vannavkjøl-ing, ble kaldrullet for å danne plater med tykkelse på 3,2 mm. Legeringen 9-14 ble bearbeidet på samme måte med det tillegg av et ytterligere kaldrullingstrinn til 14 mm påfulgt av skraping men før oppløsnings varmebehandlingen. Denne tilleggs operasjonen hadde ingen målbar effekt på egenskapene oppført i tabell 1. A series of alloys were prepared starting from superpure aluminum (at least 99.990% purity) and various alloying elements were added as indicated in Table 1. Alloys 1 to 8 were cast into 19 mm thick ingots and the ingots were scraped to remove approximately 0, 15 mm from each main surface. These articles were subjected to solution heat treatment for 8 hours at 600°C and following a water cooling, were cold rolled to form plates with a thickness of 3.2 mm. Alloy 9-14 was processed in the same way with the addition of a further cold rolling step to 14 mm followed by scraping but before the solution heat treatment. This additional operation had no measurable effect on the properties listed in Table 1.

Legeringsplåtene dannet slik ble utprøvd som anoder og deres egenskaper for å generere celle spenninger på åpen strømkrets og med ytre strømstyrker på 200 og 600 mA/cm<2>(EOC, E200, E600) ved 60°C i 4 molar NaOH. Korrosjonstrøm ble målt som vekttap ved åpen strømkrets og med ytre strøm-styrker på 200 og 600 mA/cm<2>(henholdsvis ICOC, IC200, IC600) ble også bestemt. The alloy plates thus formed were tested as anodes and their properties for generating cell voltages on open circuit and with external currents of 200 and 600 mA/cm<2> (EOC, E200, E600) at 60°C in 4 molar NaOH. Corrosion current was measured as weight loss at open circuit and with external current strengths of 200 and 600 mA/cm<2> (respectively ICOC, IC200, IC600) were also determined.

Legeringsammensetningene og de elektrolyttiske resultater er oppført i tabell 1 nedenfor. Fra tabellen ovenfor er det klart at binære legeringer var helt utilstrekkelige. Fra tabell 1 kan det også sees på grunnlag av de høye potensialer og lave korrosjonsstrøm-styrker at ternære og kvartnære legeringer som inneholdt Mn, Mg og In frembringer de mest nyttige kompromiss av alle legeringene som ble utprøvd. Det er også klart at oppbygg-ing av oppløst legering i elektrolytten, f.eks. som repre-sentert ved utprøving av legering 8 i elektrolytten med 27 g/l av oppløst legering ikke påvirker virkningen negativt. The alloy compositions and electrolytic results are listed in Table 1 below. From the above table it is clear that binary alloys were completely inadequate. From Table 1 it can also be seen on the basis of the high potentials and low corrosion current strengths that ternary and quaternary alloys containing Mn, Mg and In produce the most useful compromises of all the alloys tested. It is also clear that build-up of dissolved alloy in the electrolyte, e.g. as represented by testing alloy 8 in the electrolyte with 27 g/l of dissolved alloy does not affect the effect negatively.

EKSEMPEL 2EXAMPLE 2

For å vise effekten av mangan på korrosjonshastigheten under ladning av legeringen i henhold til oppfinnelsen ble det fremstilt 8 forkjellige legeringer utgående fra superren aluminium (minst 99,990% renhet). Disse ble støpt inne-holdene to forskjellige konsentrasjoner av magnesium og indium og med og uten mangan, under anvendelse av samme fremgangsmåte som anvendt for legeringene 1-8 av eksempel 1. Korrosjonen ved ladning på 200 mA/cm<2>ble målt som i eksempel 1, alle mål ble tatt tre ganger og middelverdien oppført. Resultatene er vist i tabell 2 nedefor: In order to show the effect of manganese on the corrosion rate during charging of the alloy according to the invention, 8 different alloys were produced starting from superpure aluminum (at least 99.990% purity). These were cast containing two different concentrations of magnesium and indium and with and without manganese, using the same method as used for the alloys 1-8 of example 1. The corrosion at a charge of 200 mA/cm<2> was measured as in example 1, all measurements were taken three times and the mean value listed. The results are shown in table 2 below:

Det vil sees fra resultatene ovenfor at de kvartanære legeringer har de laveste korrosjonshastigheter. It will be seen from the above results that the quaternary alloys have the lowest corrosion rates.

EKSEMPEL 3EXAMPLE 3

For å bestemme effektene til forurensninger på legeringer i henhold til oppfinnelsen ble en rekke aluminiumslegeringér støpt fra superrent aluminium som inneholdt forskjellige konsentrasjoner av jern og silikon, sammen med relativt lave konsentrasjoner av magnesium, mangan og indium. En høy renhets grunnsubstans og en kommersiell ren grunnsubstans ble også anvendt. Fremgangsmåten anvendt var den samme som den for legeringene 1-8 i eksempel 1. To determine the effects of impurities on alloys according to the invention, a series of aluminum alloys were cast from superpure aluminum containing various concentrations of iron and silicon, together with relatively low concentrations of magnesium, manganese and indium. A high purity parent substance and a commercial pure parent substance were also used. The procedure used was the same as that for alloys 1-8 in Example 1.

Legerings sammensetningene og resultatene, målt som i eksempel 1 er vist i tabell 3 nedenfor: The alloy compositions and results, measured as in Example 1 are shown in Table 3 below:

Claims (9)

1. Elektrokjemisk aktiv aluminium legering, karakterisert ved at den består av 0,01 itl 0,20 vekt-% av indium, minst en av 0,01 til 0,25 vekt-% av mangan og 0,01 til 1,5 vekt-% av magnesium og resten aluminium med en renhet på minst 99,95 %.1. Electrochemically active aluminum alloy, characterized in that it consists of 0.01 to 0.20% by weight of indium, at least one of 0.01 to 0.25% by weight of manganese and 0.01 to 1.5% by weight -% of magnesium and the rest aluminum with a purity of at least 99.95%. 2. En legering i henhold til krav 1, karakterisert ved at den inneholder både 0,01 til 0,25 vekt-% mangan og 0,01 til 1,5 vekt-5 magnesium.2. An alloy according to claim 1, characterized in that it contains both 0.01 to 0.25 weight-% manganese and 0.01 to 1.5 weight-5 magnesium. 3. En legering i henhold til krav 2, karakterisert ved at aluminiumet har en renhet på minst 99,99 % <.>3. An alloy according to claim 2, characterized in that the aluminum has a purity of at least 99.99% <.> 4. Elektrokjemisk aktiv aluminiumlegering, karakterisert ved at den i det vesentlige består av 0,01 til 0,20 vekt-% indium, 0,01 til 0,25 vekt-% mangan og resten aluminium med en renhet på minst 99,95 %.4. Electrochemically active aluminum alloy, characterized in that it essentially consists of 0.01 to 0.20 wt% indium, 0.01 to 0.25 wt% manganese and the rest aluminum with a purity of at least 99.95% . 5. Elektrokjemisk aktiv aluminiumlegering, karakterisert ved at den i det vesentlige består av 0,01 til 0,20 vekt-% av indium, 0,01 til 1,5 vekt-% av magnesium og resten aluminiumet med en renhet på minst 99,95 % <.>5. Electrochemically active aluminum alloy, characterized in that it essentially consists of 0.01 to 0.20% by weight of indium, 0.01 to 1.5% by weight of magnesium and the rest aluminum with a purity of at least 99, 95% <.> 6. En legering i henhold til krav 1, karakterisert ved at den inneholder jern i en mengde på opptil 0,03 vekt-%.6. An alloy according to claim 1, characterized in that it contains iron in an amount of up to 0.03% by weight. 7. Elektrokjemisk aktiv aluminiumlegering, karakterisert ved at den i det vesentlige består av 0,02 til 015 vekt-% indium, 0,05 til 1,0 vekt-% magnesium, 0,02 til 0,2 vekt-% mangan og resten aluminium med en renhet på minst 99,990 %.7. Electrochemically active aluminum alloy, characterized in that it essentially consists of 0.02 to 015 wt% indium, 0.05 to 1.0 wt% magnesium, 0.02 to 0.2 wt% manganese and the remainder aluminum with a purity of at least 99.990%. 8. En legering i henhold til krav 1, karakteri- sert ved at den har vært oppløsnings varmebehandlet.8. An alloy according to claim 1, characterized in that it has been solution heat treated. 9. En anode for en primær elektrokjemisk energikilde dannet fra aluminiumlegeringen i henhold til krav 1.9. An anode for a primary electrochemical energy source formed from the aluminum alloy according to claim 1.
NO863017A 1985-07-26 1986-07-25 ALUMINUM ALLOY. NO863017L (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA487563 1985-07-26
CA510488 1986-05-30

Publications (2)

Publication Number Publication Date
NO863017D0 NO863017D0 (en) 1986-07-25
NO863017L true NO863017L (en) 1987-01-27

Family

ID=25670753

Family Applications (1)

Application Number Title Priority Date Filing Date
NO863017A NO863017L (en) 1985-07-26 1986-07-25 ALUMINUM ALLOY.

Country Status (6)

Country Link
US (1) US4751086A (en)
EP (1) EP0209402A1 (en)
JP (1) JPS6274041A (en)
AU (1) AU592106B2 (en)
IN (1) IN167995B (en)
NO (1) NO863017L (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865651A (en) * 1987-07-24 1989-09-12 Aluminum Company Of America Method of making an aluminum base alloy anode
US4808498A (en) * 1987-12-21 1989-02-28 Aluminum Company Of America Aluminum alloy and associated anode
GB8801663D0 (en) * 1988-01-26 1988-02-24 Alcan Int Ltd Aluminium batteries
US4950560A (en) * 1988-08-01 1990-08-21 Aluminum Company Of America Aluminum alloy and associated anode and battery
NZ230197A (en) * 1988-08-09 1990-11-27 Alcan Int Ltd Aluminium battery with an aluminium alloy anode and containing tin in the anode and/or the electrolyte
US4942100A (en) * 1988-08-09 1990-07-17 Alcan International Limited Aluminium batteries
DE4023951C2 (en) * 1990-07-27 1994-08-04 Dieter Dr Remppel Process for dynamically changing the electrochemical behavior of metallic materials
US5413881A (en) * 1993-01-04 1995-05-09 Clark University Aluminum and sulfur electrochemical batteries and cells
JPH07462U (en) * 1993-04-19 1995-01-06 昇 羽賀 Code for pachinko
JP2907718B2 (en) * 1993-12-29 1999-06-21 昭和アルミニウム株式会社 Etching method of aluminum foil for electrolytic capacitor electrode
US5587029A (en) * 1994-10-27 1996-12-24 Reynolds Metals Company Machineable aluminum alloys containing In and Sn and process for producing the same
US5725694A (en) * 1996-11-25 1998-03-10 Reynolds Metals Company Free-machining aluminum alloy and method of use
US6664004B2 (en) 2000-01-13 2003-12-16 3M Innovative Properties Company Electrode compositions having improved cycling behavior
US6699336B2 (en) * 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
WO2008011505A1 (en) * 2006-07-20 2008-01-24 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Power and hydrogen generation system
CN101542787A (en) 2006-09-25 2009-09-23 德克萨斯州立大学董事会 Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
JP5142254B2 (en) * 2007-06-27 2013-02-13 古河スカイ株式会社 Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same
KR101840885B1 (en) * 2009-06-09 2018-03-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Thin film alloy electrodes
JP2011174159A (en) * 2010-02-25 2011-09-08 Sumitomo Chemical Co Ltd Aluminum alloy
JP5701627B2 (en) * 2010-02-25 2015-04-15 住友化学株式会社 Negative electrode for aluminum air battery and aluminum air battery
CN101901893B (en) * 2010-08-06 2013-01-09 浙江巨科铝业有限公司 Aluminum alloy anode material for battery and method for producing same
CN103329342A (en) * 2011-01-19 2013-09-25 住友化学株式会社 Aluminium air battery
US20120193001A1 (en) * 2011-01-27 2012-08-02 Ernst Khasin Aluminum based anodes and process for preparing the same
KR101506787B1 (en) * 2013-06-07 2015-03-27 성균관대학교산학협력단 Aluminum alloy anode for aluminum-air battery and aluminum-air battery comprising the same
CN108808007A (en) * 2018-06-01 2018-11-13 安徽工业大学 A kind of preparation method of the aluminium-air cell anode material of high Fe content

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464821A (en) * 1942-08-03 1949-03-22 Indium Corp America Method of preparing a surface for soldering by coating with indium
FR89561E (en) * 1963-01-14 1900-01-01
US3379636A (en) * 1964-07-23 1968-04-23 Dow Chemical Co Indium-gallium-aluminum alloys and galvanic anodes made therefrom
US3830635A (en) * 1971-05-26 1974-08-20 Southwire Co Aluminum nickel alloy electrical conductor and method for making same
YU40575A (en) * 1975-02-20 1982-02-25 Inst Tehnickih Nauka Sanu Alloy of aluminium with indium or gallium or thallium
JPS572855A (en) * 1980-06-06 1982-01-08 Showa Alum Corp Cathodically protecting aluminum alloy for vacuum brazing
JPS5712754A (en) * 1980-06-26 1982-01-22 Misawa Homes Co Arrangement of roof plywood
JPS6086760A (en) * 1983-10-19 1985-05-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
AU6055486A (en) 1987-01-29
NO863017D0 (en) 1986-07-25
JPS6274041A (en) 1987-04-04
US4751086A (en) 1988-06-14
EP0209402A1 (en) 1987-01-21
AU592106B2 (en) 1990-01-04
IN167995B (en) 1991-01-19

Similar Documents

Publication Publication Date Title
NO863017L (en) ALUMINUM ALLOY.
CA1306002C (en) Aluminium batteries
US3957600A (en) Method of and anodes for use in electrowinning metals
US3240688A (en) Aluminum alloy electrode
CN103199263A (en) Positive grid alloy of lead-acid battery and manufacturing method of alloy
US3189486A (en) Primary electric cell
NO150968B (en) APPLICATION OF A MAGNESIUM ALLOY AS ELECTRODE MATERIAL IN PRIMARY CELLS
CN105244489A (en) Aluminum-alloy anode material for battery and preparation method of aluminum-alloy anode material
US3368952A (en) Alloy for cathodic protection galvanic anode
CN109694964A (en) A kind of preparation method of aluminium-air cell anode material
US4942100A (en) Aluminium batteries
CN111793760A (en) Anode alloy material for magnesium air battery, preparation method thereof and battery
CN108441729A (en) A kind of magnesium-alloy anode material and preparation method thereof
JPH06179936A (en) Negative electrode material for aluminum battery
EP1417357B1 (en) Hydrogen evolution inhibiting additives for zinc electrowinning
US2481204A (en) Magnesium primary cell
US2040078A (en) Lead alloy
US3282688A (en) Aluminum base alloy
Fink et al. The Effect of Silver (0.05 to 0.15 per cent) on Some Properties and the Performance of Antimonial Lead Storage Battery Grids
JPH03122239A (en) Aluminum alloy for cathode foil of electrolytic capacitor
CN1289700C (en) Novel anticorrosion zinc-base rare earth aluminium-magnesium alloy negative electrode material
CN110112362B (en) Anode material, preparation method thereof and battery
WO2012101635A2 (en) Aluminum based anodes and process for preparing the same
US20200332406A1 (en) Corrosion resistant aluminum electrode alloy
JP4395820B2 (en) Magnesium alloy for galvanic anode