JP2011174159A - Aluminum alloy - Google Patents

Aluminum alloy Download PDF

Info

Publication number
JP2011174159A
JP2011174159A JP2010040918A JP2010040918A JP2011174159A JP 2011174159 A JP2011174159 A JP 2011174159A JP 2010040918 A JP2010040918 A JP 2010040918A JP 2010040918 A JP2010040918 A JP 2010040918A JP 2011174159 A JP2011174159 A JP 2011174159A
Authority
JP
Japan
Prior art keywords
aluminum alloy
weight
less
aluminum
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010040918A
Other languages
Japanese (ja)
Inventor
Hitoshi Yasuda
均 安田
Hiroshi Tabuchi
宏 田渕
Kosuke Hoshikawa
浩介 星河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010040918A priority Critical patent/JP2011174159A/en
Publication of JP2011174159A publication Critical patent/JP2011174159A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy having excellent corrosion resistance even in corrosive conditions such as acidic or alkaline conditions. <P>SOLUTION: The aluminum alloy has a composition containing, by weight, 1 to 8% magnesium, 0.0001 to 0.02% silicon and 0.0001 to 0.03% iron, and in which the contents of the elements other than aluminum, magnesium, silicon and iron are ≤0.005%, respectively, and also, the total of the contents of the elements other than aluminum and magnesium is ≤0.1%. Since the aluminum alloy has excellent corrosion resistance even under corrosive conditions such as acidic or alkaline conditions, it can be suitably used as building materials, automotive materials and current storage devices such as a battery and a capacitor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アルミニウム合金に関する。詳細には本発明は、酸、アルカリなどの腐食性条件下においても優れた耐食性を有するアルミニウム合金に関するものである。   The present invention relates to an aluminum alloy. Specifically, the present invention relates to an aluminum alloy having excellent corrosion resistance even under corrosive conditions such as acid and alkali.

アルミニウム合金は、建築材料、自動車材料として広く使用されている。また、近年、アルミニウム合金は電池やキャパシタなどの蓄電デバイス材料への適用が検討されている(例えば、特許文献1〜4参照)。   Aluminum alloys are widely used as building materials and automobile materials. In recent years, application of aluminum alloys to power storage device materials such as batteries and capacitors has been studied (see, for example, Patent Documents 1 to 4).

特開2001−214229号公報JP 2001-214229 A 特開2009−64560号公報JP 2009-64560 A 特開2009−205864号公報JP 2009-205864 A 米国特許明細書4942100号U.S. Pat. No. 4,942,100

しかしながら、上記のアルミニウム合金は、酸やアルカリに対する耐食性が十分とはいえなかった。そのため、アルミニウム合金を蓄電デバイス材料へ適用する場合、電解液へのアルミニウム合金の構成成分の溶出や電池の自己放電の原因となるため、アルミニウム合金の耐食性の向上が求められてきた。   However, the above-described aluminum alloy has not been sufficiently resistant to acid and alkali. For this reason, when an aluminum alloy is applied to an electricity storage device material, it causes elution of the components of the aluminum alloy into the electrolyte and self-discharge of the battery, and therefore, improvement in the corrosion resistance of the aluminum alloy has been required.

かかる状況下、本発明の目的は、酸、アルカリなどの腐食性条件下においても高い耐久性を有するアルミニウム合金を提供することである。   Under such circumstances, an object of the present invention is to provide an aluminum alloy having high durability even under corrosive conditions such as acid and alkali.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventor has found that the following inventions meet the above object, and have reached the present invention.

すなわち、本発明は、以下の発明に係るものである。
<1> マグネシウム含有量が1重量%以上8重量%以下、ケイ素含有量が0.0001重量%以上0.02重量%以下、鉄含有量が0.0001重量%以上0.03重量%以下のアルミニウム合金であって、
アルミニウム、マグネシウム、ケイ素、鉄以外の元素の含有量が、それぞれ0.005重量%以下であり、かつ、
アルミニウム、マグネシウム以外の元素の含有量の合計が、0.1重量%以下であるアルミニウム合金。
<2>合金マトリックス中に金属間化合物粒子を含み、
合金表面において観察される金属間化合物粒子のうち、
粒子サイズが0.1μm2以上100μm2未満の金属間化合物粒子の密度が、1000個/mm2以下であり、
粒子サイズが100μm2以上の金属間化合物粒子の密度が、10個/mm2以下であり、かつ、
アルミニウム合金単位面積当りの金属間化合物粒子の占有面積が、0.5%以下である前記<1>記載のアルミニウム合金。
<3> 0.2%耐力が、150N/mm2以上である前記<1>または<2>記載のアルミニウム合金。
<4> 圧延されてなる前記<1>から<3のいずれかに記載のアルミニウム合金。
That is, the present invention relates to the following inventions.
<1> Magnesium content is 1 to 8% by weight, silicon content is 0.0001 to 0.02% by weight, and iron content is 0.0001 to 0.03% by weight An aluminum alloy,
The content of elements other than aluminum, magnesium, silicon and iron is 0.005% by weight or less, and
An aluminum alloy in which the total content of elements other than aluminum and magnesium is 0.1% by weight or less.
<2> containing intermetallic compound particles in the alloy matrix,
Of the intermetallic particles observed on the alloy surface,
The density of intermetallic compound particles having a particle size of 0.1 μm 2 or more and less than 100 μm 2 is 1000 / mm 2 or less,
The density of intermetallic compound particles having a particle size of 100 μm 2 or more is 10 particles / mm 2 or less, and
The aluminum alloy according to <1>, wherein the area occupied by the intermetallic compound particles per unit area of the aluminum alloy is 0.5% or less.
<3> The aluminum alloy according to <1> or <2>, wherein the 0.2% proof stress is 150 N / mm 2 or more.
<4> The aluminum alloy according to any one of <1> to <3, wherein the aluminum alloy is rolled.

本発明のアルミニウム合金は、酸、アルカリなどの腐食性条件下においても優れた耐久性を有する。このアルミニウム合金を電池、キャパシタなどの蓄電デバイス材料に使用することにより、電解液へのアルミニウム合金の構成成分の溶出が抑制され、自己放電が低下されるなど電池などの蓄電デバイスの性能を向上させることができる。   The aluminum alloy of the present invention has excellent durability even under corrosive conditions such as acid and alkali. By using this aluminum alloy for power storage device materials such as batteries and capacitors, elution of the components of the aluminum alloy into the electrolyte is suppressed, and self-discharge is reduced, thereby improving the performance of power storage devices such as batteries. be able to.

Al溶出量−溶出時間の関係を示す図である。It is a figure which shows the relationship between Al elution amount-elution time.

本発明は、マグネシウム含有量が1重量%以上8重量%以下、ケイ素含有量が0.0001重量%以上0.02重量%以下、鉄含有量が0.0001重量%以上0.03重量%以下のアルミニウム合金であって、アルミニウム、マグネシウム、ケイ素、鉄以外の元素の含有量が、それぞれ0.005重量%以下であり、かつ、アルミニウム、マグネシウム以外の元素の含有量の合計が、0.1重量%以下であるアルミニウム合金(以下、「本発明のアルミニウム合金」あるいは、単に「アルミニウム合金」と称す場合がある。)に係るものである。   In the present invention, the magnesium content is 1 to 8% by weight, the silicon content is 0.0001 to 0.02% by weight, and the iron content is 0.0001 to 0.03% by weight. The content of elements other than aluminum, magnesium, silicon, and iron is 0.005% by weight or less, and the total content of elements other than aluminum and magnesium is 0.1%. It relates to an aluminum alloy (hereinafter sometimes referred to as “the aluminum alloy of the present invention” or simply “aluminum alloy”) that is not more than% by weight.

本発明のアルミニウム合金は、マグネシウム(Mg)含有量が1〜8重量%、好ましくは2〜6重量%である。Mg含有量が1重量%未満であると、アルミニウム合金の強度が低下する。Mg含有量が8重量%を超えると、アルミニウム合金鋳造や圧延加工が困難になる。   The aluminum alloy of the present invention has a magnesium (Mg) content of 1 to 8% by weight, preferably 2 to 6% by weight. When the Mg content is less than 1% by weight, the strength of the aluminum alloy is lowered. If the Mg content exceeds 8% by weight, it becomes difficult to cast aluminum alloy or to perform rolling.

本発明のアルミニウム合金は、シリコン(Si)含有量が、0.0001〜0.02重量%、好ましくは0.0005〜0.005重量%である。Si含有量が、0.0001重量%未満であると、製造が困難でコスト高になるという問題があり、0.02重量%を超えると、アルミニウム合金の耐食性が低下する。   The aluminum alloy of the present invention has a silicon (Si) content of 0.0001 to 0.02% by weight, preferably 0.0005 to 0.005% by weight. If the Si content is less than 0.0001% by weight, there is a problem that the production is difficult and the cost is high, and if it exceeds 0.02% by weight, the corrosion resistance of the aluminum alloy is lowered.

本発明のアルミニウム合金は、鉄(Fe)含有量が、0.0001〜0.03重量%、好ましくは0.0001〜0.005重量%である。Fe含有量が、0.0001重量%未満であると、製造が困難でコスト高になるという問題があり、0.03重量%を超えると、アルミニウム合金の耐食性が低下する。   The aluminum alloy of the present invention has an iron (Fe) content of 0.0001 to 0.03% by weight, preferably 0.0001 to 0.005% by weight. If the Fe content is less than 0.0001% by weight, there is a problem that the production is difficult and the cost is high, and if it exceeds 0.03% by weight, the corrosion resistance of the aluminum alloy is lowered.

本発明のアルミニウム合金は、アルミニウム(Al)、Mg、SiおよびFeを除く他の金属の含有量が、それぞれ、0.005重量%以下、好ましくは0.002重量%以下である。他の金属は、例えば、銅(Cu)、チタン(Ti)、マンガン(Mn)、ガリウム(Ga)、ニッケル(Ni)、バナジウム(V)、亜鉛(Zn)である。他の金属の含有量が0.005重量%を超えると、アルミニウム合金の耐食性が低下する。   In the aluminum alloy of the present invention, the contents of other metals excluding aluminum (Al), Mg, Si and Fe are each 0.005% by weight or less, preferably 0.002% by weight or less. Other metals are, for example, copper (Cu), titanium (Ti), manganese (Mn), gallium (Ga), nickel (Ni), vanadium (V), and zinc (Zn). When the content of other metals exceeds 0.005% by weight, the corrosion resistance of the aluminum alloy is lowered.

本発明のアルミニウム合金は、AlおよびMg以外の金属の含有量の合計が、0.1重量%以下、好ましくは0.02重量%以下である。AlおよびMg以外の金属の含有量の合計が、0.1重量%を超えるとアルミニウム合金の耐食性が低下する。   In the aluminum alloy of the present invention, the total content of metals other than Al and Mg is 0.1% by weight or less, preferably 0.02% by weight or less. When the total content of metals other than Al and Mg exceeds 0.1% by weight, the corrosion resistance of the aluminum alloy decreases.

本発明のアルミニウム合金は、0.2%耐力が150N/mm2以上であることが好ましく、200N/mm2以上であることがさらに好ましい。なお、0.2%耐力とは、永久ひずみが0.2%になるために要する負荷の大きさである。
0.2%耐力が150N/mm2以上であるアルミニウム合金は、応力が加えられても変形が少なく、建築材料、自動車材料などの構造材料、および電極などの蓄電デバイス材料として好適に使用される。
The aluminum alloy of the present invention preferably has a 0.2% proof stress of 150 N / mm 2 or more, and more preferably 200 N / mm 2 or more. In addition, 0.2% yield strength is the magnitude | size of a load required in order that permanent strain will be 0.2%.
An aluminum alloy having a 0.2% proof stress of 150 N / mm 2 or more is less likely to be deformed even when stress is applied, and is suitably used as a structural material such as a building material and an automobile material, and a power storage device material such as an electrode. .

本発明に係るアルミニウム合金は、合金マトリックス中にAl3Mg、Mg2Si、Al−Fe系等の金属間化合物粒子(以下、単に「粒子」と称す場合がある。)を含むことができる。
ここで、合金表面において観察される金属間化合物粒子のうち、粒子サイズが0.1μm2以上100μm2未満の金属間化合物粒子の密度が、1000個/mm2以下であることが好ましく、500個/mm2以下であることがより好ましい。
また、粗大な化合物である粒子サイズが100μm2以上の金属間化合物粒子の密度は、10個/mm2以下であることが好ましい。
ここで、粒子サイズ、粒子密度は、アルミニウム合金の表面を鏡面研磨後に、エッチング液により表面をエッチングして、撮影した光学顕微鏡写真から求めることができる。
なお、粒子サイズは、光学顕微鏡写真において観察されるそれぞれの金属間化合物粒子が占める面積から判断する。
The aluminum alloy according to the present invention can contain intermetallic compound particles such as Al 3 Mg, Mg 2 Si, and Al—Fe (hereinafter sometimes simply referred to as “particles”) in the alloy matrix.
Here, among the intermetallic compound particles observed on the alloy surface, the density of intermetallic compound particles having a particle size of 0.1 μm 2 or more and less than 100 μm 2 is preferably 1000 particles / mm 2 or less, and 500 particles. / Mm 2 or less is more preferable.
The density of intermetallic compound particles having a particle size of 100 μm 2 or more, which is a coarse compound, is preferably 10 particles / mm 2 or less.
Here, the particle size and particle density can be determined from an optical microscope photograph obtained by mirror-polishing the surface of the aluminum alloy and then etching the surface with an etching solution.
The particle size is determined from the area occupied by each intermetallic compound particle observed in the optical micrograph.

粒子サイズが0.1μm2以上100μm2未満の金属間化合物粒子の密度が1000個/mm2以下であると、アルミニウム合金の耐食性がより向上する。他方、粒子サイズが0.1μm2以上100μm2未満の金属間化合物粒子の密度が前記範囲内であっても、粒子サイズが100μm2を超える金属間化合物粒子の密度が高すぎると、耐食性が低下する傾向にある。すなわち、粒子サイズが100μm2以上粗大な金属間化合物粒子が、アルミニウム合金中に粒子密度として10個/mm2超えて含まれている場合には耐食性を低下させるおそれがあるため好ましくない。 When the density of the intermetallic compound particles having a particle size of 0.1 μm 2 or more and less than 100 μm 2 is 1000 particles / mm 2 or less, the corrosion resistance of the aluminum alloy is further improved. On the other hand, even if the density of intermetallic compound particles having a particle size of 0.1 μm 2 or more and less than 100 μm 2 is within the above range, if the density of the intermetallic compound particles having a particle size exceeding 100 μm 2 is too high, the corrosion resistance decreases. Tend to. That is, when intermetallic compound particles having a particle size of 100 μm 2 or more are contained in an aluminum alloy in a particle density exceeding 10 particles / mm 2 , corrosion resistance may be lowered, which is not preferable.

また、アルミニウム合金単位面積当りの金属間化合物粒子の占有面積は、好ましくは0.5%以下であり、より好ましくは0.2%以下であり、さらに好ましくは0.1%以下である。
該占有面積は、アルミニウム合金の単位面積当りにおいて観測される個々の金属間化合物粒子の粒子サイズの合計、すなわち、個々の粒子が占める面積の合計を表す。
The occupation area of the intermetallic compound particles per unit area of the aluminum alloy is preferably 0.5% or less, more preferably 0.2% or less, and further preferably 0.1% or less.
The occupied area represents the total particle size of the individual intermetallic compound particles observed per unit area of the aluminum alloy, that is, the total area occupied by the individual particles.

本発明のアルミニウム合金は、酸、アルカリなどの腐食性条件下においても優れた耐食性を有することから、リチウム電池の集電体、空気電池の負極、キャパシタの電極などの蓄電デバイス材料として好適に使用することができる。また、耐食性と共に高い強度を有するので、建築材料、自動車材料などの構造材料に使用できる。   Since the aluminum alloy of the present invention has excellent corrosion resistance even under corrosive conditions such as acid and alkali, it can be suitably used as a power storage device material such as a lithium battery current collector, an air battery negative electrode, and a capacitor electrode. can do. Moreover, since it has high strength together with corrosion resistance, it can be used for structural materials such as building materials and automobile materials.

(アルミニウム合金の製造方法)
上記のアルミニウム合金は、例えば、高純度アルミニウム(純度:99.999%以上)を約680〜800℃で溶融し、所定量のマグネシウム(純度:99.99%以上)を溶融アルミニウム中に挿入して合金溶湯を得、合金溶湯に含まれる水素ガスや非金属介在物を除去して清浄にする処理(例えば、合金溶湯の真空処理)を行い製造することができる。真空処理は、通常、約700℃〜約800℃で約1時間〜約10時間、真空度0.1〜100Paの条件で行われる。合金を清浄にする処理としては、フラックス、不活性ガスや塩素ガスを吹き込む処理も利用できる。真空処理などで清浄にされた合金溶湯は、通常、鋳型にて鋳造され、鋳塊とされる。鋳型は50〜200℃に加熱した鉄や黒鉛製を用いて、680〜800℃の合金溶湯を流し込む方法で鋳造する。また、一般的に利用されている連続鋳造により鋳塊を得ることもできる。
(Aluminum alloy manufacturing method)
The above-mentioned aluminum alloy is made, for example, by melting high-purity aluminum (purity: 99.999% or more) at about 680 to 800 ° C. and inserting a predetermined amount of magnesium (purity: 99.99% or more) into the molten aluminum. Thus, a molten alloy can be obtained and manufactured by removing the hydrogen gas and non-metallic inclusions contained in the molten alloy and cleaning them (for example, vacuum treatment of the molten alloy). The vacuum treatment is usually performed at about 700 ° C. to about 800 ° C. for about 1 hour to about 10 hours and under a vacuum degree of 0.1 to 100 Pa. As a process for cleaning the alloy, a process of blowing flux, inert gas or chlorine gas can be used. The molten alloy that has been cleaned by vacuum treatment or the like is usually cast in a mold to form an ingot. The mold is cast by a method of pouring a molten alloy at 680 to 800 ° C. using iron or graphite heated to 50 to 200 ° C. Moreover, an ingot can also be obtained by the continuous casting generally used.

次いで、鋳塊は溶体化処理される。溶体化処理は、鋳塊を室温から約430℃まで約50℃/時の速度で昇温して約10時間保持し、引き続き、約500℃まで約50℃/時の速度で昇温して約10時間保持した後、約500℃から約200℃まで約300℃/時の速度で冷却する方法で行うことができる。   Next, the ingot is subjected to a solution treatment. In the solution treatment, the ingot is heated from room temperature to about 430 ° C. at a rate of about 50 ° C./hour and held for about 10 hours, and subsequently heated to about 500 ° C. at a rate of about 50 ° C./hour. After holding for about 10 hours, it can be carried out by cooling from about 500 ° C. to about 200 ° C. at a rate of about 300 ° C./hour.

その後、鋳塊はそのまま切削加工して電池部材に利用できる。鋳塊を圧延加工や押出加工、鍛造加工などを施して板材や型材にすると、部材に利用しやすく、0.2%耐力のより高いアルミニウム合金が得られる。
鋳塊の圧延加工においては、例えば、熱間圧延と冷間圧延とを行い、鋳塊を板材に加工する。熱間圧延は、例えば、鋳塊を温度350〜450℃、1パス加工率2〜20%の条件で、目的の厚さまで繰り返し行われる。
熱間圧延後には、通常、冷間圧延の前に焼鈍処理を行う。焼鈍処理は、例えば、熱間圧延した板材を、350〜450℃に加熱、昇温後直ちに放冷してもよいし、1〜5時間程度保持後に放冷してもよい。この処理にて、材料が軟質化して、冷間圧延に好ましい状態が得られる。
冷間圧延は、例えば、アルミニウム合金の再結晶温度未満の温度、通常、室温から80℃以下で、1パス加工率1〜10%の条件で、目的の厚さまで繰り返し行われる。冷間圧延により、薄い板材で、0.2%耐力が150N/mm2以上であるアルミニウム合金が得られる。
Thereafter, the ingot can be cut as it is and used as a battery member. When the ingot is subjected to rolling, extrusion, forging, etc. to form a plate material or a mold material, an aluminum alloy having a higher 0.2% proof stress can be obtained that is easy to use for the member.
In the ingot rolling process, for example, hot rolling and cold rolling are performed to process the ingot into a plate material. For example, the hot rolling is repeatedly performed up to a target thickness of the ingot at a temperature of 350 to 450 ° C. and a one-pass processing rate of 2 to 20%.
After hot rolling, annealing is usually performed before cold rolling. In the annealing treatment, for example, a hot-rolled plate material may be heated to 350 to 450 ° C. and allowed to cool immediately after being heated, or may be allowed to cool after being held for about 1 to 5 hours. This treatment softens the material and provides a favorable state for cold rolling.
Cold rolling is repeatedly performed to a target thickness, for example, at a temperature lower than the recrystallization temperature of the aluminum alloy, usually from room temperature to 80 ° C. and under a 1-pass processing rate of 1 to 10%. By cold rolling, an aluminum alloy having a thin plate material and a 0.2% proof stress of 150 N / mm 2 or more is obtained.

以下、実施例により本発明を更に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example.

物性測定は以下にて行った。
(アルミニウム合金の成分分析)
発光分光分析装置(型式:ARL−4460、サーモフィッシャーサイエンティフィック社製)を使用し、アルミニウム合金中のMg、Si、Fe、Cu、Ti、Mn、Ga、Ni、V、Znを定量した。
The physical properties were measured as follows.
(Aluminum alloy component analysis)
Using an emission spectroscopic analyzer (model: ARL-4460, manufactured by Thermo Fisher Scientific), Mg, Si, Fe, Cu, Ti, Mn, Ga, Ni, V, and Zn in the aluminum alloy were quantified.

(圧延の加工率)
加工前のアルミニウム合金の断面積(S0)と加工後のアルミニウム合金の断面積(S)から下式により算出した。
加工率(%)=(S0−S)/S0×100
(Rolling rate)
It calculated by the following formula from the cross-sectional area (S 0 ) of the aluminum alloy before processing and the cross-sectional area (S) of the aluminum alloy after processing.
Processing rate (%) = (S 0 −S) / S 0 × 100

(アルミニウム合金中の金属間化合物の粒子サイズ、粒子密度、占有面積)
アルミニウム合金の表面を鏡面研磨した後、アルミニウム合金を20℃、1重量%水酸化ナトリウム水溶液に60秒間浸漬してエッチングし、水洗した。次いで、光学顕微鏡を使って表面を撮影した。撮影倍率200倍の光学顕微鏡写真から、金属間化合物粒子の粒子サイズ、粒子密度(単位面積当りの個数)及び占有面積を求めた。なお、光学顕微鏡写真での判断が困難な0.1μm2未満の粒子はカウントしていない。
(Particle size, particle density, occupied area of intermetallic compound in aluminum alloy)
After mirror-polishing the surface of the aluminum alloy, the aluminum alloy was immersed in an aqueous solution of sodium hydroxide at 20 ° C. and 1% by weight for 60 seconds, etched, and washed with water. The surface was then photographed using an optical microscope. The particle size, particle density (number per unit area) and occupied area of the intermetallic compound particles were determined from an optical micrograph at a photographing magnification of 200 times. In addition, the particle | grains less than 0.1 micrometer < 2 > which are difficult to judge with an optical micrograph are not counted.

(アルミニウム合金の強度(0.2%耐力))
強度は、JIS5号試験片についてINSTRON 8802を使用して、試験速度:20mm/分、0.2%オフセット法により求めた。
(Strength of aluminum alloy (0.2% proof stress))
The strength was determined by a 0.2% offset method with a test speed of 20 mm / min using INSTRON 8802 for a JIS No. 5 test piece.

実施例1
高純度アルミニウム(純度:99.999%以上)を750℃で溶融し、マグネシウム(純度:99.99%以上)を溶融アルミニウム中に挿入して、Mg含有量が2.5重量%であるAl−Mg合金溶湯を得た。次に、合金溶湯を温度750℃で、2時間、真空度50Paの条件で保持して清浄化した。清浄化した合金溶湯を150℃の鋳鉄鋳型(22mm×150mm×200mm)にて鋳造し、鋳塊を得た。鋳塊の成分を表1に示す。
次いで、鋳塊を次の条件で溶体化処理した。
鋳塊を室温(25℃)から430℃まで50℃/時の速度で昇温し、430℃で10時間保持した。引き続き、500℃まで50℃/時の速度で昇温し、500℃で10時間保持した。その後、500℃から200℃まで300℃/時の速度で冷却した。
溶体化処理した鋳塊の両面を2mm面削加工した後、熱間圧延してアルミニウム合金板を得た。熱間圧延は、350℃から450℃にて厚さ18mmから3mmまで加工率83%で行った。次に、熱間圧延した板材を温度370℃に加熱、昇温後1時間保持して、放冷する方法で、焼鈍処理を行った。次に、アルミニウム合金板を冷間圧延して圧延板を得た。冷間圧延は50℃以下にて厚さ3mmから0.5mmまで加工率83%で行った。
圧延板の強度(0.2%耐力)および圧延板の金属間化合物粒子の粒子サイズ、粒子密度、占有面積を求めた。圧延板の0.2%耐力を表2に示す。粒子密度、占有面積を表3,4にそれぞれ示す。
Example 1
High purity aluminum (purity: 99.999% or more) is melted at 750 ° C., magnesium (purity: 99.99% or more) is inserted into the molten aluminum, and the Mg content is 2.5% by weight. -A molten Mg alloy was obtained. Next, the molten alloy was cleaned at a temperature of 750 ° C. for 2 hours under a vacuum degree of 50 Pa. The cleaned molten alloy was cast in a cast iron mold (22 mm × 150 mm × 200 mm) at 150 ° C. to obtain an ingot. Table 1 shows the components of the ingot.
Next, the ingot was subjected to a solution treatment under the following conditions.
The ingot was heated from room temperature (25 ° C.) to 430 ° C. at a rate of 50 ° C./hour and held at 430 ° C. for 10 hours. Subsequently, the temperature was raised to 500 ° C. at a rate of 50 ° C./hour and held at 500 ° C. for 10 hours. Then, it cooled at the speed | rate of 300 degrees C / hr from 500 degreeC to 200 degreeC.
The both sides of the ingot subjected to solution treatment were chamfered by 2 mm, and then hot rolled to obtain an aluminum alloy plate. Hot rolling was performed from 350 ° C. to 450 ° C. from a thickness of 18 mm to 3 mm at a processing rate of 83%. Next, the hot-rolled plate was heated to a temperature of 370 ° C., held for 1 hour after the temperature was raised, and then annealed by a method of allowing to cool. Next, the aluminum alloy plate was cold-rolled to obtain a rolled plate. Cold rolling was performed at a processing rate of 83% from a thickness of 3 mm to 0.5 mm at 50 ° C. or less.
The strength (0.2% proof stress) of the rolled plate and the particle size, particle density, and occupied area of the intermetallic compound particles of the rolled plate were determined. Table 2 shows the 0.2% yield strength of the rolled sheet. The particle density and the occupied area are shown in Tables 3 and 4, respectively.

アルミニウム合金の耐食性評価として、AlおよびMg溶出試験を行った。
圧延板からなる試験片(縦40mm、横40mm、厚さ0.5mm)を硫酸(濃度1mol/L、温度80℃)に浸漬した。浸漬後、2時間、8時間、24時間経過後、溶出したAl、Mgを測定した。溶出したAl、Mgは誘導結合プラズマ発光分光分析(ICP−AES)により定量した。AlおよびMg溶出試験の結果を表5に示す。
As an evaluation of the corrosion resistance of the aluminum alloy, an Al and Mg dissolution test was performed.
A test piece made of a rolled plate (length 40 mm, width 40 mm, thickness 0.5 mm) was immersed in sulfuric acid (concentration 1 mol / L, temperature 80 ° C.). After immersion, 2 hours, 8 hours, and 24 hours elapsed, the eluted Al and Mg were measured. The eluted Al and Mg were quantified by inductively coupled plasma optical emission spectrometry (ICP-AES). The results of Al and Mg dissolution tests are shown in Table 5.

実施例2
Mg含有量を2.5重量%から3.8重量%に変更したこと以外、実施例1と同じ操作を行ってアルミニウム合金および圧延板を得た。これらに対し、実施例1と同様の評価を行った。評価結果を表1〜5、図1に示す。
Example 2
An aluminum alloy and a rolled plate were obtained by performing the same operation as in Example 1 except that the Mg content was changed from 2.5% by weight to 3.8% by weight. These were evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 to 5 and FIG.

比較例1
高純度Al(純度:99.999%以上)を普通純度Al(純度:99.8%)に変更したこと、およびMg含有量を2.5重量%から0重量%(Mg未添加)に変更したこと以外、実施例1と同じ操作を行ってアルミニウム合金および圧延板を得た。これらに対し、実施例1と同様の評価を行った。評価結果を表1〜5、図1に示す。
Comparative Example 1
Changed high purity Al (purity: 99.999% or more) to normal purity Al (purity: 99.8%), and changed Mg content from 2.5 wt% to 0 wt% (no Mg added) Except that, the same operation as in Example 1 was performed to obtain an aluminum alloy and a rolled plate. These were evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 to 5 and FIG.

比較例2
高純度Al(純度:99.999%以上)を普通純度Al(純度:99.8%)に変更したこと以外、実施例1と同じ操作を行ってアルミニウム合金および圧延板を得たこれらに対し、実施例1と同様の評価を行った。評価結果を表1〜5、図1に示す。
Comparative Example 2
The same operations as in Example 1 were performed except that high-purity Al (purity: 99.999% or more) was changed to ordinary-purity Al (purity: 99.8%). The same evaluation as in Example 1 was performed. The evaluation results are shown in Tables 1 to 5 and FIG.

比較例3
高純度Al(純度:99.999%以上)を普通純度Al(純度:99.8%)に変更したこと、およびMg含有量を2.5重量%から3.7重量%に変更したこと以外、実施例1と同じ操作を行ってアルミニウム合金および圧延板を得た。これらに対し、実施例1と同様の評価を行った。評価結果を表1〜5、図1に示す。
Comparative Example 3
Other than changing high-purity Al (purity: 99.999% or more) to ordinary purity Al (purity: 99.8%) and changing the Mg content from 2.5 wt% to 3.7 wt% The same operation as in Example 1 was performed to obtain an aluminum alloy and a rolled plate. These were evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 to 5 and FIG.

Figure 2011174159
Figure 2011174159

Figure 2011174159
Figure 2011174159

Figure 2011174159
Figure 2011174159

Figure 2011174159
Figure 2011174159

Figure 2011174159
Figure 2011174159

本発明のアルミニウム合金は、酸、アルカリなどの腐食性条件下においても優れた耐食性を有し、従来のアルミニウム合金では使用が困難であった環境下、又は使用条件下において、建築材料、自動車材料、電池、キャパシタなどの蓄電デバイス材料として好適に使用される。   The aluminum alloy of the present invention has excellent corrosion resistance even under corrosive conditions such as acid and alkali, and it is difficult to use with conventional aluminum alloys. It is preferably used as a power storage device material such as a battery or a capacitor.

Claims (4)

マグネシウム含有量が1重量%以上8重量%以下、ケイ素含有量が0.0001重量%以上0.02重量%以下、鉄含有量が0.0001重量%以上0.03重量%以下のアルミニウム合金であって、
アルミニウム、マグネシウム、ケイ素、鉄以外の元素の含有量が、それぞれ0.005重量%以下であり、かつ、
アルミニウム、マグネシウム以外の元素の含有量の合計が、0.1重量%以下であることを特徴とするアルミニウム合金。
An aluminum alloy having a magnesium content of 1% by weight to 8% by weight, a silicon content of 0.0001% by weight to 0.02% by weight, and an iron content of 0.0001% by weight to 0.03% by weight. There,
The content of elements other than aluminum, magnesium, silicon and iron is 0.005% by weight or less, and
An aluminum alloy characterized in that the total content of elements other than aluminum and magnesium is 0.1% by weight or less.
合金マトリックス中に金属間化合物粒子を含み、
合金表面において観察される金属間化合物粒子のうち、
粒子サイズが0.1μm2以上100μm2未満の金属間化合物粒子の密度が、1000個/mm2以下であり、
粒子サイズが100μm2以上の金属間化合物粒子の密度が、10個/mm2以下であり、かつ、
アルミニウム合金単位面積当りの金属間化合物粒子の占有面積が、0.5%以下である
請求項1記載のアルミニウム合金。
Containing intermetallic particles in the alloy matrix;
Of the intermetallic particles observed on the alloy surface,
The density of intermetallic compound particles having a particle size of 0.1 μm 2 or more and less than 100 μm 2 is 1000 / mm 2 or less,
The density of intermetallic compound particles having a particle size of 100 μm 2 or more is 10 particles / mm 2 or less, and
The aluminum alloy according to claim 1, wherein the area occupied by the intermetallic compound particles per unit area of the aluminum alloy is 0.5% or less.
0.2%耐力が、150N/mm2以上である請求項1または2記載のアルミニウム合金。 The aluminum alloy according to claim 1 or 2, wherein the 0.2% proof stress is 150 N / mm 2 or more. 圧延されてなる請求項1から3のいずれかに記載のアルミニウム合金。   The aluminum alloy according to any one of claims 1 to 3, wherein the aluminum alloy is rolled.
JP2010040918A 2010-02-25 2010-02-25 Aluminum alloy Pending JP2011174159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040918A JP2011174159A (en) 2010-02-25 2010-02-25 Aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040918A JP2011174159A (en) 2010-02-25 2010-02-25 Aluminum alloy

Publications (1)

Publication Number Publication Date
JP2011174159A true JP2011174159A (en) 2011-09-08

Family

ID=44687270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040918A Pending JP2011174159A (en) 2010-02-25 2010-02-25 Aluminum alloy

Country Status (1)

Country Link
JP (1) JP2011174159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198752A (en) * 2010-02-25 2011-10-06 Sumitomo Chemical Co Ltd Negative electrode for aluminum air battery, and aluminum air battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179841A (en) * 1985-02-04 1986-08-12 Furukawa Electric Co Ltd:The Aluminum wire rod for semiconductor device bonding
JPS6274041A (en) * 1985-07-26 1987-04-04 アルカン・インタ−ナシヨナル・リミテツド Electrochemically active aluminum alloy
JPH04232225A (en) * 1990-12-28 1992-08-20 Furukawa Alum Co Ltd Aluminum alloy plate having superior formability and corrosion resistance, and production thereof
JPH10230379A (en) * 1997-02-20 1998-09-02 Kobe Steel Ltd Manufacture of aluminum alloy container
JP2004134310A (en) * 2002-10-15 2004-04-30 Nippon Light Metal Co Ltd Metal material having anticorrosion conductive film and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179841A (en) * 1985-02-04 1986-08-12 Furukawa Electric Co Ltd:The Aluminum wire rod for semiconductor device bonding
JPS6274041A (en) * 1985-07-26 1987-04-04 アルカン・インタ−ナシヨナル・リミテツド Electrochemically active aluminum alloy
JPH04232225A (en) * 1990-12-28 1992-08-20 Furukawa Alum Co Ltd Aluminum alloy plate having superior formability and corrosion resistance, and production thereof
JPH10230379A (en) * 1997-02-20 1998-09-02 Kobe Steel Ltd Manufacture of aluminum alloy container
JP2004134310A (en) * 2002-10-15 2004-04-30 Nippon Light Metal Co Ltd Metal material having anticorrosion conductive film and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198752A (en) * 2010-02-25 2011-10-06 Sumitomo Chemical Co Ltd Negative electrode for aluminum air battery, and aluminum air battery

Similar Documents

Publication Publication Date Title
JP5275446B2 (en) Aluminum alloy foil for current collector and method for producing the same
JP5856076B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5468423B2 (en) High strength and high heat resistance copper alloy material
JP5160849B2 (en) Aluminum alloy foil for current collector
JP2014047384A (en) High strength aluminum alloy fin material and producing method therefor
JP2013108146A (en) Aluminum alloy foil for current collector and method of manufacturing the same
JP2009064560A (en) Aluminum alloy foil for current collector
KR20150086481A (en) Aluminum-alloy foil
JP2022513645A (en) Magnesium alloy material and its manufacturing method
JPWO2013018164A1 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5448929B2 (en) Aluminum alloy hard foil having excellent bending resistance and method for producing the same
JP5839126B2 (en) Copper alloy
JP3935492B2 (en) Copper alloy having high strength and excellent bendability and method for producing copper alloy sheet
JP5758182B2 (en) Aluminum material
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
JP2011026656A (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP6749121B2 (en) Copper alloy plate with excellent strength and conductivity
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP2018076588A (en) Copper alloy sheet material and manufacturing method therefor
JPWO2009113601A1 (en) Magnesium-lithium alloy, rolled material, molded product
JP2011174159A (en) Aluminum alloy
JP6391618B2 (en) Titanium copper foil and manufacturing method thereof
JP2013067848A (en) Cu-Co-Si-BASED COPPER ALLOY STRIP AND METHOD FOR PRODUCING THE SAME
TWI662136B (en) High nickel alloy and method for fabricating the same
JP2004076059A (en) Aluminum alloy foil for cathode of electrolytic capacitor, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827