NO854663L - PROCEDURE FOR THE PREPARATION OF CARBON-CONTAINED WASTE AND BIOMASS. - Google Patents

PROCEDURE FOR THE PREPARATION OF CARBON-CONTAINED WASTE AND BIOMASS.

Info

Publication number
NO854663L
NO854663L NO854663A NO854663A NO854663L NO 854663 L NO854663 L NO 854663L NO 854663 A NO854663 A NO 854663A NO 854663 A NO854663 A NO 854663A NO 854663 L NO854663 L NO 854663L
Authority
NO
Norway
Prior art keywords
waste
hydrogen
bar
carbon
temperature
Prior art date
Application number
NO854663A
Other languages
Norwegian (no)
Inventor
Axel Giehr
Hermann Hoever
Karl-Heinz Keim
Joachim Korff
Otto Neuwirth
Original Assignee
Union Rheinische Braunkohlen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6250827&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO854663(L) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Union Rheinische Braunkohlen filed Critical Union Rheinische Braunkohlen
Publication of NO854663L publication Critical patent/NO854663L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/083Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Coke Industry (AREA)
  • Treatment Of Sludge (AREA)

Abstract

1. Process for the hydrogenative reprocessing of carbon containing waste materials, with the exclusion of a process for hydrocracking of waste tires in the presence of a catalyst of an iron compound and an auxiliary catalyst of metal compounds of the group Cr, Mo, W, Se and Te, based on a synergistic catalyst action with sulfur, by treatment of the waste materials with hydrogen und/or hydrogen transferring solvents (hydrogen donor solvents), characterized in that mixtures of carbon containing waste materials of synthetic respectively predominantly synthetic origin are reacted with hydrogen and/or hydrogen containing gases at a temperature of 200-600 degrees C, preferably at a temperature of 200-540 degrees C, at a pressure of 30-500 bar, preferably of 50-450 bar and a residence time of 1 minute to 8 hours, preferably of 15 minutes to 6 hours and in the case of reaction with a hydrogen-donor-solvent at a temperature of 75-500 degrees C, preferably of 80-480 degrees C and a pressure of 1-300 bar.

Description

Oppfinnelsen vedrører en fremgangsmåte til opparbeidelse The invention relates to a method for preparation

av karbonholdig avfall og biomasse ved hydrogenering av disse ved forhøyet temperatur og et hydrogentrykk på minst 1 bar. of carbonaceous waste and biomass by hydrogenating these at elevated temperature and a hydrogen pressure of at least 1 bar.

Det er i offentligheten og fagverden kjent at det verdens-omfattende avfall er en økende større belastning av omgivelsene . It is known to the public and the professional world that the worldwide waste is an increasing burden on the environment.

Siden årtier lagres til i dag avfall i depoter, f. eks. i forlatte kisgruber, bergverksgruber og på andre steder. I lang tid har man herved ikke påaktet avfallets kjemiske struk-tur og dens langtidige virkning på jorden og grunnvannet. Since decades until today, waste is stored in depots, e.g. in abandoned pits, quarry pits and in other places. For a long time, the chemical structure of the waste and its long-term effects on the soil and groundwater have not been taken into account.

I yngre tid lagres bestemt avfall i såkalte særdeponeringer. Herved tilstreber man å avtette deponiene ovenfor grunnvann In recent times, certain waste has been stored in so-called special landfills. Hereby, efforts are being made to seal the landfills above ground water

og jord. Over lengre tid er imidlertid også her å frykte fare for omgivelsene. and soil. Over a longer period of time, however, there is also a danger to the surroundings to be feared.

Fagverden har derfor i noen tid intens tilstrebet opparbeidelse resp. forarbeidelse av avfall, for det første til å skåne omgivelsene, og for det annet å utvinne nyttige produkter fra avfallet. Således omtales i "The Oil and Gas Journal", des. 25, 1978 side 80 et pilotanlegg, hvori ved hjelp av pyrolyse kunststoffer kunne omdannes i gass og olje. The professional world has therefore for some time been intensely striving to develop resp. processing of waste, firstly to protect the environment, and secondly to extract useful products from the waste. Thus is mentioned in "The Oil and Gas Journal", Dec. 25, 1978 page 80 a pilot plant, in which, by means of pyrolysis, plastics could be converted into gas and oil.

I "Hydrocarben Processing" April 1979, side 183, omtales forbrenningsanlegg spesielt for spesielt avfall. In "Hydrocarbon Processing" April 1979, page 183, incinerators are mentioned especially for special waste.

Også den biokjemiske avbygning av kunststoffer ble under- The biochemical degradation of plastics was also under-

søkt (se f. eks. European Chemical News", september 1979, applied (see e.g. European Chemical News", September 1979,

side 28). I "Chemical Engineering", 13. august 1979, side 41, omtales en fremgangsmåte ifølge hvilke farlig avfall innstøpes i herdende materiale, f. eks. sement. page 28). In "Chemical Engineering", 13 August 1979, page 41, a method is described according to which hazardous waste is embedded in hardening material, e.g. cement.

Et overblikk over de viktigste fremgangsmåter er angitt i "Chemical and Engineering News" 1. oktober 1979, side 34. An overview of the most important methods is given in "Chemical and Engineering News" October 1, 1979, page 34.

Her omtales spesielt forgassing av biomasse, nemlig treav- fall og lignende til karbonmonooksyd og hydrogen. På side 36 venstre spalte i denne publikasjon, omtales også et for-søksprogram til omsetting av knust tre suspendert i vann med hydrogen i nærvær av Raney-nikkel som katalysator. Here, the gasification of biomass, namely wood waste and the like to carbon monoxide and hydrogen, is discussed in particular. On page 36, left-hand column of this publication, an experimental program for converting crushed wood suspended in water with hydrogen in the presence of Raney nickel as a catalyst is also mentioned.

I "Europa Chemie", 25, 1979, side 417 beskrives en fremgangsmåte ifølge hvilke usortert kunststoffavfall plasti-fiseres og presses. In "Europa Chemie", 25, 1979, page 417, a method is described according to which unsorted plastic waste is plasticized and pressed.

Hvirvelsjiktforbrenning og avfall omtales i "Chemiche Indu-strie". XXXII, april 1980, side 248. Omdannelse av avfallet og biomasse oppvarmes med vann og alkalier, omtales i "Chemistry International", 1880, nr. 4, side 20. Fluidized bed combustion and waste are discussed in "Chemiche Indu-strie". XXXII, April 1980, page 248. Conversion of the waste and biomass is heated with water and alkalis, discussed in "Chemistry International", 1880, No. 4, page 20.

Tallrike andre publikasjoner er videre blitt kjent. Numerous other publications have also become known.

I yngre tid, fremfor alt forbrenningen i de moderneste anlegg videreutviklet og opprettet storanlegg som arbeider etter denne fremgangsmåten. Enskjønt avstøvning og røk-gassvasking er integrert i slike anlegg, er omsetningen av avfallet til (og vann) et uunngåelig følgeproblem. In recent times, above all the combustion in the most modern plants was further developed and large plants were created that work according to this method. Although dedusting and flue-gas washing are integrated in such facilities, the conversion of the waste into (and water) is an inevitable consequential problem.

Spesielt med henblikk på anrikning av i atmosfæren er C02~fremstillingen uønsket. Videre unnvikes skadestoffer også ved omhyggelig rensning således f. eks. tungmetaller, SO2, NO^ og andre i små mengder i atmosfæren. Especially with regard to the enrichment of the atmosphere, C02 production is undesirable. Furthermore, harmful substances are also avoided by careful cleaning, thus e.g. heavy metals, SO2, NO^ and others in small amounts in the atmosphere.

Også pyrolyse drives i mellomtiden i teknisk omfang (se eksempelvis "Vereinigte Wirtschaftsdienste GmbH", 4. oktober 1985 side 9). Pyrrolysen har imidlertid den ulempe ved overveiende dannelse av gassformede produkter et sterkt til-smusset koksresiduu. In the meantime, pyrolysis is also being operated on a technical scale (see for example "Vereinigte Wirtschaftsdienste GmbH", 4 October 1985 page 9). However, pyrolysis has the disadvantage of predominantly forming gaseous products and a heavily soiled coke residue.

Problemet med avfall- og biomasseforarbeidelse er derfor som tidligere ikke tilfredsstillende løst. The problem of waste and biomass processing is therefore, as before, not satisfactorily solved.

En overraskende, sammenlignet til teknikkens stand vesentlig gunstigere løsning av dette problem, spesielt med henblikk på fremstillingen av meget store mengder verdifulle produkter, åpenbares i foreliggende oppfinnelse som ved- A surprising, compared to the state of the art, significantly more favorable solution to this problem, especially with a view to the production of very large quantities of valuable products, is disclosed in the present invention which

rører en fremgangsmåte til opparbeidelse av karbonholdig avfall og biomasse, idet fremgangsmåten erkarakterisertved at de karbonholdige avfall, og/eller biomasse omsettes med hydrogen og/eller hydrogenholdige gasser, og/eller hydro-genoverførende forbindelser, i et temperaturområde på 75-600°C med en trykk på 1-600 bar, fortrinnsvis på 2-500 bar, relates to a method for processing carbonaceous waste and biomass, the method being characterized in that the carbonaceous waste and/or biomass is reacted with hydrogen and/or hydrogen-containing gases, and/or hydrogen-transferring compounds, in a temperature range of 75-600°C with a pressure of 1-600 bar, preferably of 2-500 bar,

og en oppholdstid fra 1 minutt til 8 timer, fortrinnsvis fra 15 minutter til 6 timer. and a residence time of from 1 minute to 8 hours, preferably from 15 minutes to 6 hours.

Fremgangsmåten ifølge oppfinnelsen muliggjør å forarbeide avfall hvorfra det er fjernet organiske bestanddeler som glass, metaller, steinmaterialer og lignende, uten ytterligere sortering til verdifulle hydrokarboner, altså til C1-C4~hydrokarbongasser til i bensinområdet kokende hydrokarboner, og til middels- og tungoljer som kan anvendes som dieselolje og til oppvarmingsformål. Ifølge oppfinnelsen er usorterte materialer likeledes forarbeidbare, spesielt således at karbonholdig avfall av syntetisk opprinnelse som eksempelvis kunststoffer, resp. kunststoffblandinger, gummi, dekker, tekstilavfall, hvorfra den vegetabilske del eller biomassedelen i det minste grovadskilles og deretter underkastes en separat hydrogenerende behandling eventuelt sammen med industriavfall, som f. eks. lakk- og malingsrester, og organiske kjemikalier, industriproduksjonsavfall, organiske, syntetiske shredderavfall fra bilindustrien, klarslam eller med bruktoljer og lignende. Herved kan delvis andre avfall som papir, næringsmiddelrester, landbruks-og skogbruksavfall, tre, planter og lignende adskilles best mulig, imidlertid også The method according to the invention makes it possible to process waste from which organic components such as glass, metals, stone materials and the like have been removed, without further sorting into valuable hydrocarbons, i.e. into C1-C4~hydrocarbon gases into hydrocarbons boiling in the petrol range, and into medium and heavy oils which can used as diesel oil and for heating purposes. According to the invention, unsorted materials are also processable, especially so that carbon-containing waste of synthetic origin such as, for example, plastics, resp. plastic mixtures, rubber, tires, textile waste, from which the vegetable part or the biomass part is at least roughly separated and then subjected to a separate hydrogenating treatment possibly together with industrial waste, such as e.g. lacquer and paint residues, and organic chemicals, industrial production waste, organic, synthetic shredder waste from the car industry, clear sludge or with used oils and the like. In this way, partly other waste such as paper, food residues, agricultural and forestry waste, wood, plants and the like can be separated as best as possible, however also

i et visst omfang forbli i den syntetiske delen. to some extent remain in the synthetic part.

Husholdningssøppel kan følgelig eksempelvis opparbeides således at man i det minste grovadskiller kunststoffer, gummi-tekstilrester eller lignende, og underkastes adskilt den hydrogenerende behandling, f. eks. sammen med brukte dekk og/eller kunstoff, og/eller kjemiavfall fra industrien, og/ eller bruktoljer og lignende. Også i syntetiske enkelt-komponenter er under betingelsene ifølge oppfinnelsen meget godt forarbeidbare verdifulle flytende produkter. Household rubbish can therefore, for example, be processed in such a way that at least plastics, rubber-textile residues or the like are roughly separated, and subjected separately to the hydrogenating treatment, e.g. together with used tires and/or plastic, and/or chemical waste from industry, and/or used oils and the like. Even in synthetic single components, under the conditions according to the invention, valuable liquid products are very easily processable.

Fremgangsmåte ifølge oppfinnelsen er også meget godt egnet for den felles hydrogenerende behandling av nevnte avfall resp. avfallblandinger med karbon, karbonbestanddeler, som eksempelvis karbonoljeresiduu, karbonolje, pyrolyseoljer, jordolje, jordoljeresiduer, andre jordoljebestanddeler, oljeskifer, oljeskiferbestanddeler, oljesand, bitumer og lignende, resp. blandinger av disse materialer. Method according to the invention is also very well suited for the joint hydrogenating treatment of said waste or waste mixtures with carbon, carbon components, such as carbon oil residue, carbon oil, pyrolysis oils, petroleum, petroleum residues, other petroleum components, oil shale, oil shale components, oil sand, bitumen and the like, resp. mixtures of these materials.

Adskillelsen av de overnevnte uorganiske materialer fra de karbonholdige materialer, kan gjennomføres i henhold til teknikkens stand. Disse uorganiske materialer kan deponeres hvis de ikke videreopparbeides. Også knusing og adskillelse av avfallmaterialer og biomasse kan gjennomføres i hen- The separation of the above-mentioned inorganic materials from the carbonaceous materials can be carried out according to the state of the art. These inorganic materials can be landfilled if they are not further processed. Crushing and separation of waste materials and biomass can also be carried out in

hold til teknikkens stand. Hvis apparative betingelser ikke står i mot dem, kan fremgangsmåten ifølge oppfinnelsen også gjennomføres i nærvær av uorganiske materialer. keep to the state of the art. If apparatus conditions do not oppose them, the method according to the invention can also be carried out in the presence of inorganic materials.

Bestanddeler i avfall som ikke er omdannbare til hydrokarboner, som f. eks. svovel, nitrogen, oksygen og halogener i form av deres forbindelser, fremkommer ved hydrogenerings-reaktorutgangen som hydrogenforbindelser gassformet, altså som H2S, NH^, HC1, H20, og andre. Constituents in waste that cannot be converted into hydrocarbons, such as e.g. sulphur, nitrogen, oxygen and halogens in the form of their compounds, appear at the hydrogenation reactor output as hydrogen compounds in gaseous form, i.e. as H2S, NH^, HC1, H20, and others.

Det er teknikkens stand å adskille disse forbindelser ved gassvasking og eventuelt å tilføre til en videreforarbeidelse. Også dannelsen av farlige ved forbrenning dannede stoffer It is the state of the art to separate these compounds by gas washing and possibly add them to further processing. Also the formation of dangerous substances formed by combustion

som f. eks. av NO X , S0 2~ . eller av dioksiner unngås i henhold til foreliggende fremgangsmåte. Likeledes kan tungt forbrenn-bare kunststoffer som polyvinylklorid opparbeides uten ri-siko . like for example. of NO X , S0 2~ . or of dioxins is avoided according to the present method. Likewise, highly combustible plastics such as polyvinyl chloride can be processed without risk.

Hydrogeneringen av de karbonholdige avfall kan gjennom- The hydrogenation of the carbonaceous waste can through

føres uten katalysator med meget gode resultater. Delvis ennå bedre resultater med hensyn til omsetning og selekti-vitet av fraksjoner og bestemte kokeområder kan fåes i nærvær av katalysatorer som eksempelvis i nærvær av Fe, Mo, is carried out without a catalyst with very good results. Partially even better results with regard to turnover and selectivity of fractions and specific boiling ranges can be obtained in the presence of catalysts such as, for example, in the presence of Fe, Mo,

Ni, CO, W, og andre hydrogeneringsaktive metaller og/eller deres forbindelser, idet disse kan bestå av enkelte, eller i det minste to av disse komponenter og metallene og/eller deres forbindelser kan anvendes på bærere, f. eks. på alu-miniumoksyd, silisiumdioksyd, aluminiumsilikater, zeolitter og andre for fagfolk kjente bærere, eller av bæreblandinger eller også uten bærere. Også bestemte zeolitter som sådanne er egnet. Ni, CO, W, and other hydrogenation-active metals and/or their compounds, as these can consist of some, or at least two of these components and the metals and/or their compounds can be used on carriers, e.g. on aluminum oxide, silicon dioxide, aluminum silicates, zeolites and other carriers known to those skilled in the art, or carrier mixtures or without carriers. Certain zeolites as such are also suitable.

Ytterligere egnede katalysatorer kan være såkalte engangs-katalysatorer, som eksempelvis herdkoks, Winklerforgassings-støv, støv og aske som fremkommer ved den hydrogenerende gassbehandling av karbon til metan (HKV-støv), men også jern-oksydholdige blandinger som eksempelvis rødslam, bayermasse, luksmasse, støv fra jernindustrien og andre, idet disse materialer også kan være dotert med hydreringsaktive metaller, og/eller metallforbindelser, spesielt med tungmetallsalter, som f. eks. jernsalter eller salter av krom, sink, molybden, wolfram, mnagan, nikkel, kobolt, videre også med alkali, jordalkali, og andre, samt med blandinger av disse forbindelser. Katalysatoren kan i det minste delvis være forbehandlet sulfiderende. Further suitable catalysts can be so-called disposable catalysts, such as coke, Winkler gasification dust, dust and ash resulting from the hydrogenating gas treatment of carbon to methane (HKV dust), but also iron oxide-containing mixtures such as red mud, Bayer pulp, lux pulp , dust from the iron industry and others, since these materials can also be doped with hydration-active metals, and/or metal compounds, especially with heavy metal salts, such as e.g. iron salts or salts of chromium, zinc, molybdenum, tungsten, manganese, nickel, cobalt, further also with alkali, alkaline earth, and others, as well as with mixtures of these compounds. The catalyst can be at least partially pre-treated sulphiding.

Den hydrogenerende behandling kan finne sted innen vide trykk- og temperaturgrenser, nemlig på 75-600°C og 1-600 The hydrogenating treatment can take place within wide pressure and temperature limits, namely at 75-600°C and 1-600

bar. bar.

Den hydrogenerende behandling med og uten katalysatorer av blandinger av syntetiske avfall som kunststoff, og kunststoffblandinger, gummi, dekk, tekstilavfall, industriavfall og lignende samt deres blandinger, idet det kan arbeides i nærvær av utdrivningsoljer, samt kan arbeides i blandinger med karbon, karbonbestanddeler, jordoljer, jordoljeresiduer og andre jordoljebestanddeler, oljeskifer, oljeskiferbestanddeler, oljesand og dens bestanddeler, bitumen og lignende materialer, finner sted ved trykk på 30-500 bar, fortrinnsvis på 50-450 bar. Temperaturen ligger ved 200-600°C, fortrinnsvis ved 200-540°C, oppholdstiden ligger ved 1 minutt til 8 timer, fortrinnsvis ved 15 minutter til 6 timer. The hydrogenating treatment with and without catalysts of mixtures of synthetic waste such as plastic, and plastic mixtures, rubber, tires, textile waste, industrial waste and the like as well as their mixtures, since it can be worked in the presence of expelling oils, and can be worked in mixtures with carbon, carbon components, petroleum, petroleum residues and other petroleum constituents, oil shale, oil shale constituents, oil sands and its constituents, bitumen and similar materials, takes place at pressures of 30-500 bar, preferably at 50-450 bar. The temperature is at 200-600°C, preferably at 200-540°C, the residence time is at 1 minute to 8 hours, preferably at 15 minutes to 6 hours.

Som hydrogeneringsgass kan det anvendes forskjellige hydro-genkvaliteter også metylblandinger, f. eks. CO, C02, H.>S, metan, etan, vanndamp og lignende. Meget godt egnet er hydro-genkvaliteter slik de oppstår ved forgassingsreaksjoner av karbonholdige materialer med vanndamp. Slike materialer kan være residuer fra forarbeidelsen av mineralsk olje eller av kull, tre, torv og residuer fra kullforarbeidelse, eksempelvis hydrogenering. Egnet er også biomasser eller også de fra husholdningsavfall adskilte vegetabilske deler. Different hydrogen qualities can be used as hydrogenation gas, including methyl mixtures, e.g. CO, C02, H.>S, methane, ethane, water vapor and the like. Very suitable are hydrogen qualities such as those produced by gasification reactions of carbonaceous materials with water vapour. Such materials can be residues from the processing of mineral oil or from coal, wood, peat and residues from coal processing, for example hydrogenation. Biomasses or those separated from household waste are also vegetable parts.

Meget godt egnet er selvsagt også rene r^-kvaliteter, som eksempelvis elektrolysehydrogen. Således kan ifølge oppfinnelsen eksempelvis husholdningsavfall først skilles i vegetabilsk og syntetisk del, og deretter den vegetabilske del tilføres til hydrogenfrembringelse til en forgassing, mens den syntetiske del underkastes den hydrogenerende behandling . Pure r^ qualities, such as electrolytic hydrogen, are of course also very suitable. Thus, according to the invention, for example, household waste can first be separated into vegetable and synthetic part, and then the vegetable part is added to produce hydrogen for a gasification, while the synthetic part is subjected to the hydrogenating treatment.

Den vegetabilske del kan også tilføres en forgjæring eller annen formasjon. Det vanligvis for uorganiske materialer sterkt befridde eventuelt tørkede, knuste eller smeltede eller med utdrivningsolje eller andre tilsetninger blandede anvendte produkter, bringes som sådan eller blandet med katalysatorer til reaksjonstemperatur og behandles i reaksjonssonen med hydrogeneringsgass. The vegetable part can also be added to a pre-fermentation or other formation. The used products, usually strongly freed of inorganic materials, possibly dried, crushed or melted or mixed with expeller oil or other additives, are brought as such or mixed with catalysts to reaction temperature and treated in the reaction zone with hydrogenation gas.

I de tilfeller hvor det ved forhøyet temperatur allerede opp står i blandebeholderen en pumpbar grøt, kan det anvendte produkt pumpes inn i hydrogenering. Til frembringelse av den pumpbare grøt kan en såkalt utdrivningsolje som fremkommer i prosessen og kan stamme fra forskjellige kilder i anlegget tilsettes. Utdrivingsoljen kan imidlertid også In cases where, at an elevated temperature, there is already a pumpable slurry in the mixing container, the product used can be pumped into hydrogenation. To produce the pumpable porridge, a so-called expelling oil that appears in the process and can originate from various sources in the plant can be added. However, the expelling oil can also

være en ikke fra anlegget stammende fremmedolje. be a foreign oil not originating from the plant.

Endelig kan også vann eller damp tilsettes. Også ved tilsetning av eksempelvis jordoljekomponenter, bitumen eller karbonbestanddeler kan det oppstå en pumpbar grøt. Finally, water or steam can also be added. The addition of, for example, petroleum components, bitumen or carbon components can also result in a pumpable slurry.

Det anvendte produkt kan imidlertid også transporteres ved hjelp av transportsnekker, blant annet til teknikkens stand svarende transportinnretninger inn i hydrogeringsreaktoren. However, the used product can also be transported using transport conveyors, including transport devices corresponding to the state of the art into the hydrogenation reactor.

Reaksjonssonen kan bestå av en eller flere etter hverandre eller parallelt koblede reaktorer. Etterkoblet bak reaktoren eller reaktorene, befinner det seg eventuelt vanligvis minst en varmeutskiller slik det er kjent fra sumpfase-hydrogenering hvori det finner sted en adskillelse ved varm-adskillelses-temperatur i gassformede bestanddeler som fjernes og i varmutskillersumpen. The reaction zone can consist of one or more reactors connected one behind the other or in parallel. Downstream behind the reactor or reactors, there is usually at least one heat separator as is known from sump-phase hydrogenation in which a separation takes place at hot-separation temperature into gaseous components that are removed and in the heat separator sump.

De gassformede deler avkjøles, idet det fremkommer flytende hydrokarboner som videreforarbeides tilsvarende teknikkens stand, som eksempelvis ved ytterligers hydrogenerende spalte-trinn, resp. raffineringstrinn av destillativ adskillelse. Delvis kan disse imidlertid også tilbakeføres til utriv- The gaseous parts are cooled, as liquid hydrocarbons are produced which are further processed according to the state of the art, such as for example by further hydrogenating cleavage steps, resp. refining step of distillative separation. In part, however, these can also be traced back to

ning av det anvendte produkt. Ikke kondenserte gasser befries ved hjelp av gassvasking for I^S, NH^, HC1, eventuelt også CO og C02. ning of the product used. Non-condensed gases are freed by means of gas washing for I^S, NH^, HC1, possibly also CO and C02.

Hydrogenet i den dannede gass kan tilbakeføres som hydrogeneringsgass til hydreringsreaktoren eller reaktorene. The hydrogen in the gas formed can be returned as hydrogenation gas to the hydrogenation reactor or reactors.

En forarbeidelse av de i de gassformede produkter inneholdte lavere hydrokarboner, f. eks. dampreformering er likeledes mulig, idet det i tillegg fremstilles ekstra hydrogen. Produktene fra gassfasen og varmeutskilleren, spesielt de ved normalbetingelser flytende produkter, kan som allerede anført ovenfor, tilføres et raffineringstrinn som vanligvis arbeider hydrogenerende. Derved kan dessuten tilstedeværende mindre mengder av heteroatomholdige forbindelser opparbeides fullstendig hydrogenerende således at deretter produktene praktisk talt er svovel-, nitrogen- og halogenfri. Høyere-kokende deler kan i det minste tilføres et krakkeanlegg, spesielt et hydrokrakkeanlegg. Fra forarbeidelsen kan i behovstilfeller også bestemte mengder jevnt tilbakeføres i avfallhydrogeneringen resp. før avfallhydrogeneringen. A processing of the lower hydrocarbons contained in the gaseous products, e.g. steam reforming is also possible, as extra hydrogen is also produced. The products from the gas phase and the heat separator, especially the products that are liquid under normal conditions, can, as already mentioned above, be fed to a refining step which usually works hydrogenatingly. In addition, small amounts of heteroatom-containing compounds present can thereby be completely hydrogenated so that the products are then practically sulphur-, nitrogen- and halogen-free. Higher-boiling fractions can at least be fed to a cracker, especially a hydrocracker. From the processing, in cases of need, certain quantities can also be fed back evenly into the waste hydrogenation resp. before the waste hydrogenation.

Varmadskillersumpen kan opparbeides på forskjellig måte, The heat separator sump can be prepared in different ways,

f. eks. ved vakuumdestillering, idet vakuumdestilleringens sump kan tilføres en forgassing til H og CO. De ved forgassing dannede gasser integreres i dette tilfelle fortrinnsvis i de overnevnte vaskinger, og gassforarbeidelser. Vakuum-destillasjonsresiduene kan imidlertid også forkokses og avasfalteres, eller videreforarbeides etter andre fremgangsmåter ifølge teknikkens stand. De dannede residuer og asker inneholder de metalliske forurensninger som kan deponeres tilsvarende teknikkens stand, de kan imidlertid også tilføres en gjenvinning av metallene i den metallurgiske industri eller eventuelt anvendes som katalysatorer i avfallhydrogeneringen. Varmutskillersumpen resp. -residuu kan imidlertid også underkastes en overkritisk ekstrahering, som f. eks. e.g. by vacuum distillation, as the sump of the vacuum distillation can be supplied with gasification to H and CO. In this case, the gases formed by gasification are preferably integrated into the above-mentioned washings and gas processing. However, the vacuum distillation residues can also be coked and deasphalted, or further processed according to other methods according to the state of the art. The residues and ashes formed contain the metallic contaminants that can be deposited according to the state of the art, but they can also be added to a recovery of the metals in the metallurgical industry or possibly used as catalysts in the waste hydrogenation. The heat separator sump or -residuu can, however, also be subjected to an overcritical extraction, such as e.g.

med propan, butan eller høyerekokende hydrokarboner, som kan taes fra selve fremgangsmåten. Herved kan ekstraherings-midlet i det minste delvis allerede innføres i selve hydrogeneringsreaktoren for å oppnå den ønskede ekstraherings-grad. Varmutskillersumpen kan også anvendes som utrivningsolje, likeledes vakuumdestilleringsresiduu, spesielt etter avasfaltering. with propane, butane or higher-boiling hydrocarbons, which can be taken from the process itself. Hereby, the extractant can at least partially already be introduced into the hydrogenation reactor itself in order to achieve the desired degree of extraction. The heat separator sump can also be used as stripping oil, as well as vacuum distillation residue, especially after deasphalting.

På fig. 1 er det eksempelvis vist fremgangsmåten ifølge oppfinnelsen med eksempelvise følgetrinn. In fig. 1 shows, for example, the method according to the invention with exemplary follow-up steps.

På fig. 2 er det vist et eksempel for fremgangsmåten i-følge oppfinnelsen med en forankoblet oppløsningsmiddel-behandling. In fig. 2 shows an example of the method according to the invention with a pre-connected solvent treatment.

På fig. 3 er det vist kombinasjon av en bruktoljeraffinering med fremgangsmåte ifølge oppfinnelsen. In fig. 3 shows a combination of a used oil refinery with a method according to the invention.

På fig. 4 er det vist avhengigheten av utbyttene i de enkelte fraksjoner i avhengighet av temperaturen. In fig. 4 shows the dependence of the yields in the individual fractions in dependence on the temperature.

Fig. 1 skal forklares i detalj i det følgende. Fig. 1 will be explained in detail in the following.

Avfallstoffene kommer i blandeapparaturen (1) til knusning idet det hvis nødvendig i tilknytning til (1) eller før (1) kan finne sted en ekstra maling av det anvendte gods* I tillegg kan det tilføres en væske (utrivings)-olje, som uttas fra de fremstilte væskeprodukter, eller en fremmedolje (2a) tilføres beholderen (1). Videre kan det i beholderen (1) tilsettes katalysator (3). Under tilførsel av hydrogen (4) resp. hydrogenholdig gass, hydrogeneres det anvendte gods i reaktoren (5). The waste materials are crushed in the mixing equipment (1) as, if necessary, in connection with (1) or before (1) an additional grinding of the used goods can take place* In addition, a liquid (rubbing) oil can be added, which is taken out from the produced liquid products, or a foreign oil (2a) is added to the container (1). Catalyst (3) can also be added to the container (1). During the supply of hydrogen (4) resp. hydrogen-containing gas, the used material is hydrogenated in the reactor (5).

I steden for reaktoren (5) kan det også anvendes flere reaktorer. Fra (5) kommer det hydrogenerte produkt til varmutskilleren (6). Her foregår en adskillelse i ved varmut-skillingstemperaturen gassformede produkt (7), som over varmeutveksler (8) kommer i utskilleren (9). I (9) fjernes de etter avkjøling flytende produkter, mens over toppen unnviker de gassformede produkter. Instead of the reactor (5), several reactors can also be used. From (5) the hydrogenated product comes to the heat separator (6). Here, a separation takes place into gaseous product (7) at the heat separation temperature, which enters the separator (9) over the heat exchanger (8). In (9), liquid products are removed after cooling, while above the top, gaseous products are avoided.

Flyteproduktene opparbeides på vanlig måte som f. eks. ved destillering eller eventuelt hydrogenerende spaltning av den tyngre oljedel, resp. ved raffinering. The liquid products are processed in the usual way, e.g. by distillation or possibly hydrogenating cleavage of the heavier oil part, resp. by refining.

Gassene befries i (10) for tilblandinger av H2S, NH3. HC1, C02og lignende. Hydrogen føres i kretsløp og kommer tilbake før resp. i hydrogeneringsreakstoren. Gassformige hydrokar boner kan likeledes adskilles, og en del eller eventuelt de samlede hydrokarboner omdannes ved dampreformering (11) The gases are freed in (10) for admixtures of H2S, NH3. HC1, CO2 and the like. Hydrogen is cycled and returns before resp. in the hydrogenation reactor. Gaseous hydrocarbons can also be separated, and some or all of the hydrocarbons are converted by steam reforming (11)

til H2og CO. to H2 and CO.

Fra varmutskillersumpen fjernes det flytende produkt og tilføres eksempelvis en vakuumdestillering (12). Her fremstilles ytterligere olje (13) som likeledes kan anvendes som utrivningsolje. The liquid product is removed from the heat separator sump and supplied, for example, to a vacuum distillation (12). Here, additional oil (13) is produced which can also be used as stripping oil.

Vakuumdestilleringens sump kan eksempelvis forkokses i (14). Også de fra forkoksning over toppen fjernede produkter (15) kommer til anleggets gass- og væskeproduktopparbeidelse. The vacuum distillation sump can, for example, be coked in (14). The products removed from coking over the top (15) also go to the plant's gas and liquid product processing.

Den dannede koks (16) som også inneholder askebestanddeler innbefattende metaller, kan komme til en forgassing (17), eller kan tilsvarende teknikkens stand deponeres eller delvis anvendes som katalysator avhengig av sammensetningen. The formed coke (16), which also contains ash constituents including metals, can be gasified (17), or, corresponding to the state of the art, can be deposited or partially used as a catalyst depending on the composition.

Alternativt kan vakuumdestillasjonssumpen direkte forgasses Alternatively, the vacuum distillation sump can be directly gasified

i (17). De dannede gasser (18) kommer til anleggets gass-opparbeidelse, men den dannede aske (19) resp. soten deponeres eller kan brennes eller kan tilføres en videreforarbeidelse f. eks. den metallurgiske industri eller delvis kan anvendes som katalysatorer avhengig av sammensetningen. in (17). The formed gases (18) go to the plant's gas processing, but the formed ash (19) resp. the soot is deposited or can be burned or can be added to further processing, e.g. the metallurgical industry or can partially be used as catalysts depending on the composition.

Ytterligere alternativ kan vakuumutskillerinnholdet ekstra-heres med en overkritisk gass. Hertil egner det seg eksempelvis propan, butan, naftablandinger eller også hydrokarbon-blandinger med høyere kokeende. Ekstraktet videreforarbeides på vanlig måte. Det gjenblivende residuu kan videreforarbeides som varmutskillersumpen, resp. - residu. Ekstra-heringsmidlet kan spesielt ved flere etter hverandre koblede hydreringsreaktorer allerede innføres i det minste delvis i selve reaktoren. Alternatively, the vacuum separator contents can be extracted with a supercritical gas. Propane, butane, naphtha mixtures or also hydrocarbon mixtures with a higher boiling point are suitable for this. The extract is further processed in the usual way. The remaining residue can be further processed as the heat separator sump, resp. - residue. The extracting agent can, especially in the case of several hydrogenation reactors connected one after the other, already be introduced at least partially into the reactor itself.

I tilfelle det anvendte produktet med relativt høyt innhold av heteroatomer som svovel, nitrogen eller halogen, kan det flytende produkt fra utskilleren (9) i første rekke underkastes en raffinering (20) vanligvis en hydrogenerende raffinering. Det raffinerte produkt kommer inn i en destillasjon (21) , imidlertid også destillatene kan underkastes en raffi-nasjon. Sumpen av destillasjonen kan i et krakningstrinn In the case of the product used with a relatively high content of heteroatoms such as sulphur, nitrogen or halogen, the liquid product from the separator (9) can first of all be subjected to a refining (20), usually a hydrogenating refining. The refined product enters a distillation (21), however, the distillates can also be subjected to a refinement. The sump of the distillation can in a cracking step

(22) spaltes i laverekokende produkter (23). (22) is split into lower boiling products (23).

Den på fig. 1 viste forarbeidelse er eksempelvis, og begrens-er ikke den hydrerende forarbeidelse ifølge oppfinnelsen avfall da teknikkens stand for produkter av hydrogenerings-reaktor omfatter et flertall av varianter. The one in fig. The processing shown in 1 is an example, and the hydrating processing according to the invention is not limited to waste, as the state of the art for products from hydrogenation reactors includes a majority of variants.

I den hydrogenerende behandling av avfall kan også brukt- In the hydrogenating treatment of waste can also be used

olje resp. residuer fra bruktoljeforarbeidelsen anvendes som eksempelvis vist på fig. 3. oil or residues from used oil processing are used as shown in fig. 3.

Bruktolje kan eksempelvis anvendes fra en lagringstank (1) Used oil can, for example, be used from a storage tank (1)

i et fysikalsk og/eller kjemisk skille- resp. renseanlegg for å fjerne faste stoffer, vann og lignende. Således for-rensede produkter kan over (3) anvendes i hydrogeneringsreaktoren (4) eller i raffinasjonen (7). in a physical and/or chemical separation resp. treatment plant to remove solids, water and the like. Products pre-purified in this way can be used above (3) in the hydrogenation reactor (4) or in the refining (7).

Gassformede resp. flytende produkter fra varmutskilleren Gaseous or liquid products from the heat separator

(5) av hydrogeneringen kan over (6) tilsettes bruktolje-raffineringen (7). Sumpen fra destilleringen (8) av den raffinerte bruktolje kan over (9) likeledes anvendes i (4). (5) of the hydrogenation can be added above (6) to the used oil refining (7). The sump from the distillation (8) of the refined used oil can be used above (9) in (4).

Avfall som skal hydrogeneres uttas fra lager (10) og kommer Waste to be hydrogenated is taken from storage (10) and arrives

i første rekke i en knuse- og blandebeholder (11) fra det anvendte produkt over (12) kommer til (4). Over (13) kan det eksempelvis tilsettes ekstra tunge mineralske eller karbonavstammende oljer. Varmeutskillersumpen resp. -resi-duet, kan eksempelvis over (14) anvendes i en forgassing (15). primarily in a crushing and mixing container (11) from the used product above (12) comes to (4). For example, extra heavy mineral or carbon-derived oils can be added above (13). The heat separator sump or -residue, for example above (14) can be used in a gasification (15).

Ifølge oppfinnelsen kan også en oppløsningsmiddelbehandling med egnede oppløsningsmidler spesielt hydrogenoverførende oppløsningsmiddel forankobles ved en hydrogenerende behandling, deretter kan enten den samlede av oppløste og uoppløste bestående blanding tilføres til hydrogeneringsreaktoren eller det finner sted bak oppløsningsapparaturen en adskillelse i oppløst og uoppløst, og oppløsningen eller u-oppløst tilføres til hydreringsreaktoren eller reaktorene. Ved etterkoblet destillering kan på vanlig måte oppløsnings-midlet tilbakeføres. Utskilte uoppløste faste stoffer kan også tilføres til en forgassing eller forkoksning. According to the invention, a solvent treatment with suitable solvents, especially a hydrogen-transferring solvent, can also be preceded by a hydrogenating treatment, then either the total mixture consisting of dissolved and undissolved can be fed to the hydrogenation reactor or a separation into dissolved and undissolved takes place behind the dissolving apparatus, and the solution or un- dissolved is supplied to the hydrogenation reactor or reactors. In the case of subsequent distillation, the solvent can be recycled in the usual way. Separated undissolved solids can also be added to a gasification or coking process.

Også i denne fremgangsmåtevariant ifølge oppfinnelsen kan det anvendte produkt hydrogeneres i en blanding med karbon, og/ eller karbonbestanddeler og/eller jordoljeresiduer og/eller jordolje og lignende. Also in this process variant according to the invention, the product used can be hydrogenated in a mixture with carbon, and/or carbon components and/or petroleum residues and/or petroleum and the like.

Også for denne opparbeidelsen ifølge oppfinnelsen av avfall er det mulig tallrike apparative varianter til de tilsvarer teknikkens stand. Also for this processing according to the invention of waste, numerous apparatus variants are possible until they correspond to the state of the art.

Egnede oppløsningsmidler er f. eks. tetralin, antracenolje, isopropanol, kresolholdige oljer, decalin, naftalin, tetra-hydrofuran, dioksan imidlertid også eksempelvis hydrokarboner, karbon eller også fra selve anlegget, og olje og oksygenhol-dige hydrokarboner og oljer. Endelig kan det også tilsettes vann eller damp. Suitable solvents are e.g. tetralin, anthracene oil, isopropanol, cresol-containing oils, decalin, naphthalene, tetrahydrofuran, dioxane, however, also for example hydrocarbons, carbon or also from the plant itself, and oil and oxygen-containing hydrocarbons and oils. Finally, water or steam can also be added.

Anvendelsen ifølge oppfinnelsen av oppløsningsmidler forklares nærmere eksempelvis på fig. 2. The use according to the invention of solvents is explained in more detail, for example, in fig. 2.

I beholder (1) i minste delvis oppløses resp. suspenderes In container (1) at least partially dissolve resp. be suspended

det knuste gods ved forhøyet temperatur. I innretning (2) kan det finne sted en adskillelse ifra uoppløst som for videreforarbeidelse eksempelvis kommer til en forkoksning the crushed goods at an elevated temperature. In facility (2), a separation can take place from undissolved, which for further processing, for example, leads to coking

(3) eller en forgassing (4). Oppløsningen eller suspen-sjonen hydrogeneres nå i hydreringsreaktoren eller reaktorene (5). Fortrinnsvis anvendes hydrogenoverførende oppløsnings-midler som f. eks. tetralin, dekalin, antracenolje, kreosot- olje eller også høyerekokende oljer og lignende, således at hydrogeneringen også kan gjennomføres ved lave hydrogentrykk inntil i området på 1 bar hydrogentrykk. (3) or a gasification (4). The solution or suspension is now hydrogenated in the hydrogenation reactor or reactors (5). Hydrogen-transferring solvents are preferably used, such as e.g. tetralin, decalin, anthracene oil, creosote oil or also higher-boiling oils and the like, so that the hydrogenation can also be carried out at low hydrogen pressures up to in the region of 1 bar hydrogen pressure.

Oppholdstid og hydrogentrykk avstemmes på hverandre ved hydrogeneringen ifølge oppfinnelsen. Hydrogeneringspro-duktet kan på vanlig måte opparbeides, f. eks. ved destillering (6) . Residence time and hydrogen pressure are coordinated with each other during the hydrogenation according to the invention. The hydrogenation product can be worked up in the usual way, e.g. by distillation (6) .

1 et ytterligere eksempel arbeides i nærvær av antracenolje idet avfallsmaterialet som skal hydrogeneres eventuelt i blanding med karbon- og/eller mineralmaterialer i første rekke oppløses under tilsetning av sterke syrer, f. eks. av fluorhydrogen og/eller p-toluensulfonsyre ved ca. 370 - 1 a further example is worked in the presence of anthracene oil, as the waste material to be hydrogenated possibly in a mixture with carbon and/or mineral materials is primarily dissolved with the addition of strong acids, e.g. of hydrogen fluoride and/or p-toluenesulfonic acid at approx. 370 -

420°C og deretter eventuelt etter adskillelse av ikke-oppløste materialer hydrogeneres under tilsetning av salter som SbCl,-, SbF^, og lignende, samt HF, resp. HC1, som er i stand til dannelsen av sterkere komplekse syrer ved 75-220°C, fortrinnsvis ved 150 - 200°C og 1 - 5 bar hydrogen, fortrinnsvis 1 - 2 bar hydrogen. I et etterfølgende hydrogeneringstrinn kan umettede produkter omdannes til mettede. 420°C and then optionally after separation of undissolved materials hydrogenated while adding salts such as SbCl,-, SbF^, and the like, as well as HF, resp. HC1, which is capable of the formation of stronger complex acids at 75-220°C, preferably at 150-200°C and 1-5 bar hydrogen, preferably 1-2 bar hydrogen. In a subsequent hydrogenation step, unsaturated products can be converted into saturated ones.

Også eksempelvis under betingelsen for SRC-(solvent Refined Coal) karbonhydrogenering lar avfall seg omsette eventuelt Also, for example, under the condition for SRC (Solvent Refined Coal) carbon hydrogenation, waste can possibly be converted

i blanding med biomasse samt eventuelt i blanding med karbon- og mineralske materialer, som eksempelvis jordoljeresiduer med høye utbytter av destillerbare oljer. Egnede betingelser i oppløsningstrinnet er 380-480°C. I hydrogenerings-trinnet arbeides vanligvis ved 350-450°C og et trykk på 110-250 bar, fortrinnsvis på 120-220 bar idet det kan anvendes de vanlige hydrogeneringskatalysatorer. in a mixture with biomass and possibly in a mixture with carbon and mineral materials, such as, for example, petroleum residues with high yields of distillable oils. Suitable conditions in the dissolution step are 380-480°C. In the hydrogenation step, work is usually done at 350-450°C and a pressure of 110-250 bar, preferably 120-220 bar, as the usual hydrogenation catalysts can be used.

Oppfinnerens undersøkelser har vist at for den hydrogenerende karbon- og jordoljeresiduforarbeidelse utviklede fremgangsmåter, også er anvendbare for den hydrogenerende spaltning av karbonholdige helt forskjellige materal-holdige avfallsblandinger, spesielt syntetiske deler av avfallet, eventuelt i blanding med karbon- og mineralske materialer, skjønt det også i enkelt eventuelt i modifisert form. The inventor's investigations have shown that methods developed for the hydrogenating carbon and petroleum residue processing are also applicable for the hydrogenating decomposition of carbon-containing completely different material-containing waste mixtures, especially synthetic parts of the waste, possibly in a mixture with carbon and mineral materials, although it also in simple or modified form.

Eksempler som imidlertid ikke er begrensende for slike fremgangsmåter er H-Oil-fremgangsmåten (HRI Inc. and Texaco Developement Corp.). kan med fremgangsmåten (Partec Lava- However, non-limiting examples of such methods are the H-Oil method (HRI Inc. and Texaco Development Corp.). can with the procedure (Partec Lava-

lin Inc./Petro Canada), LC-Fining fremgangsmåten (Lummus Crest. Inc.), Veba Kombikrack-fremgangsmåten (VEBA), VEBA lin Inc./Petro Canada), the LC-Fining method (Lummus Crest. Inc.), the Veba Kombikrack method (VEBA), VEBA

LO Krack-fremgangsmåten (VEBA) og RCD Unibon-fremgangsmåten (UOP Process Division Research Corp./UOP Co.), Resid-fining-fremgangsmåten (Exxon Research and Engineering Co.), Unicrack og Unicrack/HDS-fremgangsmåten, (Uinion Oil of California), HC Unibon-fremgangsmåten (UOP Prosess Division LO Krack method (VEBA) and RCD Unibon method (UOP Process Division Research Corp./UOP Co.), Resid-fining method (Exxon Research and Engineering Co.), Unicrack and Unicrack/HDS method, (Uinion Oil of California), the HC Unibon method (UOP Process Division

og UOP Inc.), Isocracking-fremgangsmåten (Chevron Research Co.), Heavy Oil Cracking-fremgangsmåten (Phillips Petroleum), Dynacracking-fremgangsmåten (Hydrocarbon Research Inc.), Linde-Hydrokonverter-fremgangsmåten, og andre. and UOP Inc.), the Isocracking process (Chevron Research Co.), the Heavy Oil Cracking process (Phillips Petroleum), the Dynacracking process (Hydrocarbon Research Inc.), the Linde-Hydroconverter process, and others.

I de tilfeller hvori det ved disse fremgangsmåter dreier In the cases in which these procedures apply

seg om fastlagringskatalysator-fremgangsmåter, kan i det minste oppløst avfall som f. eks. i karbonolje og jordolje resp. deres komponenter behandles hydrogenerende ifølge oppfinnelsen . regarding immobilized catalyst methods, at least dissolved waste such as e.g. in carbon oil and petroleum oil resp. their components are hydrogenated according to the invention.

Ifølge oppfinnelsen kan avfallsblandinger forarbeides og hydrogenerende også således at blandinger av vegetabilsk og syntetisk avfall eventuelt under tilsetning av biomasse omsettes i forskjellige trinn under betingelser hvor på den ene side det foregår i det vesentlige den hydrolytiske og hydrogenerende omsetning av et vegetabilsk- resp. papirdelen og biomassedelen, og på den annen side den hydrogenerende omsetning av det syntetiske organiske avfall. Begge trinn kan også gjennomføres i nærvær av et hydrogendonor-oppløsnings-middel. According to the invention, waste mixtures can also be processed and hydrogenated so that mixtures of vegetable and synthetic waste, optionally with the addition of biomass, are reacted in different steps under conditions where, on the one hand, essentially the hydrolytic and hydrogenating reaction of a vegetable or the paper part and the biomass part, and on the other hand the hydrogenating conversion of the synthetic organic waste. Both steps can also be carried out in the presence of a hydrogen donor solvent.

Således kan det i første trinn foregå en hydrogenerende behandling, eventuelt i nærvær av hydrogenisk katalysator, og Thus, a hydrogenating treatment can take place in the first step, possibly in the presence of a hydrogenic catalyst, and

et trykk fra 1 bar til 150 bar, fortrinnsvis 25-60 bar, a pressure from 1 bar to 150 bar, preferably 25-60 bar,

idet det fortrinnsvis arbeides i nærvær av vann og andre protiske oppløsningsmidler som eksempelvis alkoholer. preferably working in the presence of water and other protic solvents such as alcohols.

Deretter kan den overveiende av den vegetabilske del dannede olje adskilles fra oppløsningsmiddelekstrahering, hvoretter det hydrogenerende spaltede del i 2. trinn kan spaltes likeledes hydrogenerende under allerede omtalte betingelser. Subsequently, the oil formed mainly from the vegetable part can be separated from solvent extraction, after which the hydrogenating split part in the 2nd step can also be split hydrogenatingly under the conditions already mentioned.

Den trinnvise forarbeidelse kan også foregå således at vegetabilsk del resp. papirdel resp. biomasse kan spaltes hydrolytisk i første trinn, eksempelvis i nærvær av alkalier eller syrer idet denne omsetningen eventuelt kan finne sted i nærvær av CO, og omsettes fortrinnsvis i nærvær av vann og/eller andre protiske oppløsningsmidler som eksempelvis alkoholer og i 2. trinn omsettes den syntetiske resp. overveiende syntetiske del hydrogenerende. The step-by-step processing can also take place so that the vegetable part or paper part or biomass can be decomposed hydrolytically in the first step, for example in the presence of alkalis or acids, as this reaction can possibly take place in the presence of CO, and is preferably reacted in the presence of water and/or other protic solvents such as alcohols and in the 2nd step it is reacted synthetic or predominantly synthetic part hydrogenating.

Alternativt kan avfallet og/eller biomassen skilles i en vegetabilsk del og en syntetisk del, og forarbeides adskilt under de omtalte betingelser. Alternatively, the waste and/or biomass can be separated into a vegetable part and a synthetic part, and processed separately under the mentioned conditions.

Også i disse tilfeller kan det arbeides såvel med som også uten katalysatorer. Eventuelt kan det tørkes før 2. trinn. In these cases too, work can be done both with and without catalysts. If necessary, it can be dried before the 2nd step.

"Trinnene" er her å forstå således at et bestemt trinn som eksempelvis det overnevnte 1. trinn til hydrolytisk avbygning av den vegetabilske del, selv igjen kan bestå av flere parallelt eller etter hverander koblede trinn. The "steps" are here to be understood as meaning that a specific step, such as the above-mentioned 1st step for hydrolytic degradation of the vegetable part, can itself again consist of several parallel or alternately connected steps.

Det følger ytterligere eksempler idet også i tabellene 1-7 ikke angitte forsøksbetingelser på 5-500 bar trykk, 200-600°C og oppholdstider fra 1 minutt til 8 timer ble oppnådd gode resultater: De i tabell 1 sammenfattede forsøk ble gjennomført i auto- klaver ved 450°C og 100 bar (kald) med syntesegasshydrogen. Som utrivningsolje ble det anvendt et krakningsvakuumdestill-at i forhold til avfall på 3:7, oppholdstiden utgjorde 4 timer. Det ble arbeidet uten katalysator. Further examples follow, as good results were obtained even under test conditions of 5-500 bar pressure, 200-600°C and residence times from 1 minute to 8 hours not specified in Tables 1-7: The tests summarized in Table 1 were carried out in auto- piano at 450°C and 100 bar (cold) with synthesis gas hydrogen. A cracked vacuum distillate was used as stripping oil in a ratio of 3:7 to waste, the residence time was 4 hours. The work was done without a catalyst.

Ved hjelp av polystyren øker mengden av aromater. Ved de anvendte kunststoffavfallsblandinger utgjorde aromatdelen, ca. 25 vekt-%. Using polystyrene increases the amount of aromatics. In the case of the plastic waste mixtures used, the aromatic part accounted for approx. 25% by weight.

Analoge resultater fåes ved forhøyet hydrogentrykk idet det Analogous results are obtained at elevated hydrogen pressure as it

kan innstilles kortere oppholdstider. shorter residence times can be set.

I tabell 2 er det sammenfattet resultater av den hydrogenerende behandling av den i et søppelskilleanlegg dannede syntetiske del, med en del på 15 vekt-% klorholdig polymere i avhengighet av hydrogeneringsvarigheten ved 450°C. Trykket lå ved 200 bar (kald). Som tilblandingskomponent ble det for uten i siste forsøk anavendt en brukt maksinolje i forhold til avfall på 1:2,3. Det ble arbeidet uten katalysator. Table 2 summarizes the results of the hydrogenation treatment of the synthetic part formed in a waste separation plant, with a part of 15% by weight of chlorine-containing polymer, depending on the hydrogenation duration at 450°C. The pressure was at 200 bar (cold). As a mixing component, a used maxin oil in relation to waste of 1:2.3 was used for the last test. The work was done without a catalyst.

Tabell 2 viser at ved konstant temperatur øker utbyttet av hydrokarboner med kokepunkt <18 0°C fra 24 vekt-% (2 timer) til 65 vekt-% (6 timer), mens delen av høytkokende fraksjon avtar ved kokeområdet > 390°C av 21 vekt-% til 1 vekt-%. Anvendes fraksjonen med kokeområdet 180-390°C som "egenolje" i blanding med avfallmatingen, så omsettes også egenoljen omtrent kvantitativt ved laverekokende hydrokarboner. Table 2 shows that at constant temperature the yield of hydrocarbons with a boiling point <18 0°C increases from 24% by weight (2 hours) to 65% by weight (6 hours), while the part of the high-boiling fraction decreases in the boiling range > 390°C of 21% by weight to 1% by weight. If the fraction with a boiling range of 180-390°C is used as "own oil" in a mixture with the waste feed, then the own oil is also converted roughly quantitatively to lower-boiling hydrocarbons.

Ved en etterkoblet hydrogenerende raffinering lar halogen-innholdet i produktfraksjonene seg eliminere omtrent kvantitativt ( < 1 ppm). Det samlede hydrokarbonprodukt kan også raffineres hydrognerende som sådan. In the case of subsequent hydrogenating refining, the halogen content in the product fractions can be eliminated approximately quantitatively (< 1 ppm). The overall hydrocarbon product can also be refined hydrogenatingly as such.

Eksempelvis ble en av syntetisk avfall av en råmasse frem-stillet mellom 180 til 390°C kokende hydrokarbonfraksjon med et innhold på 24 00 ppm klor underkastet den hydrogenerende raffinering ved 50 bar hydrogentrykk og 270°C.I det dannede produkt var klor ikke mere påvisbar. For example, a hydrocarbon fraction boiling between 180 and 390°C boiling from synthetic waste with a content of 2400 ppm chlorine was subjected to hydrogenating refining at 50 bar hydrogen pressure and 270°C. In the product formed, chlorine was no longer detectable.

På fig. 4 er det vist avhengigheten av utbytte av de enkelte fraksjoner i avhengighet av temperaturen med 2 timers oppholdstid . In fig. 4 shows the dependence of the yield of the individual fractions in dependence on the temperature with a residence time of 2 hours.

I det vesentlige tilsvarende resultater oppnås når det anvendes syntetiske avfall uten tilsetning av en utrivningsolje, og når det anvendes jordoljeresiduolje sammen med avfallet. Essentially similar results are obtained when synthetic waste is used without the addition of a stripping oil, and when petroleum residual oil is used together with the waste.

Også her omsettes avfallet omtrent kvantitativt, idet det samtidig foregår en hydrogenerende spaltning av jordolje-residu. Blandinger med brunkull og steinkull er likeledes hydrogenerende spaltbar med meget gode resultater. Dette gjelder også i nærvær av andre mineraloljer. Here, too, the waste is converted roughly quantitatively, as a hydrogenation of petroleum residue takes place at the same time. Mixtures with lignite and hard coal are also hydrogenatingly cleavable with very good results. This also applies in the presence of other mineral oils.

Tabell 3 og 4 viser resultater som ble oppnådd ved hydrogeneringen av en blanding av syntetiske søppelbestanddeler innbefattende PVC fra en dagsprøve av et søppelskilleanlegg som inneholdt 10-50 vekt-% av vegetabilsk del samt en blanding av syntetisk søppel med 20 til 60 vekt-% avfallspapir. Det ble arbeidet ved 450°C et trykk på 200 bar og en oppholdstid på 4 timer uten katalysator. Tables 3 and 4 show results obtained by the hydrogenation of a mixture of synthetic waste components including PVC from a daily sample of a waste separation plant containing 10-50% by weight of vegetable matter as well as a mixture of synthetic waste with 20 to 60% by weight of waste paper . The work was carried out at 450°C, a pressure of 200 bar and a residence time of 4 hours without a catalyst.

Det ble anvendt et vakuumdestillat av en karbonhydrogenering i forhold avfall til vakuumdestillator på 3:1. I tillegg til de angitte produkter ble det dannet i tabellen ikke angitt vann. A vacuum distillate from a carbon hydrogenation was used in a ratio of waste to vacuum still of 3:1. In addition to the specified products, water not specified in the table was formed.

I tabell 5 er det vist omsetning og utbytte i avhengighet av katalysatoren. Table 5 shows turnover and yield depending on the catalyst.

Det ble arbeidet ved 450°C, 200 bar trykk og 4 timers oppholdstid. Som tilblandingskomponent ble det anvendt en brukt The work was carried out at 450°C, 200 bar pressure and a residence time of 4 hours. As admixture component, a used one was used

spindelolje i forhold spindelolje til avfall på 1:2. spindle oil in a ratio of spindle oil to waste of 1:2.

Som avfall ble det anvendt den syntetiske organiske del av et søppelskilleanlegg. Betingelsene ble valgt for å kunne sammenlignes med de foregående tabeller. Tilsvarende resultater ble imidlertid også oppnådd ved variasjon av betingelsen . The synthetic organic part of a waste separation plant was used as waste. The conditions were chosen to be able to be compared with the previous tables. However, similar results were also obtained by varying the condition.

Tabellen viser at ved hydrogeneringskatalysatorer som Ni/Mo/ aluminiumsilikat kan likeledes oppnås meget høye omsetninger idet det samtidig fåes en høy del av fraksjoner med koke-område under 390°C. Ved hjelp av jern- og nikkelkataly-satorer lar det seg fresmtille spesielt en høy del av forbindelser av kokeområdet 180-390°C, mens det med katalysatorer som herdeovnkoks og FeS04lar seg fremstille en høy del av forbindelser av kokeområdet <180°C. The table shows that with hydrogenation catalysts such as Ni/Mo/aluminosilicate, very high conversions can also be achieved, as a high proportion of fractions with a boiling range below 390°C are obtained at the same time. With the help of iron and nickel catalysts, a particularly high proportion of compounds with a boiling range of 180-390°C can be produced, while with catalysts such as furnace coke and FeS04, a high proportion of compounds with a boiling range of <180°C can be produced.

Ved variasjon av temperatur, trykk og oppholdstid lar de an- In case of variation in temperature, pressure and residence time, they allow

gitte selektiviteter seg likeledes variere. given selectivities likewise vary.

I kontinuerlige forsøk ble det med en oppholdstid på 2 timer ved 450°C og et trykk på 200 bar omsatt 2 kg/h syntetisk organisk avfall i en jordoljeresiduolje i forhold 30:70, idet det ble arbeidet uten katalysator med Ni/Mo/aluminiumsilikat og mer herdovnkoks/FeSO^. Derved kunne som tabell 6 viser, de i tabell 2 og 5 oppnådde resultater dessuten betraktelig forbedres. Forsøkene ble drevet over resp. 700 timer. In continuous experiments, with a residence time of 2 hours at 450°C and a pressure of 200 bar, 2 kg/h of synthetic organic waste was converted into a petroleum residual oil in a ratio of 30:70, as the work was carried out without a catalyst with Ni/Mo/aluminium silicate and more blast furnace coke/FeSO^. Thereby, as table 6 shows, the results obtained in tables 2 and 5 could also be considerably improved. The experiments were carried out over resp. 700 hours.

Det tilsvarende resultat ble oppnådd i en brukt maskinolje som tilsetning i steden for jordoljeresiduolje. Ennå bedre resultater ble oppnådd i en tilsetning på 25 vekt-% jordoljeresiduolje og 75 vekt-% egenolje (180-390°C) som tabell 7 viser. The corresponding result was obtained in a used machine oil as an additive instead of petroleum residual oil. Even better results were obtained in an addition of 25% by weight of petroleum residual oil and 75% by weight of native oil (180-390°C) as Table 7 shows.

Da hydrogen får økende betydning og allerede i dag frembringes i tallrike foretagener enten det er ved syntese-gassfremstilling ved elektrolyse eller fotoelektrolyse og dessuten kan transporteres over rør over store avstander, Since hydrogen is becoming increasingly important and is already produced in numerous companies today, whether it is by synthesis gas production by electrolysis or photoelectrolysis and can also be transported via pipes over large distances,

kan det på tallrike utvalgte steder fremfor alt i nærvær av knutepunkter opprettes storanlegg ifølge oppfinnelsen, som kan forsørge hele regioner av avfall under unngåelse av de-poneringer, spesielt også spesialdeponeringer og under unngåelse av avfallforbrenning som som nevnt ovenfor bevirker ekstra uløste problemer. large-scale facilities according to the invention can be set up in numerous selected locations, above all in the presence of hubs, which can supply entire regions with waste while avoiding landfills, especially also special landfills and while avoiding waste incineration which, as mentioned above, causes additional unsolved problems.

I motsetning til søppelforbrenningsanlegg som medfører en Unlike waste incinerators which entail a

høy C02~belastning og pyrolyseanlegg hvori det frembringes store gassmengder, frembringes ved hjelp av oppfinnelsen verdifulle flytende produkter således at det er sikret en recyklering av konsumproduktene på fremragende måte. high C02 load and pyrolysis plant in which large quantities of gas are produced, valuable liquid products are produced with the help of the invention so that the recycling of the consumer products is ensured in an excellent way.

Mens som teknikkens stand omtaler i fagverden har arbeidet i omstendelig annen retning, og på tross av at trengende behov, hittil ikke var i stand til tilfredsstillende fjerning av avfall, vises ved foreliggende oppfinnelse en overraskende fremragende løsning. While, as the state of the art mentions in the professional world, the work has gone in a considerably different direction, and despite the urgent need, until now, was not able to satisfactorily remove waste, the present invention shows a surprisingly excellent solution.

Claims (17)

1. Fremgangsmåte til opparbeidelse av karbonholdig avfall og biomasse,karakterisert vedat de karbonholdige avfaller og/eller biomasser omsettes med hydrogen og/eller med hydrogenholdig gass, og/eller hydro-genoverførende forbindelser (hydrogen-donor-oppløsningsmiddel) i et temperaturområde på 75-600°C, ved et trykk på 1-600 bar, et foretrukket trykk på 2-500 bar og en oppholdstid fra 1 minutt til 8 timer, fortrinnsvis 15 minutter til 6 timer.1. Process for processing carbonaceous waste and biomass, characterized in that the carbonaceous waste and/or biomasses are reacted with hydrogen and/or with hydrogen-containing gas, and/or hydrogen-transferring compounds (hydrogen-donor-solvent) in a temperature range of 75- 600°C, at a pressure of 1-600 bar, a preferred pressure of 2-500 bar and a residence time of from 1 minute to 8 hours, preferably 15 minutes to 6 hours. 2. Fremgangsmåte ifølge krav 1,karakterisertved at det behandles hydrogenerende blandinger av avfall av syntetisk opprinnelse, og/eller av vegetabilsk opprinnelse, eventuelt inneholdende avfallspapir, og/eller biomasser .2. Method according to claim 1, characterized in that hydrogenating mixtures of waste of synthetic origin and/or of vegetable origin, possibly containing waste paper, and/or biomass are treated. 3. Fremgangsmåte ifølge krav 1,karakterisertved at det omsettes blandinger av karbonholdige avfall av syntetisk resp. overveiende syntetisk opprinnelse ved en temperatur på 2 00-6 00°C, fortrinnsvis en temperatur på 200-540°C, og et trykk på 30-500 bar, fortrinnsvis 50-450 bar, og en oppholdstid på 1 minutt til 8 timer, fortrinnsvis 5 minutter til 6 timer.3. Method according to claim 1, characterized in that mixtures of carbon-containing waste of synthetic or predominantly of synthetic origin at a temperature of 200-600°C, preferably a temperature of 200-540°C, and a pressure of 30-500 bar, preferably 50-450 bar, and a residence time of 1 minute to 8 hours, preferably 5 minutes to 6 hours. 4. Fremgangsmåte ifølge krav 1,karakterisertved at det anvendes hydrogendonor-oppløsningsmiddel og omsettes hydrogenerende ved en temperatur på 75-500°C, fortrinnsvis 80-480°C og et trykk på 1-300 bar, og en oppholdstid på 1 minutt til 8 timer, fortrinnsvis 15 minutter til 6 timer.4. Process according to claim 1, characterized in that a hydrogen donor solvent is used and reacted hydrogenatingly at a temperature of 75-500°C, preferably 80-480°C and a pressure of 1-300 bar, and a residence time of 1 minute to 8 hours, preferably 15 minutes to 6 hours. 5. Fremgangsmåte ifølge karv 1,karakterisertved at det i et første trinn omsettes med eller uten hydrogendonor-oppløsningsmiddel i nærvær av protisk oppløs-ningsmiddel, spesielt vann ved et trykk på 1-150 bar og en temperatur på 75-500°C, og i et annet trinn ved en temperatur på 200-600°C foretrukket 200-540°C og et trykk på 30-500 bar, fortrinnsvis 50-480 bar.5. Method according to notch 1, characterized in that in a first step it is reacted with or without a hydrogen donor solvent in the presence of a protic solvent, in particular water at a pressure of 1-150 bar and a temperature of 75-500°C, and in a second step at a temperature of 200-600°C, preferably 200-540°C and a pressure of 30-500 bar, preferably 50-480 bar. 6. Fremgangsmåte ifølge krav 1-5,karakterisertved at det foran den hydrogenerende behandling er koblet et i det vesentlige hydrolytisk trinn.6. Method according to claims 1-5, characterized in that an essentially hydrolytic step is connected before the hydrogenating treatment. 7. Fremgangsmåte ifølge krav 1-6,karakterisertved at avfallet og/eller biomasser som skal hydrogeneres, omsettes i blandinger av jordolje og/eller jordoljebestanddeler, spesieltjordoljeresidu, og/eller karbon, og/eller karbonbestanddeler, og/eller oljeskifer, og/eller oljeskifer-komponenter, og/eller oljesandekstrakt, og/eller bitumer, og/ eller asfalt eller asfaltener.7. Method according to claims 1-6, characterized in that the waste and/or biomasses to be hydrogenated are converted into mixtures of petroleum and/or petroleum constituents, especially petroleum residue, and/or carbon, and/or carbon constituents, and/or oil shale, and/or oil shale components, and/or oil sand extract, and/or bitumen, and/or asphalt or asphaltenes. 8. Fremgangsmåte ifølge krav 1-7.karakterisertved at det arbeides uten katalysator.8. Method according to claims 1-7, characterized in that work is carried out without a catalyst. 9. Fremgangsmåte ifølge krav 1-8,karakterisertved at det hydrogeneres i nærvær av såkalte engangskata-lysatorer.9. Method according to claims 1-8, characterized in that it is hydrogenated in the presence of so-called disposable catalysts. 10. Fremgangsmåte ifølge krav 1-9,karakterisertved at det som katalysator anvendes støv og asker fra karbonforarbeidelse som eventuelt er dotert med hydrogeneringsaktive metaller og/eller deres forbindelser.10. Method according to claims 1-9, characterized in that the catalyst used is dust and ashes from carbon processing which are optionally doped with hydrogenation-active metals and/or their compounds. 11. Fremgangsmåte ifølge krav 1-10,karakterisertved at det som katalysator arbeides i nærvær av herdovns-koks, og/eller Winkler-støv, f. eks. HTW-støv (høytempera-tur-Winkler-støv) og -asker, og/eller HKV-støv (høytempera-tur-karbonforgassing), som eventuelt er dotert med hydrogeneringsaktive metaller og/eller deres forbindelser.11. Method according to claims 1-10, characterized in that the catalyst is worked in the presence of blast furnace coke and/or Winkler dust, e.g. HTW dust (high temperature Winkler dust) and ashes, and/or HKV dust (high temperature carbon gasification), which may be doped with hydrogenation-active metals and/or their compounds. 12. Fremgangsmåte ifølge krav 1-11,karakterisertved at det arbeides i nærvær av jernholdige katalysatorer som eventuelt er dotert med ytterligere hydrogeneringsaktive metaller og/eller deres forbindelser.12. Method according to claims 1-11, characterized in that work is carried out in the presence of iron-containing catalysts which are optionally doped with further hydrogenation-active metals and/or their compounds. 13. Fremgangsmåte ifølge krav 1-12,karakterisertved at det arbeides i nærvær av Ni og/eller molybden og/ eller wolfram og/eller koboltholdige katalysatorer eventuelt på bærere.13. Method according to claims 1-12, characterized in that work is carried out in the presence of Ni and/or molybdenum and/or tungsten and/or cobalt-containing catalysts, possibly on supports. 14. Fremgangsmåte ifølge krav 1-13,karakterisertved at det arbeides med utrivningsoljer.14. Method according to claims 1-13, characterized in that work is done with extraction oils. 15. Fremgangsmåte ifølge krav 1-14,karakterisertved at produktene fra den hydrogenerende omsetningen i det minste delvis underkastes en hydrogenerende raffinering.15. Method according to claims 1-14, characterized in that the products from the hydrogenating reaction are at least partially subjected to a hydrogenating refining. 16. Fremgangsmåte ifølge krav 1-15,karakterisertved at det karbonholdige avfall og/eller biomasser som skal hydrogeneres, i det minste delvis oppløses og deretter hydrogeneres.16. Method according to claims 1-15, characterized in that the carbon-containing waste and/or biomass to be hydrogenated is at least partially dissolved and then hydrogenated. 17. Fremgangsmåte ifølge krav 1-16,karakterisertved at det omsettes hydrogenerende i nærvær av egenolje.17. Method according to claims 1-16, characterized in that the reaction is hydrogenating in the presence of native oil.
NO854663A 1984-11-22 1985-11-21 PROCEDURE FOR THE PREPARATION OF CARBON-CONTAINED WASTE AND BIOMASS. NO854663L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3442506A DE3442506C2 (en) 1984-11-22 1984-11-22 Process for the processing of carbon-containing waste

Publications (1)

Publication Number Publication Date
NO854663L true NO854663L (en) 1986-05-23

Family

ID=6250827

Family Applications (1)

Application Number Title Priority Date Filing Date
NO854663A NO854663L (en) 1984-11-22 1985-11-21 PROCEDURE FOR THE PREPARATION OF CARBON-CONTAINED WASTE AND BIOMASS.

Country Status (21)

Country Link
EP (1) EP0182309B1 (en)
JP (1) JPS61159489A (en)
CN (1) CN1005778B (en)
AT (1) ATE44756T1 (en)
AU (1) AU583865B2 (en)
BR (1) BR8505890A (en)
CA (1) CA1294236C (en)
DD (1) DD249036B5 (en)
DE (2) DE3442506C2 (en)
DK (1) DK538285A (en)
ES (1) ES8701207A1 (en)
FI (1) FI854502A (en)
GR (1) GR852797B (en)
HU (1) HU193138B (en)
IN (1) IN164568B (en)
NO (1) NO854663L (en)
NZ (1) NZ214280A (en)
PL (1) PL256375A1 (en)
PT (2) PT81533B (en)
YU (1) YU181185A (en)
ZA (1) ZA858721B (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3602041C2 (en) * 1986-01-24 1996-02-29 Rwe Entsorgung Ag Improved process for processing carbon-containing waste
DE3616785A1 (en) * 1986-05-17 1987-11-19 Union Rheinische Braunkohlen METHOD FOR PROCESSING CARBON-CONTAINING WASTE AND BIOMASS
GB8702199D0 (en) * 1987-01-31 1987-03-04 Man Oil Ltd Liquefaction of cellulose
DE3710021A1 (en) * 1987-03-30 1988-10-20 Veba Oel Entwicklungs Gmbh METHOD FOR HYDROGENATING CONVERSION OF HEAVY AND RESIDUAL OILS
DE3713730A1 (en) * 1987-04-24 1988-11-10 Union Rheinische Braunkohlen IMPROVED METHOD FOR RECOVERING CARBON-CONTAINING WASTE AND BIOMASS
DE3737370C1 (en) * 1987-11-04 1989-05-18 Veba Oel Entwicklungs Gmbh Process for the hydroconversion of heavy and residual soils, waste and waste allogols mixed with sewage sludge
DE3807272A1 (en) * 1988-03-05 1989-09-14 Union Rheinische Braunkohlen Process for the hydrocracking of carbon-containing wastes and biomass at high pressures
DE3912807A1 (en) * 1989-04-19 1990-11-08 Gfk Kohleverfluessigung Gmbh Heavy oils hydrogenation in sump-phase process - using carbon black as an additive or catalyst
DE3917129A1 (en) * 1989-05-26 1990-11-29 Rheinische Braunkohlenw Ag Pollution-free waste treatment - involving hydrocracking of synthetic organic waste
DE4112977C2 (en) * 1991-04-20 1995-06-22 Saarberg Interplan Gmbh Process for the hydrogenation of carbonaceous wastes
US5707592A (en) * 1991-07-18 1998-01-13 Someus; Edward Method and apparatus for treatment of waste materials including nuclear contaminated materials
AU636783B2 (en) * 1991-08-01 1993-05-06 Full Born Chen Industrial Co. Ltd. Process for producing oil and gas by cracking waste rubber
DE4207976C2 (en) * 1992-03-13 2001-03-15 Rwe Umwelt Ag Process for the production of olefins by thermal treatment of plastic waste
DE4235553C1 (en) * 1992-10-22 1994-05-11 Kuhne Anlagenbau Gmbh Process for recycling thermoplastic waste and installation for carrying out such a process
DE4311034A1 (en) * 1993-04-03 1994-10-06 Veba Oel Ag Process for the extraction of chemical raw materials and fuel components from old or waste plastic
DE4313123A1 (en) * 1993-04-22 1995-01-05 Veba Oel Ag Process for the cleavage and hydrogenation of polymers
DE4325081A1 (en) * 1993-07-22 1995-01-26 Video Computer Recycling Process and apparatus for the disposal of liquid-crystal substances from liquid-crystal displays
DE19605887A1 (en) * 1996-02-19 1997-08-21 Delinic Kresimir Dipl Ing Dr R Use of waste slag produced in mfr. of ferrous alloys as catalyst
DE19742266A1 (en) * 1997-09-25 1999-05-06 Ludger Dr Steinmann Upgrading of chemical and energy raw materials by reaction with low-value raw materials
CA2404029A1 (en) * 2000-03-23 2001-09-27 Richard W. Russell Method of converting agricultural waste to liquid fuel and associated apparatus
DE102004038491B4 (en) * 2004-08-07 2010-07-22 Karlsruher Institut für Technologie Process for converting biomass into gaseous products
JP2006282858A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Method for producing high-quality liquid fuel from organic waste and liquid fuel produced therefrom
DE102006016684A1 (en) * 2006-04-08 2007-10-11 Forschungszentrum Karlsruhe Gmbh Process for the liquefaction of biomass
DK2051824T3 (en) * 2006-08-01 2020-08-03 Vwp Waste Proc Limited Recycling of household waste material
US7994375B2 (en) * 2006-09-26 2011-08-09 Uop Llc Production of gasoline, diesel, naphthenes and aromatics from lignin and cellulosic waste by one step hydrocracking
JP5179037B2 (en) * 2006-10-05 2013-04-10 太平洋セメント株式会社 Method for mixing hydrogen-generating oil mud and method for producing solid fuel
JP2009221351A (en) * 2008-03-17 2009-10-01 Koji Mitoma Method of processing polyphenol-based substance or phenol-based substance
KR100937214B1 (en) * 2008-10-08 2010-01-20 주식회사 에이쓰 Waste tire recycling system
EP2361681A1 (en) * 2010-01-29 2011-08-31 KRSYS GmbH Method for producing a catalyst for cracking organic carbon compounds
JP6156870B2 (en) * 2013-07-11 2017-07-05 日曹エンジニアリング株式会社 Gasification method for organic waste
WO2016009333A1 (en) 2014-07-17 2016-01-21 Sabic Global Technologies B.V. Upgrading hydrogen deficient streams using hydrogen donor streams in a hydropyrolysis process
CN105441103B (en) * 2016-01-06 2017-05-10 昆明理工大学 Subcritical or supercritical water electrochemistry reinforced liquid phase catalytic biomass pyrolysis method
CN106398740A (en) * 2016-10-28 2017-02-15 厦门高龙朝环保科技股份有限公司 Plastic waste thermal cracking gas treatment apparatus and method
CN108264920A (en) * 2017-12-26 2018-07-10 北京三聚环保新材料股份有限公司 A kind of one kettle way liquefaction process of coal and biomass
CN108277038B (en) * 2017-12-26 2020-03-10 北京三聚环保新材料股份有限公司 Co-hydrolysis hydrogenation process for coal and biomass
WO2019128867A1 (en) * 2017-12-25 2019-07-04 北京三聚环保新材料股份有限公司 Hydrolysis hydrogenation process for biomass
CN108179019B (en) * 2017-12-26 2020-03-10 北京三聚环保新材料股份有限公司 Multistage liquefaction process for coal and biomass
CN108192652B (en) * 2017-12-26 2020-03-17 北京三聚环保新材料股份有限公司 Coal and biomass co-liquefaction process
SG11202000174UA (en) 2017-12-25 2020-02-27 Beijing Sanju Environmental Protection & New Materials Co Ltd Process for one-pot liquefaction of biomass or coal and biomass
CN108285808B (en) * 2017-12-26 2019-12-20 北京三聚环保新材料股份有限公司 Multistage liquefaction process for coal and biomass
CN108219819B (en) * 2017-12-26 2020-03-10 北京三聚环保新材料股份有限公司 One-pot liquefaction process for coal and biomass
CN108219820B (en) * 2017-12-26 2020-07-07 北京三聚环保新材料股份有限公司 Process for producing fuel oil and chemical raw materials by using coal and biomass
CN109355098B (en) * 2018-09-19 2020-07-24 北京三聚环保新材料股份有限公司 Multistage conversion process for inferior oil products
US11492563B2 (en) 2018-04-28 2022-11-08 Beijing Sanju Environmental Protection & New Materials Co., Ltd Conversion process for an inferior oil
WO2019205682A1 (en) 2018-04-28 2019-10-31 北京三聚环保新材料股份有限公司 Conversion process for organic matter
CN109355085B (en) * 2018-09-19 2020-03-10 北京三聚环保新材料股份有限公司 Solid biomass conversion process
CN109570189A (en) * 2018-11-15 2019-04-05 广州中科粤江环保新技术有限公司 It is a kind of for waste mineral oil or the recycling treatment system of the waste containing mineral oil
CN109825706B (en) * 2019-01-09 2020-05-12 郑州大学 Waste circuit board recycling method
CN110343537B (en) * 2019-07-11 2021-03-12 太原科技大学 Process for preparing mesophase pitch by using coal gangue
CN113046104A (en) * 2021-03-19 2021-06-29 重庆大学 Pyrolysis device and pyrolysis method for red mud catalytic biomass infrared pyrolysis

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE499435C (en) * 1928-03-09 1930-06-06 I G Farbenindustrie Akt Ges Process for converting wood and the like Like. In valuable products
US3704108A (en) * 1970-09-25 1972-11-28 Hydrocarbon Research Inc Hydroconversion of waste natural and synthetic rubbers
GB1390356A (en) * 1971-03-09 1975-04-09 Johnson Matthey Co Ltd Method for the production of organic oils from cellulosic materials
BE792127A (en) * 1971-12-06 1973-03-16 Uss Eng & Consult COAL CONVERSION PROCESS
JPS529667B2 (en) * 1972-02-24 1977-03-17
CH567204A5 (en) * 1973-06-29 1975-09-30 Cyphelly Ivan J
DE2629122C2 (en) * 1976-06-29 1984-05-17 Saarbergwerke AG, 6600 Saarbrücken Process for the production of compressed coking coal
US4083769A (en) * 1976-11-30 1978-04-11 Gulf Research & Development Company Catalytic process for liquefying coal
US4089773A (en) * 1976-12-01 1978-05-16 Mobil Oil Corporation Liquefaction of solid carbonaceous materials
JPS5458704A (en) * 1977-10-20 1979-05-11 Bridgestone Corp Hydrocracking of waste rubber
DE2930032A1 (en) * 1979-07-24 1981-01-29 Orth Dieter Hydrocarbon prodn. from biomass, esp. plants - by catalytic hydrogenation
DE2935039C2 (en) * 1979-08-30 1982-11-25 Rütgerswerke AG, 6000 Frankfurt Process for the production of a highly aromatic, pitch-like carbon material
JPS5713597A (en) * 1980-06-26 1982-01-23 Fuji Facom Seigiyo Code reading system for pulse integrated
GB2089831B (en) * 1980-12-18 1984-10-31 Univ Salford Ind Centre Conversion of municipal waste to fuel
US4478705A (en) * 1983-02-22 1984-10-23 Hri, Inc. Hydroconversion process for hydrocarbon liquids using supercritical vapor extraction of liquid fractions

Also Published As

Publication number Publication date
IN164568B (en) 1989-04-08
AU583865B2 (en) 1989-05-11
PT81533A (en) 1985-12-01
DE3571637D1 (en) 1989-08-24
YU181185A (en) 1987-10-31
ZA858721B (en) 1986-07-30
CN85109131A (en) 1986-10-01
ES549197A0 (en) 1986-11-16
ES8701207A1 (en) 1986-11-16
PT81533B (en) 1987-11-11
DK538285D0 (en) 1985-11-21
PL256375A1 (en) 1987-03-09
EP0182309A1 (en) 1986-05-28
CN1005778B (en) 1989-11-15
DE3442506C2 (en) 1987-04-16
ATE44756T1 (en) 1989-08-15
DE3442506A1 (en) 1986-05-22
DK538285A (en) 1986-05-23
PT81541A (en) 1985-12-01
FI854502A0 (en) 1985-11-15
GR852797B (en) 1986-03-19
BR8505890A (en) 1986-08-12
FI854502A (en) 1986-05-23
JPS61159489A (en) 1986-07-19
EP0182309B1 (en) 1989-07-19
CA1294236C (en) 1992-01-14
HUT38601A (en) 1986-06-30
DD249036B5 (en) 1997-03-20
AU5030085A (en) 1986-05-29
NZ214280A (en) 1989-04-26
HU193138B (en) 1987-08-28

Similar Documents

Publication Publication Date Title
NO854663L (en) PROCEDURE FOR THE PREPARATION OF CARBON-CONTAINED WASTE AND BIOMASS.
AU681652B2 (en) Process for processing used or waste plastic material
US3997425A (en) Process for the liquefaction of coal
DE3602041C2 (en) Improved process for processing carbon-containing waste
RU2005117790A (en) METHOD FOR PROCESSING HEAVY RAW MATERIALS, SUCH AS HEAVY RAW OIL AND CUBE RESIDUES
Luo et al. Effect of reaction parameters and catalyst type on waste plastics liquefaction and coprocessing with coal
NO174933B (en) Process for Hydrogenation Conversion of Heavy Oils and Residual Oils
Rajmohan et al. Perspectives on bio-oil recovery from plastic waste
US4094766A (en) Coal liquefaction product deashing process
US4695373A (en) Extraction of hydrocarbon-containing solids
EP0001675A2 (en) Process for increasing fuel yield of coal liquefaction
US4798668A (en) Extraction of hydrocarbon-containing solids
US4610776A (en) Coal liquefaction process
US3503867A (en) Process and system for producing synthetic crude from coal
GB1593314A (en) Process for producing low-sulphur liquid and solid fuels from coal
US4740294A (en) Method for sequentially co-processing heavy hydrocarbon and carbonaceous materials
Fynes et al. The hydropyrolysis of coal to BTX
US4431510A (en) Process for producing hydrogen-enriched hydrocarbonaceous products from coal
Wenning The VEBA OEL technologie pyrolysis process
EP0249748B1 (en) Process for the destructive hydrogenation of carbon-containing wastes in a fluidized bed
CA1210724A (en) Coal liquefaction process
DE3807272A1 (en) Process for the hydrocracking of carbon-containing wastes and biomass at high pressures
EP0291698A1 (en) Improved process for the hydrocracking of carbon containing synthetic wastes
Brunner Processing of fuel materials with hydrothermal and supercritical water
Hammer et al. Reduction of pollution through hydrogenation of carbon-containing wastes