JP5179037B2 - Method for mixing hydrogen-generating oil mud and method for producing solid fuel - Google Patents

Method for mixing hydrogen-generating oil mud and method for producing solid fuel Download PDF

Info

Publication number
JP5179037B2
JP5179037B2 JP2006273957A JP2006273957A JP5179037B2 JP 5179037 B2 JP5179037 B2 JP 5179037B2 JP 2006273957 A JP2006273957 A JP 2006273957A JP 2006273957 A JP2006273957 A JP 2006273957A JP 5179037 B2 JP5179037 B2 JP 5179037B2
Authority
JP
Japan
Prior art keywords
hydrogen
oil mud
mixing
waste
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006273957A
Other languages
Japanese (ja)
Other versions
JP2008086973A (en
Inventor
一志 和泉
規允 西島
義正 村岡
博幸 高野
浩文 森
誠 鏡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006273957A priority Critical patent/JP5179037B2/en
Publication of JP2008086973A publication Critical patent/JP2008086973A/en
Application granted granted Critical
Publication of JP5179037B2 publication Critical patent/JP5179037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

本発明は、水素発生油泥の混合方法に関し、特に、安価に、しかも安全に水素発生油泥を混合する方法、及び該混合方法を用いた固体燃料の製造方法関するものである。 The present invention relates to a method of mixing the hydrogen generating oil mud, in particular, low cost, yet safe way to mix the hydrogen generating oil mud, and it relates to a method for producing a solid fuel that uses the mixed method.

シリコンウエハーは、半導体デバイスや太陽光電池等の部材として有用であり、その需要は年々増大しつつある。かかるシリコンウエハーは、高純度シリコンの結晶体からウエハー状に切り出すことにより製造されるが、切断機の性能等の観点から、近年においてはワイヤソーによる切り出しが主流になりつつある。   Silicon wafers are useful as members for semiconductor devices, solar cells and the like, and their demand is increasing year by year. Such a silicon wafer is manufactured by cutting into a wafer form from a crystal of high-purity silicon, but in recent years, cutting with a wire saw is becoming mainstream from the viewpoint of the performance of a cutting machine.

このワイヤソーによる切り出しにおいては、切削用媒体として、通常平均粒径10μm
〜50μmの炭化珪素研削粒と鉱油又は水溶液とを含有するワイヤソーオイルが用いられ
る。このワイヤソーオイルは、使用を繰り返すことにより研削粒の摩耗、シリコン削分の
増加等により、切削能力が低下し、使用できなくなる。
そして、このように使用できなくなった廃ワイヤソーオイルは、現在においては、その
大部分が焼却され、産業廃棄物として処理されている。
In cutting with this wire saw, the average particle diameter is usually 10 μm as a cutting medium.
Wire saw oil containing ˜50 μm silicon carbide abrasive grains and mineral oil or aqueous solution is used. The wire saw oil cannot be used because its cutting ability is reduced due to wear of abrasive grains, an increase in silicon scraping, etc. due to repeated use.
And now, most of the waste wire saw oil that can no longer be used is incinerated and treated as industrial waste.

また、機械加工工場では、多数台の切削、研削若しくは研磨を行う装置を運転して金属
加工を行っているが、該金属加工の工程ではワークを冷却、潤滑するために多量の切削油
、研削油、研磨油を使用している。そして、これらの切削油等も循環使用され、劣化した
ものは抜き出され、廃切削油、廃研削油、廃研磨油としてその大部分はやはり焼却処分さ
れているのが現状である。
Moreover, in a machining factory, metal processing is performed by operating a large number of cutting, grinding, or polishing apparatuses. In the metal processing process, a large amount of cutting oil and grinding are used to cool and lubricate the workpiece. Oil and polishing oil are used. These cutting oils are also circulated and used, and the deteriorated ones are extracted, and most of them are incinerated as waste cutting oil, waste grinding oil and waste polishing oil.

ここで、上記した廃ワイヤソーオイル、廃切削油等の油泥は、高いエネルギーを有する
ため、産業廃棄物として焼却処分せずに、燃料として有効利用することが期待される。
しかし、油泥は、高い粘稠性を有しているものや、常温で流動性がないものや、固形分
が沈降分離し固着するものなどがあるため、管路を介した輸送時等におけるハンドリング
性が悪く、燃料としての取り扱いが困難である。
Here, since oil mud such as the above-described waste wire saw oil and waste cutting oil has high energy, it is expected to be effectively used as fuel without being incinerated as industrial waste.
However, oil mud is highly viscous, has no fluidity at room temperature, or has solid content that settles and settles, so it can be handled during transportation through a pipeline. It is difficult to handle as fuel.

そこで、近年欧州では、原油スラッジ等の油泥を単独で用いるのではなく、該油泥とお
が屑とを混合して固体燃料とし、セメントキルンで代替燃料として使用することが提案さ
れ、また我が国でも、同様な固体燃料の製造方法が提案されている(例えば、特許文献1
,2,3等)。
Therefore, in recent years, in Europe, it has been proposed that oil sludge such as crude oil sludge is not used alone, but the oil mud and sawdust are mixed to form a solid fuel and used as an alternative fuel in a cement kiln. Have been proposed (for example, Patent Document 1).
, 2, 3 etc.).

特開昭54−39401号公報JP-A-54-39401 特開2002−323213号公報JP 2002-323213 A 特開2006−169376号公報JP 2006-169376 A

しかしながら、シリコンウエハーの切り出しに使用された廃ワイヤソーオイルは、多量
のシリコン粒子を含有していると共に、ワイヤソーの磨滅等に起因する鉄等の金属粒子も
含有していることから、これらのシリコン粒子及び/又は鉄等の金属粒子が水と反応して
例えば下記の反応式によって多量の水素が発生する憂いがある。

Si+2OH-+H2O → SiO3 2-+2H2
金属 + 酸 → 金属化合物 + 水素↑
また、廃切削油、廃研削油、廃研磨油も、多量のアルミ粒子や鉄等の金属粒子を含有し
ていることから、同じく水素の発生が懸念される。
However, the waste wire saw oil used for cutting silicon wafers contains a large amount of silicon particles and also contains metal particles such as iron resulting from wear of the wire saw. There is a concern that metal particles such as iron react with water and a large amount of hydrogen is generated by the following reaction formula, for example.

Si + 2OH + H 2 O → SiO 3 2− + 2H 2
Metal + Acid → Metal Compound + Hydrogen ↑
Moreover, since waste cutting oil, waste grinding oil, and waste polishing oil contain a large amount of metal particles such as aluminum particles and iron, there is a concern about the generation of hydrogen.

上記のような水素の発生が懸念される廃ワイヤソーオイル、廃切削油等の油泥(本明細
書では、このような油泥を『水素発生油泥』と言う。)と、例えばおが屑等のバイオマス
とを混合すると、密閉の混合機内において水素が発生することとなり、爆発或いは火災等
の危険がある。
この際、窒素、二酸化炭素等の不活性なガスを混合機内に吹き込み、酸素濃度を低減(
8%以下)することにより爆発或いは火災等を防ぐ方法も考えられるが、このような方法
では、窒素、二酸化炭素等の不活性なガスの製造設備、またはこれらの不活性なガスを購
入する必要があり、安価に行えるものではなく、また水素を含む混合機排ガスの後処理の
問題も生じる。
Oil mud such as waste wire saw oil, waste cutting oil and the like that are concerned about the generation of hydrogen as described above (in the present specification, such oil mud is referred to as “hydrogen generating oil mud”) and biomass such as sawdust, for example. When mixed, hydrogen is generated in a closed mixer, which may cause an explosion or fire.
At this time, an inert gas such as nitrogen or carbon dioxide is blown into the mixer to reduce the oxygen concentration (
8% or less) to prevent explosion or fire, etc., but in such a method, it is necessary to purchase an inert gas production facility such as nitrogen or carbon dioxide, or to purchase these inert gases Therefore, it cannot be performed at a low cost, and there is a problem of after-treatment of the exhaust gas from the mixer containing hydrogen.

本発明は、上述した背景技術が有する課題に鑑み成されたものであって、その目的は、廃ワイヤソーオイル、廃切削油等の水素発生油泥を、安価にしかも安全に混合する方法、及び該混合方法を用いた固体燃料の製造方法提案することにある。 The present invention has been made in view of the problems of the background art described above, and its purpose is to provide a method for mixing hydrogen-generating oil mud such as waste wire saw oil and waste cutting oil at a low cost and safely, and The object is to propose a method for producing a solid fuel using a mixing method.

上記した目的を達成するため、本発明は、水素発生油泥の混合に際して、空気を該水素発生油泥の混合機内に導入し、発生した水素を爆発下限濃度未満まで希釈した状態で水素発生油泥の混合を行う水素発生油泥の混合方法において、上記混合機に常時水素の濃度を検知する水素検出器を設け、該水素検出器が所定以上の濃度の水素を検出した場合には、水素発生油泥の上記混合操作を停止すると共に、上記混合機内への空気導入量を増加させる、或いは二酸化炭素等の不活性なガスを上記混合機内へ導入する操作を行うこととした。
また、本発明は、上記した混合方法によって水素発生油泥とバイオマスとを混合し、固体燃料を製造することとした。
In order to achieve the above-described object, the present invention, when mixing the hydrogen-generating oil mud, introduces air into the hydrogen-generating oil mud mixer, and mixes the hydrogen-generating oil mud in a state where the generated hydrogen is diluted to below the lower explosion limit concentration. In the mixing method of hydrogen generating oil mud, the hydrogen detector is provided with a hydrogen detector that constantly detects the concentration of hydrogen, and when the hydrogen detector detects hydrogen at a predetermined concentration or more, While stopping the mixing operation, the amount of air introduced into the mixer was increased, or an operation of introducing an inert gas such as carbon dioxide into the mixer was performed .
Moreover, this invention decided to manufacture a solid fuel by mixing hydrogen generating oil mud and biomass by the above-mentioned mixing method.

上記した本発明によれば、製造或いは購入が必要な窒素、二酸化炭素等の不活性なガスを用いることなく、空気によって水素を爆発を起こさない濃度、即ち、爆発下限濃度未満まで希釈する方法を採っているため、水素発生油泥を、安価に、しかも安全に混合することが可能となる。
また、上記した本発明によれば、従来においてはその大部分が廃棄されていた水素発生油泥を、安全にバイオマスと混合することにより固体燃料を製造でき、資源の有効活用が図れる。
According to the present invention described above, a method of diluting hydrogen to a concentration that does not cause an explosion by air, that is, less than the lower explosion limit concentration, without using an inert gas such as nitrogen or carbon dioxide that needs to be manufactured or purchased. Therefore, it is possible to mix the hydrogen generating oil mud inexpensively and safely.
Moreover, according to this invention mentioned above, a solid fuel can be manufactured by mixing the hydrogen generation oil mud which was mostly discarded conventionally with biomass safely, and resources can be utilized effectively.

以下、上記した本発明を、水素発生油泥とバイオマスとを混合して固体燃料を製造し、
該固体燃料を一旦貯留した後、セメントキルンで代替燃料として使用する場合の実施の形
態を例に挙げて、詳細に説明する。
Hereinafter, the present invention described above is produced by mixing hydrogen-generating oil mud and biomass to produce a solid fuel,
After the solid fuel is temporarily stored, an embodiment in the case of using it as an alternative fuel in a cement kiln will be described in detail as an example.

〔水素発生油泥〕
本発明において水素発生油泥とは、水又は水素原子含有化合物の還元によって水素を発
生する、液状又はスラッジ状の油泥をいう。具体的には、シリコンウエハーの切り出しに
使用されたシリコン粒子を含有する廃ワイヤソーオイル、各種金属工作機械においてワー
クの冷却、潤滑等に使用されたアルミ粒子や金属粒子を含有する廃切削油、廃研削油、廃
研磨油等が挙げられ、これらを単独でも、またこれらの二種以上を混ぜた物でも、更には
これらと他の油泥、例えば再生重油、廃溶剤、原油スラッジ、軽油残渣等を混ぜた物であ
ってもよい。
上記の中でも、シリコン粒子を含有した廃ワイヤソーオイルは、近年の半導体デイバイ
スや太陽光電池等の部材として有用であるシリコンウエハーの需要の増大から、大量に発
生しており、その処理が急務になっていると共に、アルカリ性、酸性の両状態において水
素の発生が懸念される取扱いの困難な油泥であることから、特に本発明において、水素発
生油泥として好適に用いられる。
[Hydrogen generating oil mud]
In the present invention, the hydrogen-generating oil mud refers to a liquid or sludge-like oil mud that generates hydrogen by reducing water or a hydrogen atom-containing compound. Specifically, waste wire saw oil containing silicon particles used for cutting silicon wafers, waste cutting oil containing aluminum particles and metal particles used for cooling and lubrication of workpieces in various metal machine tools, waste Grinding oil, waste polishing oil, etc. can be mentioned. These can be used alone or as a mixture of two or more of these, and also with other oil mud such as recycled heavy oil, waste solvent, crude oil sludge, diesel oil residue, etc. It may be a mixture.
Among the above, waste wire saw oil containing silicon particles has been generated in large quantities due to the recent increase in demand for silicon wafers that are useful as members for semiconductor devices, solar cells and the like. In addition, since it is an oil mud that is difficult to handle and the generation of hydrogen is concerned in both alkaline and acidic states, it is particularly preferably used as a hydrogen generating oil mud in the present invention.

〔バイオマス〕
バイオマスの例としては、畳(使用済みの廃畳)の破砕物、木材チップ(例えば、建設
廃木材の破砕物)、木粉、おが屑、紙屑等が挙げられる。
なお、本発明においてバイオマスとは、燃料等として利用可能な、生物由来の有機質資
源(ただし、化石燃料を除く。)の総称をいう。
〔biomass〕
Examples of biomass include crushed tatami (used waste tatami), wood chips (for example, crushed trash from construction waste), wood flour, sawdust, and paper waste.
In the present invention, biomass refers to a generic name of biological organic resources (excluding fossil fuels) that can be used as fuel.

上記畳の破砕物の材料となる廃畳は、植物性の材料を少なくとも部分的に含むものであ
ればよく、具体的には、稲藁を畳床の材料とする本畳のみならず、ポリスチレンフォーム
板(ポリスチレン樹脂組成物に発泡剤を添加して膨張させて形成した板状の成形体)およ
びインシュレーションボード(例えば、湿式法では、木材を水中で解砕し、接着剤等を加
えて抄造した後、乾燥して形成された軟質繊維板)を畳床の材料とする建材畳や、稲藁、
ポリスチレンフォーム板を畳床の材料とする藁サンド畳も含む。
上記木材チップは、最大粒径(篩の残分が5質量%以内となる目開き寸法)が5mmを
超え、10mm以下である木材の破砕物または粉砕物をいう。
上記木粉とは、最大粒径(篩の残分が5質量%以内となる目開き寸法)が5mm以下で
ある木材の粉砕物をいう。
また、上記おが屑は、通常、0.5〜5mm程度の粒度分布を有するものである。上記
紙屑としては、例えばシュレッダー切断物等が用いられる。
The waste tatami used as the material of the crushed tatami mat may be any material as long as it contains at least a part of plant material. Specifically, not only the main tatami mat that uses rice straw as a tatami floor material, but also polystyrene. Foam plates (plate-shaped molded bodies formed by adding a foaming agent to a polystyrene resin composition and expanding) and insulation boards (for example, in the wet method, wood is crushed in water, and adhesives are added. Building paper tatami mats that are made of tatami flooring (soft fiberboard formed after paper making and dried), rice straw,
Also included is a sand tatami mat that uses polystyrene foam as a material for the tatami floor.
The above-mentioned wood chip refers to a crushed or crushed product of wood having a maximum particle size (mesh size with a sieve residue within 5% by mass) exceeding 5 mm and 10 mm or less.
The above-mentioned wood powder refers to a pulverized product of wood having a maximum particle size (a mesh size with a sieve residue within 5% by mass) of 5 mm or less.
The sawdust usually has a particle size distribution of about 0.5 to 5 mm. As the paper waste, for example, a shredder cut product or the like is used.

上記バイオマスの平均粒径(篩の残分が50質量%以内となる目開き寸法)は、0.5
mm以上であることが好ましい。これは、該平均粒径が0.5mm未満では、粒子系全体
が微細化するため流動性、分散性が低下し、ハンドリング性の向上等の効果を得ることが
困難となる。
また、上記バイオマスの最大粒径(篩の残分が5質量%以内となる目開き寸法)は、1
0mm以下、好ましくは5mm以下、より好ましくは3mm以下である。これは、該最大
粒径が10mmを超えると、例えばセメントキルンのバーナーで使用する場合、火炎(フ
レーム)を形成しにくく、燃料が着地した後も燃焼を継続するため、セメントクリンカー
の品質を低下させるおそれがある。該最大粒径を5mm以下とすれば、着地燃焼する粒体
の割合が少なくなり、固体燃料の使用割合を大きくすることができるので好ましい。
The average particle size of the biomass (aperture dimension where the balance of the sieve is within 50% by mass) is 0.5
It is preferable that it is mm or more. This is because if the average particle size is less than 0.5 mm, the entire particle system is refined, so that fluidity and dispersibility are lowered, and it becomes difficult to obtain effects such as improved handling properties.
In addition, the maximum particle size of the biomass (aperture size in which the remainder of the sieve is within 5% by mass) is 1
It is 0 mm or less, preferably 5 mm or less, more preferably 3 mm or less. When the maximum particle size exceeds 10 mm, for example, when used in a burner of a cement kiln, it is difficult to form a flame (frame), and combustion continues even after the fuel has landed. There is a risk of causing. If the maximum particle size is 5 mm or less, the proportion of particles that land and burn is reduced, and the proportion of solid fuel used can be increased, which is preferable.

〔他の材料〕
水素発生油泥の吸収材として、上記バイオマスの他、有機質粉体が好適に用いられ、さ
らに品質を損なわない限度において、その他の材料をも配合することができる。
有機質粉体の例としては、トナー、重油灰、微粉炭、活性炭粉末、肉骨粉、廃プラスチ
ック粉末、紙粉、有機蒸留残渣粉末等が挙げられる。これらの有機質粉体は、一種を単独
で用いてもよいし、二種以上を併用してもよい。
[Other materials]
In addition to the above biomass, organic powder is suitably used as an absorbent for the hydrogen generating oil mud, and other materials can be blended as long as the quality is not impaired.
Examples of the organic powder include toner, heavy oil ash, pulverized coal, activated carbon powder, meat and bone powder, waste plastic powder, paper powder, and organic distillation residue powder. These organic powders may be used alone or in combination of two or more.

上記トナーは、コピー機、ファクシミリ機、プリンター等の事務機器における乾式現像
剤であり、7〜11μm程度の粒径を有する粉体であり、通常、廃棄物である廃トナーが
用いられる。トナーは、非常に小さな粒径を有し、かつ粒度分布が狭いため、製造される
固体燃料の比重の増大、および水素発生油泥の使用可能量の増大に大きく寄与することが
でき、好ましく用いられる。
上記重油灰は、1〜30μm程度の粒径を有する粉体であり、小さな粒径を有するため
、やはり、製造される固体燃料の比重の増大、および水素発生油泥の使用可能量の増大に
寄与することができるため、好ましく用いられる。
上記微粉炭は、10〜100μm程度の粒径を有する粉体であり、セメントキルン等の
焼成炉における固体燃料として知られている。
上記活性炭粉末および肉骨粉としては、通常、1mm以下の平均粒径を有するものが用
いられる。上記廃プラスチック粉末としては、例えば、廃ペレット等が用いられる。上記
紙粉としては、例えば、サンダーダスト等が用いられる。上記有機蒸留残渣粉末としては
、例えば、フタル酸蒸留残渣等が用いられる。
The toner is a dry developer used in office equipment such as a copying machine, a facsimile machine, and a printer, and is a powder having a particle size of about 7 to 11 μm. Usually, waste toner that is waste is used. Since the toner has a very small particle size and a narrow particle size distribution, it can greatly contribute to an increase in the specific gravity of the produced solid fuel and an increase in the usable amount of the hydrogen generating oil mud, which is preferably used. .
The heavy oil ash is a powder having a particle size of about 1 to 30 μm and has a small particle size, so it also contributes to an increase in the specific gravity of the produced solid fuel and an increase in the usable amount of hydrogen-generating oil mud. It can be used, so it is preferably used.
The pulverized coal is a powder having a particle size of about 10 to 100 μm and is known as a solid fuel in a firing furnace such as a cement kiln.
As said activated carbon powder and meat-and-bone powder, what has an average particle diameter of 1 mm or less is used normally. For example, waste pellets are used as the waste plastic powder. As the paper powder, for example, thunder dust or the like is used. As said organic distillation residue powder, a phthalic acid distillation residue etc. are used, for example.

上記有機質粉体の平均粒径は、上記バイオマスの平均粒径に対し、1/2以下、好まし
くは1/3以下である。これは、該比が1/2を超えると、バイオマスと有機質粉体との
粒径の差が小さくなり、ハンドリング性の向上等の効果を得ることが困難となる。
上記有機質粉体の中で、固定炭素で構成される活性炭粉末などでは、平均粒径が300
μmを超えると着地燃焼する粒子が増大し、セメントクリンカーの品質が低下することが
あるので、好ましくは平均粒径が300μm以下、より好ましくは100μm以下のもの
を使用する。有機質粉体の粒径の下限値は、特には限定されないが、通常、1μm以上で
ある。
The average particle size of the organic powder is ½ or less, preferably 1 / or less of the average particle size of the biomass. When the ratio exceeds 1/2, the difference in particle size between the biomass and the organic powder becomes small, and it becomes difficult to obtain effects such as improved handling properties.
Among the above organic powders, the average particle size of the activated carbon powder composed of fixed carbon is 300.
If it exceeds μm, the number of particles that land and burn increases, and the quality of the cement clinker may deteriorate. Therefore, the average particle size is preferably 300 μm or less, more preferably 100 μm or less. The lower limit of the particle size of the organic powder is not particularly limited, but is usually 1 μm or more.

〔配合割合〕
上記各材料の配合割合は、先ず吸収材であるバイオマスと有機質粉体については、バイ
オマスと有機質粉体の質量比は、40/60〜95/5、好ましくは50/50〜80/
20である。これは、該質量比が40/60未満では、バイオマスの配合量が小さいため
、バイオマスの粒体の間隙を有機質粉体が埋めてしまい、燃料の流動性が著しく低下する
ことがある。逆に該質量比が95/5を超えると、有機質粉体の配合量が小さいため、燃
料の比重の増大等の効果を十分に得ることができない。
[Combination ratio]
The blending ratio of each of the above materials is as follows. First, for the biomass and the organic powder that are absorbents, the mass ratio of the biomass and the organic powder is 40/60 to 95/5, preferably 50/50 to 80 /
20. This is because when the mass ratio is less than 40/60, the blending amount of biomass is small, so that the organic powder fills the gaps between the granules of the biomass, and the fluidity of the fuel may be significantly reduced. On the other hand, when the mass ratio exceeds 95/5, the blending amount of the organic powder is small, and thus an effect such as an increase in the specific gravity of the fuel cannot be obtained sufficiently.

水素発生油泥の配合量は、上記バイオマスと有機質粉体の合計量100質量部に対して
、30〜300質量部、好ましくは50〜200質量部、より好ましくは80〜150質
量部、特に好ましくは100〜140質量部である。これは、該配合量が30質量部未満
では、水素発生油泥を有効に利用しようとする趣旨に合致しなくなる。該配合量が300
質量部を超えると、製造される固体燃料の粒子表面に油が残留して、粒子表面に光沢およ
び付着性が生じ、ハンドリング性が低下することがある。
The blending amount of the hydrogen generating oil mud is 30 to 300 parts by mass, preferably 50 to 200 parts by mass, more preferably 80 to 150 parts by mass, particularly preferably 100 parts by mass of the total amount of the biomass and the organic powder. 100 to 140 parts by mass. If the blending amount is less than 30 parts by mass, this does not meet the purpose of effectively using the hydrogen-generating oil mud. The blending amount is 300
When the amount exceeds mass parts, oil may remain on the particle surface of the produced solid fuel, resulting in gloss and adhesion on the particle surface, and handling properties may be deteriorated.

〔混 合〕
混合は、上記各材料を、上記配合割合で混合機に投入し、本発明に係る方法、即ち、空
気を混合機内に導入し、混合物から発生する水素を爆発を起こさない濃度まで希釈させな
がら行われる。
上記した水素発生油泥とバイオマス等を混合すると、水素発生油泥から水素が発生し、
該水素に混合機の回転部等で発生した火花が引火し、爆発を起こす危険がある。即ち、水
素の爆発下限濃度は4%であるため、それ以上の水素が混合機内に存在すると、上記爆発
を起こす危険がある。
そこで、本発明においては、空気を混合機内に導入し、発生した水素の濃度を爆発を起
こさない濃度、即ち爆発下限濃度である4%未満まで希釈させる。具体的な空気の混合機
内への導入量は、発生する水素の量、さらには混合機の容積、混合物の量等によって適宜
決定されるが、本発明において使用する希釈ガスは、無料の空気であることから、必要十
分な量の空気を、混合機内に導入することとすればよい。
〔mixture〕
Mixing is performed by introducing each of the above materials into the mixer at the above mixing ratio, introducing the method according to the present invention, that is, introducing air into the mixer and diluting the hydrogen generated from the mixture to a concentration that does not cause an explosion. Is called.
When the hydrogen generating oil mud and biomass are mixed, hydrogen is generated from the hydrogen generating oil mud.
There is a danger that sparks generated in the rotating part of the mixer or the like may ignite the hydrogen and cause an explosion. That is, since the lower explosion limit concentration of hydrogen is 4%, there is a risk of causing the explosion if more hydrogen is present in the mixer.
Therefore, in the present invention, air is introduced into the mixer, and the generated hydrogen concentration is diluted to a concentration that does not cause an explosion, that is, less than 4%, which is the lower explosion limit concentration. The specific amount of air introduced into the mixer is appropriately determined depending on the amount of generated hydrogen, further the volume of the mixer, the amount of the mixture, etc., but the diluent gas used in the present invention is free air. Therefore, a necessary and sufficient amount of air may be introduced into the mixer.

また、混合機は、単に攪拌羽根が設けられているものではなく、その混合容器自体をも
回転する構造のものを使用することが好ましい。これは、水素発生油泥のように粘稠性の
高い材料とバイオマス等のかさ密度の低い材料とを良好に混合できると共に、容器が回転
することにより発生した水素が流動し、容器の一部に溜まることがなく、導入された空気
によって容易かつ確実に希釈させられるためである。
このような容器自体をも回転する構造の混合機としては、アイリッヒ社製のインテンシ
ブミキサー等が挙げられる。
Moreover, it is preferable to use a mixer that is not simply provided with stirring blades but also has a structure that rotates the mixing container itself. This is because a highly viscous material such as hydrogen-generating oil mud and a material with low bulk density such as biomass can be mixed well, and the hydrogen generated by the rotation of the container flows and flows into a part of the container. This is because it does not accumulate and can be easily and reliably diluted by the introduced air.
Examples of the mixer having such a structure that also rotates the container itself include an intensive mixer manufactured by Eirich.

また、混合機には、常時水素の濃度を検知する水素検出器を設け、万一所定以上の濃度の水素が検出された場合には、直ちに混合操作を停止し、混合機内への空気導入量を増加する構成、或いは場合によっては二酸化炭素等の不活性なガスを混合機内へ導入する構成を更に設けることが、爆発等の事故を確実に防止できるために本発明においてはかかる構成を採用するIn addition, the mixer is equipped with a hydrogen detector that constantly detects the concentration of hydrogen, and if a hydrogen concentration higher than a predetermined level is detected, the mixing operation is immediately stopped and the amount of air introduced into the mixer In order to prevent accidents such as explosions reliably by further providing a configuration for increasing the flow rate or in some cases introducing a inert gas such as carbon dioxide into the mixer, this configuration is employed in the present invention. .

〔製造された固体燃料の貯留方法〕
上記水素発生油泥とバイオマスとの混合操作により、水素発生油泥がバイオマスに吸収され、ハンドリング性が良好な固体燃料が製造できる。
この固体燃料の貯留に際しては、空気を固体燃料を貯留するタンク内に導入し、固体燃料から発生する水素を、爆発を起こさない濃度まで希釈させた状態で行われる。
上記固体燃料は、水素発生油泥とバイオマスとの混合物であるため、該混合物から水素が発生し、該水素に何らかの火花が引火し、爆発を起こす危険がある。
そこで空気を貯留タンク内に導入し、発生した水素の濃度を爆発を起こさない濃度、即ち爆発下限濃度である4%未満まで希釈させることが好ましい。具体的な空気の貯留タンク内への導入量は、上記混合の場合と同様に、発生する水素の量、貯留タンクの容積等によって適宜決定されるが、必要十分な量の空気を、貯留タンク内に導入することとすればよい。
[Storage method of manufactured solid fuel]
By the mixing operation of the hydrogen generating oil mud and the biomass, the hydrogen generating oil mud is absorbed by the biomass, and a solid fuel having good handling properties can be produced.
In storing the solid fuel, air is introduced into a tank for storing the solid fuel, and hydrogen generated from the solid fuel is diluted to a concentration that does not cause an explosion.
Since the solid fuel is a mixture of hydrogen-generating oil mud and biomass, hydrogen is generated from the mixture, and there is a risk of some sparks igniting the hydrogen and causing an explosion.
Therefore , it is preferable to introduce air into the storage tank and dilute the generated hydrogen concentration to a concentration at which explosion does not occur, that is, lower than 4% which is the lower explosion limit concentration. The specific amount of air introduced into the storage tank is appropriately determined depending on the amount of hydrogen generated, the volume of the storage tank, etc., as in the case of the above mixing, but a necessary and sufficient amount of air is supplied to the storage tank. It should just be introduced in.

上記固体燃料の貯留は、長期的な貯留の場合のみならず、製造した固体燃料をすぐに使
用するため、計量するタンクに一旦製造後の固体燃料を貯留する場合等も含まれる。
また、上記混合機の場合と同様に、貯留タンクに常時水素の濃度を検知する水素検出器を
設け、万一所定以上の濃度の水素が検出された場合には、貯留タンク内への空気導入量を
増加する構成、或いは場合によっては二酸化炭素等の不活性なガスを貯留タンク内へ導入
する構成を更に設けることが、爆発等の事故を確実に防止できるために好ましい。
The storage of the solid fuel includes not only the case of long-term storage but also the case where the manufactured solid fuel is temporarily stored in the tank to be measured because the manufactured solid fuel is used immediately.
As in the case of the above mixer, a hydrogen detector that constantly detects the concentration of hydrogen is provided in the storage tank. If hydrogen at a predetermined concentration or higher is detected, air is introduced into the storage tank. It is preferable to further provide a configuration for increasing the amount or, in some cases, a configuration for introducing an inert gas such as carbon dioxide into the storage tank in order to reliably prevent an accident such as an explosion.

〔固体燃料の使用方法〕
このようにして製造、貯留された固体燃料の使用方法の一例としては、管路を介して焼
成炉内に該固体燃料を投入し、燃料として燃焼させる使用方法が挙げられる。
そして、この際、該固体燃料の製造時及び/又は貯留時、具体的には水素発生油泥とバ
イオマスとの混合時に水素の希釈に使用した空気、或いは固体燃料の貯留時に水素の希釈
に使用した空気を、燃焼用空気として焼成炉内に供給する構成とすることが好ましい。こ
れにより、安全かつ有効に、混合機或いは貯留タンクからの水素を含む排ガスを大量に処
理することが可能となる。
ここで、焼成炉としては、クリンカを製造するためのセメントキルンや、生石灰や軽量
骨材を焼成するためのキルン等が挙げられる。
[How to use solid fuel]
An example of a method of using the solid fuel thus manufactured and stored is a method of using the solid fuel that is introduced into a firing furnace via a pipe and burned as fuel.
At this time, at the time of production and / or storage of the solid fuel, specifically, air used for diluting hydrogen when mixing the hydrogen-generating oil mud and biomass, or used for diluting hydrogen when storing the solid fuel. It is preferable that air is supplied into the firing furnace as combustion air. Thereby, it becomes possible to process a lot of exhaust gas containing hydrogen from a mixer or a storage tank safely and effectively.
Here, examples of the firing furnace include a cement kiln for producing a clinker and a kiln for firing quick lime and lightweight aggregate.

次に、図面を参照しつつ、本発明に係る水素発生油泥の混合方法、該混合方法を用いた
固体燃料の製造方法、更にはその固体燃料の貯留方法の実施例を説明する。
図1は、固体燃料の製造設備、およびその固体燃料を使用するセメントキルンを概念的
に示した図である。
Next, referring to the drawings, an embodiment of a method for mixing hydrogen-generating oil mud according to the present invention, a method for producing solid fuel using the mixing method, and a method for storing the solid fuel will be described.
FIG. 1 is a diagram conceptually illustrating a solid fuel production facility and a cement kiln using the solid fuel.

図示したように、先ず、所定の方法で計量された1バッチ分の廃畳Aは、破砕機1に投
入され、5cm以下の長さを有する破砕物の割合が80質量%以上の破砕物に破砕される
。そして、得られた廃畳Aの破砕物は、コンベヤー2によって搬送され、その途中におい
て有機質粉体(トナー、重油灰)がその貯留装置3より定量供給され、両者が混合した状
態でホッパー4に貯留される。
As shown in the figure, first, one batch of waste tatami mat A weighed by a predetermined method is put into the crusher 1, and the proportion of crushed material having a length of 5 cm or less is reduced to 80% by mass or more. It is crushed. And the crushed material of the obtained waste tatami A is conveyed by the conveyor 2, and organic powder (toner, heavy oil ash) is quantitatively supplied from the storage device 3 in the middle thereof, and is mixed into the hopper 4 in a state where both are mixed. Stored.

ホッパー4に貯留された1バッチ分の廃畳Aの破砕物等(約200kg)は、混合機(
アイリッヒ社製のアイリッヒミキサー)5に1バッチ分の水素発生油泥(廃ワイヤソーオ
イル約200kg)Xと共に投入され、所定時間(約4分間)攪拌混合される。この際、
混合機5内には、所定量(最大約20m3/min)の空気が導入され、混合物から発生
する水素を、爆発を起こさない濃度まで希釈させながら混合操作が行われる。また、混合
機5には、水素検出器6が設置され、万一所定以上の濃度の水素が検出された場合には、
直ちに混合操作を停止し、CO2ガスを混合機5内へ導入する等の制御を行う、運転制御
盤7が設けられている。
One batch of crushed waste A (about 200 kg) stored in the hopper 4 is mixed with a mixer (about 200 kg).
A batch of hydrogen-generated oil mud (waste wire saw oil about 200 kg) X is charged into an Eirich mixer (Eirich mixer) 5 and stirred and mixed for a predetermined time (about 4 minutes). On this occasion,
A predetermined amount (up to about 20 m 3 / min) of air is introduced into the mixer 5, and the mixing operation is performed while diluting the hydrogen generated from the mixture to a concentration that does not cause an explosion. Further, the hydrogen detector 6 is installed in the mixer 5, and in the unlikely event that hydrogen of a predetermined concentration or more is detected,
An operation control panel 7 is provided for performing control such as immediately stopping the mixing operation and introducing CO 2 gas into the mixer 5.

上記混合操作によって、水素発生油泥Xは、混合された廃畳Aの破砕物等の固体材料に
吸収され、固体燃料Yとなる。混合機5より排出された固体燃料Yは、その下流に設置さ
れた、解砕機8で解砕され、コンベヤー9によって上方に搬送され、ドラム磁選機10で
異物が除去され、トロンメル11でその粒度が整えられ、貯留タンク12に貯留される。
Through the above mixing operation, the hydrogen-generating oil mud X is absorbed by the solid material such as the crushed material of the mixed waste tatami A and becomes the solid fuel Y. The solid fuel Y discharged from the mixer 5 is crushed by a crusher 8 installed downstream thereof, conveyed upward by a conveyor 9, foreign matters are removed by a drum magnetic separator 10, and its particle size is obtained by a trommel 11. Is prepared and stored in the storage tank 12.

この貯留タンク12には、所定量(最大約30m3/min)の空気が導入され、固体
燃料Yから発生する水素を、爆発を起こさない濃度まで希釈させながら貯留が行われる。
またこの貯留タンク12には、上記した混合機5の場合と同様に、水素検出器6が設置さ
れ、万一所定以上の濃度の水素が検出された場合には、CO2ガスを貯留タンク12へ導
入する等の制御を行う、上記運転制御盤7に接続されている。このような状態で貯留され
た固体燃料Yは、計量器13で計量され、セメントキルン14の主燃料である微粉炭に代
えて、或いは微粉炭と併用して、バーナー15に向かって空気圧送され、バーナー15の
燃料噴射口からセメントキルン14内に投入される。
A predetermined amount (up to about 30 m 3 / min) of air is introduced into the storage tank 12, and storage is performed while diluting hydrogen generated from the solid fuel Y to a concentration that does not cause an explosion.
Similarly to the case of the mixer 5 described above, the hydrogen detector 6 is installed in the storage tank 12, and in the unlikely event that hydrogen of a predetermined concentration or more is detected, CO 2 gas is stored in the storage tank 12. It is connected to the operation control panel 7 for performing control such as introduction to the above. The solid fuel Y stored in such a state is measured by the meter 13 and is pneumatically fed toward the burner 15 instead of or in combination with the pulverized coal that is the main fuel of the cement kiln 14. The fuel is injected into the cement kiln 14 from the fuel injection port of the burner 15.

セメントキルン14内に投入された固体燃料Yは、バーナー15からの炎によって、炉
底に着地する前に短時間で完全燃焼し、固体燃料Yの燃焼残渣は、クリンカの成分の一部
となる。また、混合機5より排気された水素の希釈に使用された空気、及び貯留タンク1
2より排気された水素の希釈に使用された空気は共に、バッグフィルター16を介してク
リンカークーラー17に導かれ、クリンカーの冷却に使用されると共に、セメントキルン
14において燃焼用空気として利用される。
The solid fuel Y introduced into the cement kiln 14 is completely burned in a short time before landing on the furnace bottom by the flame from the burner 15, and the combustion residue of the solid fuel Y becomes a part of the components of the clinker. . Further, the air used for diluting the hydrogen exhausted from the mixer 5 and the storage tank 1
Both of the air used for diluting the hydrogen exhausted from 2 are guided to the clinker cooler 17 through the bag filter 16 and used for cooling the clinker and also used as combustion air in the cement kiln 14.

一方、ドラム磁選機10、トロンメル11で排除された固体燃料Y中の異物等は、セメ
ントキルン14の窯尻より投入され、燃料として使用されると共に、その残渣はクリンカ
の成分の一部となる。
On the other hand, the foreign matter or the like in the solid fuel Y removed by the drum magnetic separator 10 and the trommel 11 is introduced from the kiln bottom of the cement kiln 14 and used as fuel, and the residue becomes a part of the clinker component. .

以上、本発明に係る水素発生油泥の混合方法、該混合方法を用いた固体燃料の製造方法
、更にはその固体燃料の貯留方法の実施例を説明したが、本発明は、何ら既述の実施例に
限定されず、特許請求の範囲に記載した本発明の技術的思想の範囲内において、種々の変
形および変更が可能であることは当然である。
As mentioned above, although the example of the mixing method of the hydrogen generation oil mud concerning the present invention, the manufacturing method of the solid fuel using the mixing method, and the storage method of the solid fuel have been described, the present invention is not limited to the implementation described above. The present invention is not limited to the examples, and various modifications and changes are naturally possible within the scope of the technical idea of the present invention described in the claims.

本発明を実現する固体燃料の製造設備、およびその固体燃料を使用するセメントキルンを概念的に示した図である。It is the figure which showed notionally the manufacturing facility of the solid fuel which implement | achieves this invention, and the cement kiln which uses the solid fuel.

符号の説明Explanation of symbols

1 破砕機
2 コンベヤー
3 有機質粉体の貯留装置
4 ホッパー
5 混合機
6 水素検出器
7 運転制御盤
8 解砕機
9 コンベヤー
10 ドラム磁選機
11 トロンメル
12 貯留タンク
13 計量器
14 セメントキルン
15 バーナー
16 バッグフィルター
17 クリンカークーラー
A 廃畳
X 水素発生油泥
Y 固体燃料
DESCRIPTION OF SYMBOLS 1 Crusher 2 Conveyor 3 Organic powder storage device 4 Hopper 5 Mixer 6 Hydrogen detector 7 Operation control panel 8 Crusher 9 Conveyor 10 Drum magnetic separator 11 Trommel 12 Storage tank 13 Meter 14 Cement kiln 15 Burner 16 Bag filter 17 Clinker cooler A Waste tatami X Hydrogen generating oil mud Y Solid fuel

Claims (5)

水素発生油泥の混合に際して、空気を該水素発生油泥の混合機内に導入し、発生した水素を爆発下限濃度未満まで希釈した状態で水素発生油泥の混合を行う水素発生油泥の混合方法において、上記混合機に常時水素の濃度を検知する水素検出器を設け、該水素検出器が所定以上の濃度の水素を検出した場合には、水素発生油泥の上記混合操作を停止すると共に、上記混合機内への空気導入量を増加させる、或いは二酸化炭素等の不活性なガスを上記混合機内へ導入する操作を行うことを特徴とする、水素発生油泥の混合方法。 Upon mixing of the hydrogen generating oil mud, introducing air into the mixer of the hydrogen generating oil mud, the method of mixing the hydrogen generating oil mud for mixing the hydrogen generation oil mud while diluting hydrogen generated to below the lower explosive limit concentration, the mixture A hydrogen detector that constantly detects the concentration of hydrogen is provided in the machine, and when the hydrogen detector detects a hydrogen concentration higher than a predetermined level, the mixing operation of the hydrogen-generating oil mud is stopped, and A method for mixing hydrogen-generating oil mud, characterized by performing an operation of increasing an air introduction amount or introducing an inert gas such as carbon dioxide into the mixer. 上記水素発生油泥が、水または水素原子含有化合物の還元によって水素を発生する、液状またはスラッジ状の油泥であることを特徴とする、請求項1に記載の水素発生油泥の混合方法。   The method for mixing hydrogen-generating oil mud according to claim 1, wherein the hydrogen-generating oil mud is liquid or sludge-like oil mud that generates hydrogen by reduction of water or a hydrogen atom-containing compound. 上記水素発生油泥が、シリコン粒子及び/又はアルミ粒子や金属粒子を含有した、廃ワイヤソーオイル、廃切削油、廃研削油、廃研磨油のいずれか一種以上であることを特徴とする、請求項1に記載の水素発生油泥の混合方法。   The hydrogen generating oil mud is at least one of waste wire saw oil, waste cutting oil, waste grinding oil, and waste polishing oil containing silicon particles and / or aluminum particles and metal particles. 2. The method for mixing hydrogen-generating oil mud according to 1. 上記請求項1〜3のいずれかに記載の混合方法によって、水素発生油泥とバイオマスとを混合することを特徴とする、固体燃料の製造方法。   A method for producing a solid fuel, wherein the hydrogen-generating oil mud and biomass are mixed by the mixing method according to any one of claims 1 to 3. 上記バイオマスが、廃畳の破砕物、木材チップ、木粉、おが屑、紙屑のいずれか一種以上であることを特徴とする、請求項4に記載の固体燃料の製造方法。   The method for producing a solid fuel according to claim 4, wherein the biomass is at least one of waste crushed material, wood chips, wood flour, sawdust, and paper waste.
JP2006273957A 2006-10-05 2006-10-05 Method for mixing hydrogen-generating oil mud and method for producing solid fuel Active JP5179037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273957A JP5179037B2 (en) 2006-10-05 2006-10-05 Method for mixing hydrogen-generating oil mud and method for producing solid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273957A JP5179037B2 (en) 2006-10-05 2006-10-05 Method for mixing hydrogen-generating oil mud and method for producing solid fuel

Publications (2)

Publication Number Publication Date
JP2008086973A JP2008086973A (en) 2008-04-17
JP5179037B2 true JP5179037B2 (en) 2013-04-10

Family

ID=39371679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273957A Active JP5179037B2 (en) 2006-10-05 2006-10-05 Method for mixing hydrogen-generating oil mud and method for producing solid fuel

Country Status (1)

Country Link
JP (1) JP5179037B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179038B2 (en) * 2006-10-05 2013-04-10 太平洋セメント株式会社 Method for treating hydrogen-generated oil mud and solid fuel
JP5188715B2 (en) * 2007-01-15 2013-04-24 太平洋セメント株式会社 Method for producing solid fuel
JP5313004B2 (en) * 2009-03-27 2013-10-09 太平洋セメント株式会社 Treatment method of hydrogen-generated oil mud
JP6413894B2 (en) * 2015-03-31 2018-10-31 住友大阪セメント株式会社 Method and apparatus for producing solid fuel for cement firing

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785888A (en) * 1980-11-15 1982-05-28 Jiyunji Mandani Fuel
DE3442506A1 (en) * 1984-11-22 1986-05-22 Union Rheinische Braunkohlen Kraftstoff AG, 5000 Köln METHOD FOR PROCESSING CARBON-CONTAINING WASTE AND BIOMASS
US4980030A (en) * 1987-04-02 1990-12-25 Haden Schweitzer Method for treating waste paint sludge
JPH0782581A (en) * 1993-09-10 1995-03-28 Fujio Murata Solid fuel produced from waste material
JP3139265B2 (en) * 1994-03-04 2001-02-26 宇部興産株式会社 Method for manufacturing solid fuel
JP2000160185A (en) * 1998-12-02 2000-06-13 Kyodo Yushi Co Ltd Water soluble oil agent for cut processing
JP2002323213A (en) * 2001-04-26 2002-11-08 Nippon Steel Corp Incineration method for oil-containing sludge
JP2003129080A (en) * 2001-10-24 2003-05-08 Kyodo Yushi Co Ltd Water soluble oil for cutting work
JP2004121886A (en) * 2002-07-31 2004-04-22 Kurita Water Ind Ltd Method for treating organohalogen compound pollutant
JP3881646B2 (en) * 2003-04-24 2007-02-14 株式会社不二越 Grinding or polishing solidification method and grinding or polishing solidification device
JP4421882B2 (en) * 2003-12-04 2010-02-24 日本磁力選鉱株式会社 Effective utilization of oil-impregnated SiC sludge
JP4306469B2 (en) * 2004-01-23 2009-08-05 株式会社Ihi Inert gas sealing method and apparatus for sealed waste incineration equipment
JP2005342557A (en) * 2004-05-31 2005-12-15 Japan Organo Co Ltd Method of treating chemically contaminated matter
JP4316486B2 (en) * 2004-12-15 2009-08-19 太平洋セメント株式会社 Fuel and its use
JP4319991B2 (en) * 2005-01-18 2009-08-26 太平洋セメント株式会社 Fuel and its use
CN101395427B (en) * 2006-03-02 2015-06-17 太平洋水泥株式会社 Method of handling substance from which combustible gas volatilizes, process for producing solid fuel, method of storing solid fuel, method of using solid fuel, and apparatus using solid fuel
JP2008086975A (en) * 2006-10-05 2008-04-17 Taiheiyo Cement Corp Method for treating hydrogen generating oil sludge and method for using hydrogen generating oil sludge
JP5179038B2 (en) * 2006-10-05 2013-04-10 太平洋セメント株式会社 Method for treating hydrogen-generated oil mud and solid fuel

Also Published As

Publication number Publication date
JP2008086973A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
KR101386731B1 (en) Method of handling substance from which combustible gas volatilizes
JP5188716B2 (en) Method for producing solid fuel
RU2140823C1 (en) Method and apparatus for dry milling of solid substances (versions)
KR101073780B1 (en) An apparatus for beneficiation of low ranking coal, and a method for beneficiation of low ranking coal by utilizing the bed ash from fluidized-bed combustor for using in the circulating fluidized-bed power plant
KR101311575B1 (en) Process for production of sintered mineral
JP5179037B2 (en) Method for mixing hydrogen-generating oil mud and method for producing solid fuel
JP5179038B2 (en) Method for treating hydrogen-generated oil mud and solid fuel
US8282263B2 (en) Apparatus and method for adding wet ash to cement
KR102574057B1 (en) Method and apparatus for reforming fly ash
JP5188715B2 (en) Method for producing solid fuel
JP2008086975A (en) Method for treating hydrogen generating oil sludge and method for using hydrogen generating oil sludge
JP2008208360A (en) Solid fuel and method for preparing the same
JP5301185B2 (en) Utilization of waste oil-based solid fuel
JP5456348B2 (en) Method for producing waste oil-based solid fuel and method for using the waste oil-based solid fuel
JP5313004B2 (en) Treatment method of hydrogen-generated oil mud
JP2011052916A (en) Method and system for improving combustion efficiency of pulverized coal burning boiler
CN111701441B (en) Dry-type desulfurization superfine powder for synergistically realizing ultralow emission of flue gas and preparation method and application thereof
JP2013195607A (en) Method of converting waste toner to fuel
JP2023044301A (en) Alkali metal removal method
JP2011093991A (en) Method for treating low flash point waste oil, and solid fuel
JP5191749B2 (en) How to use solid fuel
JP4901268B2 (en) Method for suppressing elution of harmful trace elements and elution inhibitor for coal addition used therefor
Skjevrak et al. Pelletizing and Combustion Behaviors of Wood Waste with Additives Mixing
JPH10287890A (en) Powdery solid hybrid fuel, its production and its combustion
HU227100B1 (en) Process for producing of hydrocarbon based fuel for cement industry and power station and the fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5179037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250